Environmental Technology & Science Journal [ETSJ] **VOLUME 6** No.1 **JUNE 2015** ISSN NO: 2006-0459 #### PUBLISHED BY: School of Environmental Technology (SET), Federal University of Technology, > P.M.B. 65 MINNA, NIGER STATE E-mail: etsjournal2006@yahoo.com Copyright2015 Environmental Technology & Science Journal (ETSJ) Volume 6 No.1, June, 2015. ISSN-2006-0459 Published by: School of Environmental Technology (SET), Federal University of Technology, P.M.B. 65, MINNA, NIGERIA E-mail: etsjournal2006@yahoo.com ISSN: 2006-0459 Copyright (C) School of Environmental Technology 2015 All rights reserved. Editor-in-Chief Prof. O.O. Morenikeji Dept. of Urban & Regional Planning Federal University of Technology, Minna #### **Editorial Board Members** Dr. A.O. Sulyman Dept of Urban and Regional Planning Federal University of Technology, Minna Dr. I.C. Onuigbo Dept of Land Surverying Federal University of Technology, Minna Dr. P. Ayuba Dept of Architecture Federal University of Technology, Minna Dr. J.E. Idiake Dept of Quantity Surveying Federal University of Technology, Minna Dr. O.A. Kemiki Dept of Estate Management & Valuation Federal University of Technology, Minna. Dr. R. A. Jimoh Dept. of Building, Federal University of Technology, Minna. **Editorial Advisers** Prof. (Mrs.) S. N. Zubairu Dept. of Architecture Federal University of Technology, Minna Prof. Y.A. Sanusi Dept. of Urban & Regional Planning Federal University of Technology, Minna Prof. A.M. Jinadu Dept. of Urban & Regional Planning, Federal University of Technology, Minna Prof. U.O. Nkwogu Dept. of Architecture Imo State University, Owerri. Prof. B. T. Aluko Dept of Estate Management Obafemi Awolowo University, Ife Prof. P.C. Nwilo, Dept. of Surveying & Geoinformatics, University of Lagos. Prof. I. O Aje Dept. of Quantity Surveying, Federal University of Technology, Akure. ### **Table of Contents** | Transport and Access to Rural Health Centre's In Ilorin East Local Government | Pages | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------| | Area, Kwara State, Nigeria Usman B. A. and Sulyman A. O. | . 1 | | Effect of Water Cement Ratio on the Compressive Strength of Revibrated Concrete | | | Auta, S. M., Mamud, A. and Abdulazeez, Y. | 14 | | Mapping Surface Hydrological Patterns in the Southern Part of Niger State from Digital Elevation Model | | | Zitta N., Odumosu J. O., Ajayi O. G. and Opaluwa Y. D. | 22 | | Energy Conservation Opportunities in Airport Terminal Building: A Case Study of Manchester International Airport Abdulhameed Danjuma Mambo | | | | 33 | | Members Ethical Compass in Doldrums: Code of Conduct For Professional Builders to The Rescue Jimoh, R.A.; Jibrin, I.A.M.; and Odeniyi, V.A. | | | · 大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大 | 45 | | Assessment of Adequacy of Urban Infrastructure and Its Impacts on Residential Property Values in Ilorin West, Kwara State, Nigeria. Bako A. I. and Adeogun, A. S. | | | Effects of Charcoal Production on F | 53 | | Effects of Charcoal Production on Environmental Degradation in Guinea Savannah Olangewain P. M. J. | | | Olanrewaju, R. M., Iroye, K. A., and Tilakasiri, S. L. | 65 | | An Assessment of The Impact of Infrastructure on Residential Property Musa, Z. Bello: Sani, M. D.: | | | Musa, Z. Bello; Sani, M. Bida; and Umar, A. Saidu | 78 | | Determination of Exterior Orientation Parameters from a Single Oblique Samaila-Ija H.A.; Odumosu J. O. | | | Samaila-Ija H.A.; Odumosu J.O; Ajayi O.G.; Adesina E.A.; Zitta N. and A. A. Kuta-Indices of Facilities Maintenance | 90 | | Indices of Facilities Maintenance Behavior at the Federal University of Bajere, P. A. | | | Updating Minna Road M. | 100 | | Updating Minna Road Map Using Surveying and Geospatial Techniques | | | iii | 115 | ## DETERMINATION OF EXTERIOR ORIENTATION PARAMETERS FROM A SINGLE OBLIQUE PHOTOGRAPH: A LEAST SQUARES APPROACH