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Abstract 

Thresholding is a very important technique in the detection of spectrum holes in cognitive radios. It is the 

benchmark by which a cognitive radio decides if a spectrum hole is present or not in a given frequency 

spectrum. However, the method by which a cognitive radio computes the threshold for any given scenario 

can be quite a challenge in terms of accuracy, speed, and efficiency. Fixed thresholds are less 

cumbersome to implement, but they are characterized by undesirable sensitivity and performance issues 

in the radio environment in which the cognitive radio operates due to uncertainty in noise level. On the 

other hand, adaptive thresholds give superior performance to fixed thresholds due to their ability to adjust 

their computational parameters in response to changes in the cognitive radio environment. In this paper, 

we present a discrete wavelet packet transform (DWPT) based spectrum sensing in cognitive radio with 

an improved adaptive threshold in terms of speed. The approach developed in this paper halves the 

number of computations needed to determine the adaptive threshold for each sub-band channel in a 

discrete wavelet packet transform. The results obtained show the method is efficient, fast, and dynamic in 

response to the variations in the cognitive radio environment. 
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1.0 Introduction 

The electromagnetic spectrum is a unique natural resource which is at the core of the operation 

of wireless technology and devices. It is a resource that is reusable by wireless transceiver 

systems which are licensed by government agencies based on certain conditions and criteria. 

Like any other natural resource, the electromagnetic spectrum is certainly finite. This limitation 

poses a great challenge in the presence of the ever-increasing wireless devices and applications 

which place a high demand on the available electromagnetic spectrum [1]. One candidate 

solution in literature is the cognitive radio (CR) technology which operates through a cognitive 

cycle [2-4] shown in Figure 1[2] in order to mitigate this problem. The cognitive radio cycle 

consists of three major components: 

i. Radio scene analysis which encompasses radio environment interference temperature 

estimation, and spectrum hole detection. 

ii. Channel identification which encompasses estimation of information about channel 

space, and channel capacity prediction. 

iii. Dynamic spectrum management, and control of transmit power.  
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Figure 1: Cognitive Radio Cycle 

This paper focuses on the radio scene analysis stage of the cognitive radio cycle in which we 

achieve detection of spectrum holes through spectrum sensing function. At the heart of spectrum 

hole detection is the technique of thresholding. Thresholds could be either fixed or adaptive. 

Fixed thresholds have the disadvantage of poor spectrum management in the presence of varying 

radio environment characteristics. Adaptive thresholds ensure efficient and accurate detection of 

spectrum holes as the characteristics of the radio environment changes. The improved adaptive 

threshold presented here is based on the discrete wavelet packet transform (DWPT), and has the 

ability to resolve signals in both time and frequency [5-9]. However, it should be pointed out that 

regardless of how well an adaptive threshold is designed, the performance of the spectrum 

sensing scheme implementing it will always be affected by noise uncertainty [10-11]. 

 

2.0 Effect of Noise Uncertainty in Adaptive Thresholding 

Noise in communication systems occur as a result of the aggregation of random sources of 

electromagnetic (EM) energy, which includes thermal noise and interference. Unintended 

emissions, and weak signals caused by large distances between transmitters and receivers are 

typical examples of random EM energy sources. From the foregoing, noise uncertainty can be 

described as a phenomenon brought about by random variations in noise level, and it causes 

degradation in the performance of most spectrum sensing schemes in terms of accuracy, if the 

signal-to-noise (SNR) is low [11-12]. 

When noise uncertainty occurs, the variance of the noise distributes within the range of 

2 21
,n n 


 
 
 

[12-13]. Thus, an estimated noise power can be expressed as: 

2^
2

n n           (1) 

where   is a noise uncertainty interval and 2

n is a noise variance. 
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It can be seen from the foregoing that due to noise uncertainty, adaptive thresholds remain very 

important in order to maintain an acceptable level of accuracy by a spectrum sensing scheme in 

the presence of such variations. An adaptive threshold will typically update itself by taking noise 

uncertainty and SNR into consideration, thus ensuring an optimum response in the spectrum 

sensing process.  

Another important factor is the type of the transform used in the spectrum sensing algorithm; it is 

here that wavelets outperform other transforms owing to their ability to effect time-frequency 

resolution of signals [5-9]. Typically, wavelets mitigate the effects of noise uncertainty through 

the selection of best basis function which ensures minimal representation of the data relative to 

the cost function. The selection of the best basis ensures that Gaussian noise remains Gaussian 

after the wavelet transform. This assertion is possible because higher order wavelet moments like 

skewness and kurtosis for Gaussian processes have theoretical values of zero [11,14]. 

 

3.0 Discrete Wavelet Packet Transform (DWPT) Threshold Improvement 

Wavelets are extensively applied in the analysis of data; they are powerful tools that are used in 

the representation of both known and unknown signals as a set of functions with the sole aim of 

gaining better insight into their characteristics. The discrete wavelet packet transform as shown 

in Figure 2 [9] is a generalization of wavelet transform in which a tree structure is used in the 

implementation of the wavelet algorithm by decomposing an input signal through high-pass and 

low-pass filter branches [15-18]. 

 

Fig 2: Analysis filter bank of a wavelet packet 
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For the wavelet packet tree shown in Figure 2, the wavelet packet coefficients 2
1[ ]
p

l n 
 are 

generated using the scaling filter. Similarly, the coefficients 2 1
1

[ ]
p

l
n 


 are generated using the 

wavelet filter. Mathematically, the coefficients are expressed as [9]:  

   2
1 2 [ ] 2 , 0,1,..., 1
p p

l l

k

n h k n k n N            (2) 

     2 1
1 2 2 , 0,1, 2,..., 1
p p

l l

k

n g k n k n N 
         (3) 

where  h k is the low-pass filter,  g k is the high-pass filter, and p is the position at level l.     

For the signal in each sub-band channel, the energy is calculated as [19-20]: 

 

 
0
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j j k

E c t d dt
T
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  
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 

            (4)  
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j j k

E c d
T



               (5) 

where cj,k is scaling function coefficient, dj,k is the wavelet function coefficient. It should be 

noted that the presence of a signal in a sub-band channel makes the energy level of that signal in 

the sub-band channel higher.  

In this paper we focus on the improvement of the thresholding by Q. Zhijin, et al in [19] which 

we will call the referred scheme and given as: 

, 1,2

1,2
2

i j i j

i j

E 
 




           (6) 

, 1,2 1

1,2 1
2

i j i j

i j

E 
  

 


          (7) 

The expressions in (6) and (7) yield the adaptive threshold at channel j during the (i+1)th level of 

decomposition. To better understand these equations, we present in Figure 3, the relationship in a 

DWPT between a parent node and the two child nodes that originate from it. 
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Figure 3: Relationship between a parent node and child nodes in a DWPT 

As seen in Figure 3, 
,i j  is the threshold associated with the parent node, while 

1,2i j 
and 

1,2 1i j  
are the thresholds associated with the two child nodes u and v at the (i+1)th level of 

DWPT decomposition. 
1,2i jE 

 and 
1,2 1i jE  

 are the energies associated with the two child nodes u 

and v at the (i+1)th level of DWPT decomposition. The factor is a tuning factor in the 

determination of the adaptive threshold, and as it tends to 1, the energy of the received signal has 

a profound effect on the adaptive threshold; if it tends to zero, the threshold at (i+1)th level 

becomes half the threshold at the ith level. 

To make an improvement on this threshold determination technique, we explore the norm of the 

Euclidean distance between the two child nodes u and v in Figure 3, and compute the energy 

associated with this distance. We refer to this approach as the proposed scheme. 

Each node in the DWPT shown in Figures 2 and 3 can be viewed as a vector in a vector field n . 

Thus, child node u can be viewed as a vector u  with components  1 2

T

nu u u . In the same 

manner, child node v can be viewed as a vector v  with components  1 2

T

nv v v . 

Let us define a vector w  to be the Euclidean distance between u  and v . w can be expressed as 

[21-24]:  

      
 

1

T 2w u, v = u - v u - v        (8) 

where the expression  

1 1

2 2

n n

u v

u v

u v

   
   
    
   
   
   

u - v . The norm of the Euclidean distance in (8) is: 

     
22

2

 
 

1

T 2w u, v w = u - v u - v      (9) 

The vector w is influenced by both vectors u and v . Hence, it can be used to benchmark either 

u or v . Using (5), the energy in the vector u can be expressed as: 
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and the energy in v can be expressed as: 

 
0

2 2

1,2 , , 1,2

1
i j j k j k i j

j j k

E E c d
T

 


  v      (11) 

Applying (8) to (10) and (11), we can express the energy in the vector w in terms of the energy 

in vectors u and v as: 
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          (12) 

Factoring 1 T and the summation operator in (12) yields: 
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          (13) 

The expression in (13) is the energy of the Euclidean distance between vectors u  and v . Using 

(9), the norm of this energy is: 
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         (14) 

The effect of (14) is that rather than using two separate expressions to obtain the thresholds 

associated with two child nodes u and v which originate from the same parent node as in (6) and 

(7), we simply calculate the threshold for the two child nodes using one expression. The energy 

used in this singular expression for the calculation of the threshold is the energy of the vector 

which is derived from the Euclidean distance between the two child nodes. This approach 

reduces by half, the number of required computations for thresholding at any level of 

decomposition for the DWPT. 