SAMAILA-IJA H. A.; ODUMOSU J. O.; AJAYI O. G., ADESINA E. A., ZITTA N., and KUTA A. A. Department of Surveying and Geoinformatics, Federal University of Technology, Minna, Nigeria. Corresponding Email: odumossu4life@yahoo.com #### Abstract This paper presents a simple least squares approach to determination of exterior orientation parameters using a parametric form solution to the conventional collinearity-condition equation for a single oblique photograph. A MATLAB based program has been written to perform the required computation by two methods namely; "iterative model" and "non-iterative tilt photo-generator equation". With a Standard error of 10.77m, 10.77m and 279.31m for the X_0 , Y_0 and Z_0 respectively, the "Non-iterative Tilt Photo Generator Equation" Model was chosen as a better fit for the Solution although the accuracy achieved is unacceptable for higher order survey tasks. This therefore confirms that stereo images are better suited for higher order survey tasks. Keywords: Ground Control Points (GCPs), Oblique Photographs, Collinearity Equation, exterior orientation parameters #### Introduction Though one of the fastest methods of spatial data acquisition because of its capacity to capture an infinite number of points in a single exposure of the camera, photogrammetric method of data gathering still suffers set back on the grounds of cost and computational difficulty. Reconstruction of original object scene from photographs requires certain steps known as Orientation (Fundamentals of Computational Photogrammetry). Therefore. fundamental the photogrammetric problem determination of the interior and exterior orientation parameters of the camera and the coordinates of object space points measured on photos (McGlone, 1989). The six elements of exterior orientation are: 3D Object Space Co-ordinates of the principal Point and Three Rotation angles. Exterior orientation could be performed either in two separate steps known as "Relative and Absolute Orientation" or in a combined solution called "Bundle Adjustment". While relative Orientation is the process of bringing corresponding rays to intersect at model points thereby recreating the same parallactic angles as existed between successive exposures, absolute orientation establishes the mathematical relationship between the stereo-model and the ground control co-ordinate system. Odumosu and Ajayi, (2014) examined some of the existing models used for absolute orientation and their suitability for third -Order Planimetric mapping. techniques exist for determining the exterior orientation parameters of which the analytical (empirical method) shall be considered in this paper. The other techniques being the Graphical Numerical techniques. Analytical photogrammetry is the term used to describe the rigorous mathematical calculation of coordinates of points in space based upon parameters, measured photo coordinates and ground control (Venkat Devarajan et al, 2012). Due to the difficulty posed by the acquisition of Ground Control Points in inaccessible areas, Hojun et al (2012) determined exterior orientation parameters through direct geo-referencing in a realmonitoring system aerial compared the results obtained to the precisely computed exterior Orientation Parameters via the digital Photogrammetry workstation. Drewniok and Rohr (1997) presented an approach for automatic exterior orientation of aerial imagery that is based on detection and localization of planar objects manhole covers. Ethrog (1984) used parallel and perpendicular lines of objects for estimation of the rotation and interior orientation of nonmetric cameras. Some other approaches include: Coplanar Parallel Lines (F. A. Van der Heuvel, 1997), measurement and automated matching of linear lines (Martin and David, 2000), Linear features -Analytical approach (Liu et al., 1990, Chen and Tsai 