The implication of spectrum sensing with the proposed scheme is that the speed in increased 

because of the reduced number of computations. For example, consider the DWPT tree shown in 

Figure 4 which has 5 levels of decomposition under consideration in this paper. Using the 

referred scheme, 32 calculations will have to be made for the child nodes as level 5 because they 

are 32 in number. However, using the proposed scheme, only 16 calculations will have to be 

made for the child nodes at level 5 because of the utilization of the vector of the Euclidean 

distance (shown in red) between the child nodes at the level under consideration.  
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Figure 4: DWPT Tree at Level-5 Decomposition 

 

By minimizing the expression in (14), we obtain an optimum value for Ew  as 

   * , min ,E E E E E E
w u v w u v . Hence, the optimum value for (14) can be expressed as: 
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           (15) 

From the foregoing therefore, the adaptive threshold at any level of decomposition using the 

proposed scheme is: 
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           (16) 

 

4.0 Simulation and Results 

The performance of the adaptive threshold technique was evaluated by simulation. The 

simulation involves a composite signal having different amplitudes and frequencies as described 

in Table 1, and varying SNR from -10dB to 10dB. 
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Table 1: Input Signal Parameters 

 Amplitude Frequency (MHz) 

Signal 1 1.3 15 

Signal 2 1.7 40 

Signal 3 2.0 67 

Signal 4 1.8 81 

 

At -10dB, the input signal to the system is shown graphically in Figure 5. 

 

Figure 5: Input PSD at -10dB 

The absolute value of the coefficients at -10dB in each sub-band channel at level-5 

decomposition of the DWPT tree of Figure 4 is shown in Figure 6. The sub-band channels with 

higher energy value have coefficients with higher values. This assertion holds true because the 

energy in each sub-band channel is a function of the coefficients in that sub-band channel, as 

indicated by (5). 

 

Figure 6: Distribution of coefficients in sub-band channels at -10dB 

Using (15), we perform a simulation to obtain 16 Euclidean distance vectors between the 32 sub-

band channels of Figure 4. The Euclidean distance vectors are shown in Figure 7. 
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Figure 7: Euclidean vectors generated from DWPT sub-band channels 

The optimization of the Euclidean distance vector by (16) yields a more compact vector field as 

shown in Figure 8. 

 

Figure 8: Optimized Euclidean vectors generated from DWPT sub-band channels 

We perform spectrum sensing at signal-to-noise (SNR) values of -10dB, 0dB, and 10dB. The 

simulation result for spectrum sensing at -10dB is shown in Figure 9. 

 

Figure 9: Comparison of sub-band threshold and energy at -10dB 
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At -10dB in Figure 9, sub-band channels 6, 18, and 29 were identified as UNOCCUPIED 

channels because the energy in those channels is less than the adaptive thresholds associated with 

the respective channels.  

The SNR value was changed to 0dB, and upon simulation, the result obtained is shown in Figure 

10. 

 

Figure 10: Comparison of sub-band threshold and energy at 0dB 

At the SNR value of 0dB, six sub-band channels were identified as UNOCCUPIED. These 

include: 6, 9, 17, 18, 26, 29. Comparison of Figure 9, and 10, reveals that false alarms occurred 

in sub-band channels 9, 17, and 26 when the SNR value was set at -10dB. The false alarm 

occurred at -10dB because the noise was equal to the signal in strength due to the low value of 

the signal; hence, a detection technique can easily classify a noisy channel as OCCUPIED 

(which is a false alarm). However, as the SNR value increases, the signal strength increases, thus 

making a detection technique more accurate in detection and classification of sub-band channels.  

The performance of this technique at 10dB is shown in Figure 11. At this value of SNR, ten sub-

band channels were classified as UNOCCUPIED. The channels include: 6, 7, 9, 10, 12, 17, 18, 

25, 26, and 29. It can be seen that there were false alarms for sub-band channels 7, 10, and 12 for 

the preceding values of the SNR. 

 

Figure 17: Comparison of sub-band threshold and energy at 5dB 

From the foregoing analysis, it can be seen that the accuracy of the detector using the proposed 

adaptive thresholding technique increased with the increase in SNR value. Thus, the detector was 

able to make a better decision on the status of the DWPT sub-bands because of the increase in 

signal power. A summary of the performance of the detection with respect to increase in SNR is 

shown in Table 2. 
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Table 2: Performance of spectrum sensing technique for varying signal-to-noise ratios 

SNR 

(dB) 

Sub-band Channels Classified as UNOCCUPIED 

  
Total 

Count 

-10   6 18 29             3 

0   6 9 17 18 26  29       6 

10   6 7 9 10 12 17 18 25 26 29   10 

 

6.0 Conclusion 

In this paper, we explored the norm of the Euclidean distance between two vectors that 

characterize the terminal sub-bands of the DWPT. This vector was used as the basis for the 

improvement of a DWPT thresholding technique. The improvement achieved was in terms of 

speed of calculation required to compute the adaptive threshold for all sub-band channels at a 

given level of decomposition. The results and analysis of this approach showed that the accuracy 

of the proposed scheme with respect to increase in SNR was as expected. 
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