1990), Multiple geometric features (Qiang et al, 2000; Kager, 1989; Forkert, 1996). Oiang et al (2000) also lucidly and elaborately presented an overview of some of the algorithms using features other than points for exterior orientation problems. Traditionally, the collinearity, coplanarity and co-angularity conditions are used to determine exterior orientation parameters based on point co- ordinates as input data (Grussenmeyer, 2008). However, in recent times, software are available that automate the easy computation of the exterior orientation parameters and just supply users the computed ground co-ordinates of desired points, the initial cost of acquisition of these equipment is very high time Besides, the uneconomical. consuming ground survey of control points can be reduced by block adjustment or even more by combined block adjustment with projection centre coordinates from relative kinematic GPS-positioning. It is also possible to avoid control points like the measurement of image coordinates of tie points by direct sensor orientation with a combination of GPS and an Inertial Measurement Unit (IMU) (Karsten, 2001). This paper presents a simple user-friendly least squares technique for solving exterior orientation parameters using MATLAB software. #### Mathematical models: The transformation (Projective equation) describing the relationship between two mutually associated three dimensional system of co-ordinates can easily be illustrated by the collinearity equation: Equ. 1.0 $$x_{a} = x_{o} - f \begin{bmatrix} r_{11}(X_{A} - X_{L}) + r_{12}(Y_{A} - Y_{L}) + r_{13}(Z_{A} - Z_{L}) \\ r_{21}(X_{A} - X_{L}) + r_{22}(Y_{A} - Y_{L}) + r_{33}(Z_{A} - Z_{L}) \\ r_{21}(X_{A} - X_{L}) + r_{22}(Y_{A} - Y_{L}) + r_{33}(Z_{A} - Z_{L}) \end{bmatrix}$$ $$y_{a} = y_{o} - f \begin{bmatrix} r_{11}(X_{A} - X_{L}) + r_{12}(Y_{A} - Y_{L}) + r_{13}(Z_{A} - Z_{L}) \\ r_{21}(X_{A} - X_{L}) + r_{32}(Y_{A} - Y_{L}) + r_{33}(Z_{A} - Z_{L}) \end{bmatrix}$$ Equ. 1.1 For ease of mathematical and programming manipulations, Equations 1.0 and 1.1 can easily be re-written in Vector Form as: $$\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix} = \mathbf{K} \mathbf{R} \begin{pmatrix} X_A - X_L \\ Y_A - Y_L \\ Z_A - Z_L \end{pmatrix}$$ Equ. 2.0 Where x, y, z are co-ordinates of point A in the image space co-ordinate system. K = Scale Factor R = a Rotation Matrix X_L , Y_L , Z_L = Co-ordinates of the Principal Point in the Object Space co-ordinate System. Environmental rechnology and seren X_A , Y_A , Z_A = Co-ordinates of Point A in the Object Space co-ordinate System. The Rotation Matrix "M" can be further written as (Equ. 3.0) $$R = \begin{bmatrix} \cos \phi \cos \kappa & -\cos \phi \sin \kappa & \sin \phi \\ \cos \omega \sin \kappa + \sin \omega \sin \phi \cos \kappa & \cos \omega \cos \kappa - \sin \omega \sin \phi \sin \kappa & -\sin \omega \cos \phi \\ \sin \omega \sin \kappa - \cos \omega \sin \phi \cos \kappa & \sin \omega \cos \kappa + \cos \omega \sin \phi \sin \kappa & \cos \omega \cos \phi \end{bmatrix}$$ Equ. 3.0 Where ω , Φ and κ represent rotations or angular shifts in the x, y and z axis respectively. Also for ease of numerical manipulations, Equation 3.0 is commonly represented as: $$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$ Equ. 3.1 Equation 2.0 above thus becomes the fundamental equation from where subsequent derivations are performed. Olaleye, (2010) re-arranged equation 2.0 above into "Parametric form" and called it the "Vertical Photo-Generator" Equation Vertical Photographs. The vertical Photo Generator Equation assumes that the aerial photograph is truly or near Vertical, thus the rotation matrix is completely eliminated. The equation in parametric form thus becomes: $$(x_{\alpha}, y_{\alpha}, -f) = \frac{1}{s} [(X_A, Y_A, Z_A) - (X_L, Y_L, Z_L)]$$ Equ. 4.0 However, when the photograph is taken such that the optical axis is deviated from the vertical, the reconstruction of original image geometry from photograph will require that the rotations of the camera be efficiently modelled. Therefore, there is need for the $$(x_a, y_a, -f) = \frac{1}{s} \begin{pmatrix} 1 & \kappa & -\varphi \\ -\kappa & 1 & \omega \\ \varphi & -\omega & 1 \end{pmatrix} \begin{pmatrix} X_A - X_o \\ Y_A - Y_o \\ Z_A - Z_o \end{pmatrix}$$ $$(x_{\alpha}, y_{\alpha}, -f) = \frac{1}{s} \begin{pmatrix} 1 & \kappa & -\varphi \\ -\kappa & 1 & \omega \\ \varphi & -\omega & 1 \end{pmatrix} \begin{pmatrix} \Delta X_A \\ \Delta Y_A \\ \Delta Z_A \end{pmatrix}$$ Equ. 6.1 rotation matrix to be fully implemented in such solutions. The "Tilt Photo-Generator" Equation for tilted Photographs thus utilises the Rodriguez approximation for rotation matrix rather than using the full rotation matrix in-order to reduce the mathematical complexity of the resulting equation. Thus, K in equations 2 and 3 above are replaced as: $$\mathbf{R} \cong \begin{bmatrix} 1 & -k & \phi \\ k & 1 & -\omega \\ -\phi & \omega & 1 \end{bmatrix}$$ Equ. 5.0 Thus applying the Rodriguez approximation rather than the full rotation matrix Equation Equation 2 becomes: Equ. 6.0 Therefore re-arranging in parametric solution form Olaleye (2010) gives the "Tilt Photo-Generator" Equation as: $$(x_a, y_a, -f) = \frac{1}{s} \left(\Delta X_A + \kappa \Delta Y_A - \varphi \Delta Z_A, -\kappa \Delta X_A + \Delta Y_A + \omega \Delta Z_A, \varphi \Delta X_A - \omega \Delta Y_A + \Delta Z_A \right)$$ Equ. 7.0 #### Least Squares Approach Conventionally, the least Squares Observation equation $A = \begin{pmatrix} 1 & 0 & 0 & X_a \\ 0 & 1 & 0 & Y_a \\ 0 & 0 & 1 & -f \end{pmatrix}$ Equ. 12.1 is given as: is given as: $$V = AX + L^b$$ Equ. 8.0 $$X = (A^T P A)^{-1} A^T L^b$$ Equ. 9.0 $$\sum_{\hat{X}} = \sigma_o^2 (A^T P A)^{-1}$$ Equ. 10.0 $\sigma_o^2 = \frac{v^T P V}{n-m}$ Equ. 11.0 Where: V = vector of residuals A =the design or coefficient matrix X = vector of unknowns L =the vector of observations P = weight matrix of observation σ_0^2 = a-posteriori variance of unit weight n =the number of observations m =the number of unknowns In vector space representation, Equ. 4.0 can be re-written as: $$\begin{pmatrix} X_A \\ Y_A \\ Z_A \end{pmatrix} = \begin{pmatrix} X_L - sx_a \\ Y_L - sy_a \\ Z_I + sf \end{pmatrix}$$ Equ. 12.0 Therefore, the required Matrix for the Observation Equation Solution to solve for the Exterior Orientation parameters from the Vertical Photo-Generator Equation is: $$(Parameters)X = \begin{bmatrix} X_L \\ Y_L \\ Z_L \\ S \end{bmatrix}$$ Equ. 12.2 (Observation Matrix) $$L = \begin{pmatrix} X_A \\ Y_A \\ Z_A \\ \vdots \end{pmatrix}$$ Equ. 12.3 The solution for Equations 12.1 - 12.3 gives the Object Space Co-ordinates of the principal Point for a vertical photograph. However, in a tilted photograph as this, the obtained solution serves as initial guess for subsequent iterations which now incorporate the full tilt equation. The Matrix formulations for the subsequent iterations are as given below: $$(Observation Matrix)L = \begin{pmatrix} x_a \\ y_a \\ -f \\ \vdots \end{pmatrix} Equ.$$ 12.4 $$(Design \, Matrix)A = \begin{pmatrix} (Y_A - Y_L) & -(Z_A - Z_L) & 0 & (X_A - X_L) \\ -(X_A - X_L) & 0 & (Z_A - Z_L) & (Y_A - Y_L) \\ 0 & (X_A - X_L) & -(Y_A - Y_L) & (Z_A - Z_L) \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix} \quad \text{Equ. 12.5}$$ $$(Parameters)X = \begin{bmatrix} \kappa, \frac{1}{s} \\ \varphi, \frac{1}{s} \\ \omega, \frac{1}{s} \\ \frac{1}{s} \end{bmatrix}$$ Equ. 12.6 Equ. 11.4 – 11.6 are used for determination of the rotational Parameters. The Design Matrix for the Tilt Photograph Model in the Non-iterative Least Squares Solution thus becomes $$(Design Matrix)A = \begin{pmatrix} 1 & 0 & 0 & x_a - y_a & f & 0 \\ 0 & 1 & 0 & y_a & x_a & 0 & f \\ 0 & 0 & 1 - f & 0 & -x_a & y_a \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$ Equ. 12.7 #### Materials and Method The Image used (Figure 1.0) for this experiment is an aerial photograph of part of Minna, Niger-State. The Photograph was captured on 20th April 2013, during the surveying camping exercise of the Surveying and Geo-Informatics Students, Federal University of Technology Minna. Figure 1.0: Aerial Photo of part of Minna, Niger State. The collinearity condition earlier described in section 2.0 was utilised in the determination of the exterior orientation parameters. Two kinds of solutions are herein proposed; the first being an iterative solution that requires an initial guess for the X_L , Y_L , Z_L values (Initial Guess is first computed using the Vertical Photo Generator Equation before subsequent iterations are done till the solution converges) and the second a direct solution implemented via the tilt Photo-Generator Equation. The captured image was then read into MATLAB environment (trial version) where digital co-ordinate values were assigned for all control points. The codes for reading in the image into MATLAB and for subsequent computations are contained in the appendix. The design matrix was formulated alongside the other relevant vectors and then MATLAB codes written to solve for the Exterior Orientation parameters of the Photograph by applying simple least squares technique to the collinearity equation as earlier described. The list of Ground controls and their corresponding Digital Photo controls are as shown in table 1.0. Table 1.: List of control points and their corresponding digital photo co-ordinates. | Ground Co-o | ordinates | Digital Photo Co-ordinates | | | | |-------------|-----------|----------------------------|-----|--|--| | 226230.128 | 1059899 | 231 | 161 | | | | 226163.936 | 1059828 | 207 | 172 | | | | 226219.490 | 1059766 | 232 | 177 | | | | 226562.352 | 1059635 | 388 | 179 | | | | 226559.683 | 1059554 | 402 | 189 | | | | 226559.787 | 1059433 | 428 | 210 | | | | 226634.523 | 1059360 | 487 | 221 | | | | 226713.313 | 1059506 | 478 | 192 | | | | 226779.621 | 1059636 | 468 | 173 | | | | 226780.687 | 1059706 | 455 | 166 | | | | 226480.357 | 1059212 | 455 | 276 | | | | 226263.845 | 1059297 | 287 | 269 | | | | 226056.051 | 1059581 | 153 | 213 | | | (Source: Authors' research, 2013) #### Results and Discussion A Total of Five (5) Ground control points have been selected for the computation. The GCPs were chosen to have a good spread across the study area so as to efficiently model the correct ground-photo relationship at every point within the image. The results obtained after running the programs are summarised in tables 2.0, 3.0 and 4.0. Table 2.0 shows the solution obtained via the iterative program (the result reveals that the solution converged after the third iteration). Table 3.0 presents the Exterior Orientation parameters obtained from the non-iterative solution using "Tilt Photo-Generator" Equation while table 4.0 contains the summary of the result obtained from the two approaches and the differences between them. Table 2.0: Exterior Orientation parameters obtained from the iterative solution. Environmenta | 1 | able 2.0. Little | | | | Diff 2 | 3rd Iteration | Diff 3 | |----------|------------------|---------------|--------------|---------------|-------------|---------------|---------| | | 1st Iteration | 2nd Iteration | Diff 1 | 3rd Iteration | DITT | | | | irameter | 1st Heraires | | | | 0.010 | 225780.880 | 0.000 | | | | 225780.890 | -250.140 | 225780.880 | -0.010 | | | | 5 | 226031.030 | | 1224.800 | 1060611.900 | 11.900 | 1060611.900 | 0.000 | | 2 | 1059375.200 | 1060600.000 | | | 256.000 | 256.000 | 0.000 | | | 214.683 | 0.000 | -214.683 | 256.000 | | 1.162 | 0.000 | | - | 1,162 | 1,162 | | 1.162 | 0.000 | | | | ale | | | 0.000000372 | -0.000587274 | 0.000000005 | -0.00058727 | 0.00000 | | рра | -0.000587651 | -0.000587279 | | 0.2100 | 0.000000000 | 0.000000128 | 0.00000 | | ni | 0.0000001278 | 0.000000128 | -0.000000001 | 0.000000128 | | | | | nega | -0.000541018 | -0.000000155 | 0.000540863 | -0.000000155 | 0.000000000 | -0.000000155 | 0.00000 | (Source: Authors' Research) nega Table 3.: Exterior Orientation parameters obtained from the non- iterative solution using "Tilt Photo-Generator" Equation. | Parameters | Tilt Model | |------------|---------------| | Xo | 225909.310 | | Yo | 1059581.000 | | Zo | 239.675 | | Scale | 1.162 | | Kappa | -0.526411591 | | Phi | -0.004551548 | | Omega | -0.1161281561 | Source: Authors' Computation (2013) Table 4.: Summary and differences between the Results obtained from the iterative and noniterative (Using Tilt Model) process. | Parameter | Tilt Model | Iterative Model | Differences | |-----------|---------------|-----------------|-------------| | Xo | 225909.310 | 225780.880 | 128.430 | | Yo | 1059581.000 | 1060611.900 | -1030.900 | | Zo | 239.675 | 256.000 | -16.325 | | Scale | 1.162 | 1.162 | 0.000 | | Kappa | -0.526411591 | -0.0005872743 | -0.526 | | Phi | -0.004551548 | 0.0000001276 | -0.005 | | Omega | -0.1161281561 | -0.0000001553 | -0.116 | Source: Authors' Computation (2013) Considering the Large variance between the obtained results, the standard error of both models was computed to determine the best fit. The computation of the standard error of measurements derived reveal a statistically unsatisfactory result for the iterative solution and a fairly acceptable solution for the "Tilt-Photo generator" Model as shown in Table 5.0 and 6.0 respectively. Table 5.0: Standard Error of Computation for Iterative Solution | | Xo | Yo | Zo | Scale | kappa | Phi | Omega | |--------------|------------|------------|----------|--------|---------|---------|------------| | Xo | 288922.844 | 379834.862 | 2.44E12 | 60.696 | -0.176 | 6.98E13 | 288922.844 | | Yo | 379834.862 | 399950.337 | -2.9E12 | 0.036 | -299.43 | 8.50E13 | 379834.862 | | Zo | 2.44E12 | -2.97E12 | -1.9E20 | 0.000 | 0.000 | 5.47E19 | 2.44E12 | | Scale | -60.696 | 0.036 | 0.000 | 0.180 | 0.000 | 0.000 | -60.696 | | | -0.176 | -299.432 | 0.000 | 0.000 | 1.505 | -0.001 | -0.176 | | kappa
Phi | 6.98E12 | -8.50E13 | -5.47E20 | 0.000 | -0.001 | -1.564 | 6.98E12 | | Omega | 288922.844 | 379834.862 | 2.44E12 | 60.696 | -0.176 | 6.98E13 | 288922.844 | Source: Authors' Computation (2013). Table 6.0: Standard Error of Computation of Non-Iterative "Tilt Photo Generator" Model Solution. | | V- | Yo | Zo | Scale | kappa | Phi | Omega | |-------|---------|---------|---------|---------|---------|--------|---------| | | Xo | | | -213.57 | 126.34 | 0.03 | 0.02 | | Xo | 10.77 | 0.00 | 13.03 | | -213.57 | -0.02 | -0.22 | | Yo | 0.00 | 10.77 | 42.27 | -126.34 | | 158.66 | -108.14 | | Zo | 13.03 | 42.27 | 279.31 | -0.02 | 0.00 | 138.00 | | | | -213.57 | -126.34 | -0.02 | 0.63 | 0.00 | 0.00 | 0.00 | | Scale | | | 0.00 | 0.00 | 0.63 | 0.00 | 0.00 | | Kappa | 126.34 | -213.57 | | 0.00 | 0.00 | 0.75 | 0.46 | | Phi | 0.03 | -0.02 | 158.66 | | | 0.46 | 6.22 | | Omega | 0.02 | -0.22 | -108.14 | 0.00 | 0.00 | 0.40 | | Source: Authors' Computation (2013) Also, the Standard Error obtained revealed that both models do not provide optimum results for the computation of the Ground Height of points. This could be as a result of the single photograph used. More reliable height values are thus expected when a stereo-pair of images is used. This will be verified in subsequent research works. #### Conclusion A simple least squares approach to solving exterior orientation parameters of a single photograph has been presented. The Standard Error obtained suggest that the direct usage of the "Tilt Photo-Generator" Equation is most efficient rather than an iterative solution with an initial guess obtained from the vertical Photo Generator equation. Besides, the use of single image rather than a stereo pair also reduce the ability of the model to effectively compute the Height value of the Photo Principal Point. It can also be concluded that the use of Single Photographs for determination of the exterior orientation parameters is not accuracy order high for suitable photogrammetric tasks. Therefore, similar techniques could be employed for an overlapping pair of images as better results are anticipated in such an event. #### References Chen, S.-Y., Tsai, W.-H, (1990). Systematic Approach to Analytic Determination of Camera Parameters by Line Features. *Pattern. Recognit.* 23 (8), 859–897. - Drewniok, C. and Rohr, K. (1997). Exterior Orientation An Automatic Approach Based On Fitting Analytic Landmark Models. ISPRS J. Photogramm. Remote Sens. 52 (3), 132–145. - Ethrog, U. (1984). Non-Metric Camera Calibration and Photo Orientation Using Parallel And Perpendicular Lines of Photographed Objects. Photogrammetria 39 (1), 13–22. - Forkert, G. (1996). Image Orientation Exclusively Based on Free- Form Tie Curves. Int. Arch. Photogramm. Remote Sens. 31 (B3), pp. 196– 201. - Grussenmeyer, P and Al Khalil, O. (2008). Solutions for Exterior Orientation in Photogrammetry -A review. The Photogrammetric record. Hal-00276983, Version 1-5. - Hojun Kim, Jihun Lee, Kyoungah Choi, Impyeoung. (2012). Determination of Exterior Orientation Parameters Through Direct Geo - Referencing Time Aerial Real Monitoring System. International Archives of the Photogrammetry, Spatial and Sensing Remote Volume Sciences, Information 2012 XXII ISPRS XXXIX-B1, August 25 Congress, September, Melbourne, Australia. - Kager, H. (1989). A Universal Photogrammetric Adjustment System. Opt.3D Meas., 447–455. - Karsten, J. (2001). Exterior Orientation - Parameters. PERS, December 2001. pp1321-1332. - Liu, Y., Huang, T.S., Faugeras, O.D., (1990). Determination of Camera Locations from 2D to 3D Line and Point Correspondence. IEEE Trans. Pattern Analysis Machine Intelligence 12 (1), pp. 28–37. - Martin J. Smith and David W. G. Park. (2000). Absolute And Exterior Orientation Using Linear Features. International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B3. Amsterdam. - M^cGlone, J. C. (1989). Analytic-Data Reduction Schemes in a Non Topographic Photogrammetry, (2nd ed). American Society of Photogrammetry and Remote Sensing (ASPRS). Falls Church, VI. - Odumosu, J. O and Ajayi, O. G. (2014). Comparative Analysis of Some 2D Transformation Models for third Order Accuracy Planimetric Mapping. International Journal of Advanced Scientific and Technical Research (IJST) 4(2), 385-404. ISSN 2249 9954. Available online onhttp://www.rspublication.com/ijst /index.html. - Olaleye, J. B. (2010). Unpublished Lecture notes on Digital Photogrammetry, Surveying and Geo-informatics Department, University of Lagos, Nigeria. - Qiang Ji, Mauro S. Costa, Robert M. Haralick, and Linda G. Shapiro. (2000). A Robust Linear LeastSquares Estimation of Camera Exterior Orientation Using Multiple Geometric Features. ISPRS Journal of Photogrammetry & Remote Sensing 55 (2000), 75–93. Snajib, K. G (nd). Fundamentals of Computational Photogrammetry. pp.102. Available online at Google books. Van der Heuvel, F. A. (1997). Exterior Orientation Using Coplanar Parallel Lines. Proceedings of the 10th Scandinavian Conference on Image Analysis, Lappeenranta, ISBN 951 – 764 – 145 – 1, pp. 71-78 Venkat Devarajan, Yuriy A. Reznik, and Ravi K. Chivukula., (2012). "Fast Algorithms for Low-Delay Sbr Filter Banks In Mpeg-4 AAC-ELD" IEEE Transactions On Audio, Speech And Language Processing, Vol. X, No. X, January 2012 [Accepted]. The full version of the algorithm (Source codes) used for this research is available and can be requested for by sending an expression of interest to the corresponding author.