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Abstract

Mean Wind speeds often exhibit directionality in which they are increasing or decreasing across a
surface; however, microclimatological effects sometimes produce high or low wind speed over a
surface that can create confusion during kriging surface construction. The aim of this study was to
investigate the appropriateness of anisotropic variogram models within ordinary kriging for
interpolation of monthly mean wind speed data of six selected wind stations which include: Sokoto,
Maiduguri, Horin, Ikeja, Port Harcourt and Enugu in Nigeria. Four types of isotropic and anisotropic
variogram models were fitted: Linear, Spherical, Exponential, and Gaussian. Each model was
described using the following parameters: the nugget variance, the sill, and the range. Three statistics
to aid the interpretation of model output: the residual sum of square (RSS), R? and proportion C/(Co+C)
were provided to give the best fitted model for each wind station. The study found that the six wind
stations could be best fitted by linear, Gaussian and exponential anisotropic models. Sokoto wind speed
showed the strongest spatial distribution (>7.8 m/s), Maiduguri and Enugu, Ikeja and Port Harcourt
showed similar wind speed patterns (3.1-4.0) m/s and (2.1-3.0) m/s respectively whereas llorin showed
a pattern of low wind speeds (<2.0m/s) . These results may assist in identifying wind stations that are
suitable for exploitation of wind energy for electricity generation as well as in mitigating losses to
structures due to excessive wind events.
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1. Introduction

Wind is the horizontal motion of air that pass through a given point in a location and includes the
direction from which the wind is coming from. Wind speed is the description of how fast the air is
moving at certain point in a location. This is sometimes measured in meters per second. Wind speed,
wind direction, air temperature, atmospheric pressure, humidity and solar radiation are important for
monitoring and predicting weather patterns. Each of these parameters have numerous impact on the

weather and quality of life. Almost every impact of climate variation involves wind speed either
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directly or indirectly (Abhishek et al, 2010; Tuller, 2004). For instance, one of the ways that air
temperature variations affect objects and living organisms is through sensible heat flux density, which
is a function of wind speed. According to Troccoli et al, (2012), accurate estimates of long-term linear
trends of wind speed provide a useful indicator for circulation changes in the atmosphere and are
invaluable for the planning and financing of wind energy.

Researches have showed that there have been comparisons of interpolation methods for temperature
and precipitation, (Phillips et al., 1992; Collins and Bolstad, 1996; Goovaerts, 2000; Price et al., 2000;
Jarvis and Stuart, 2001; Vicente-Serrano et al., 2003) few research efforts have been directed towards
comparing the effectiveness of different spatial interpolators in predicting wind speed. Wind speed
surface interpolation results suggest that deterministic methods should be avoided because they fail to
account for spatial autocorrelation (Bentamy et al. 1996; Phillips et al. 1997; Sterk and Stein 1997;
Venaldinen & Heikinheimo 2002; Oztopal 2006, Cellura et al. 2008; Luo et al. 2008; Zlatev et al.
2009; Akkala et al. 2010; Zlatev et al. 2010) and various forms of kriging have been shown to
outperform other methods for interpolation of surface-level wind speeds (Lanza et al. 2001; Luo et al.
2008; Akkala et al. 2010; Zlatev et al. 2010). Although kriging has been shown to improve
interpolation results, most previous studies that examined kriging focused on local- to regional-scale
wind surfaces within a single country.

Kriging uses probability and spatial correlation to create a surface that is weighted by observed values
through a distance and direction based semivariance function that can account for anisotropic spatial
patterns and trends in wind behaviour (Luo et al. 2008). Isotropy (uniform values in all directions) is
assumed during the kriging process unless anisotropy is specified. Consequently, comparisons between
isotropic and anisotropic semivariogram-derived surfaces are not often made. Thus far, the use of

anisotropy within kriging has been shown to be superfluous for local- and regional-scale modelling,
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although Luo et al. (2008) hypothesized that it may be more useful for meso- and macro-scale
modelling.

In addition to issues of scale and anisotropy, the impact of heterogeneous terrain (or geographic
diversity) on wind speed interpolations is also poorly understood. Etienne and Beniston (2012)
examined extreme station data (i.e. top 10% of wind speeds) for wind storms in Europe using ‘basic’
kriging. The results found that topography greatly influences wind speeds and likely contributed to
error effects not normally seen in interpolations of larger areas. Additionally, Zlatev et al. (2010)
divided the United Kingdom into five areas of homogenous terrain to analyse wind speed interpolations
and reduce the potential impact of over-smoothing and over fitting. Joyner et al. (2015) used cokriging
to interpolate wind speeds for multiple European windstorms to account for errors associated with
aspect, elevation, and land cover, further alluding to an impact of geographic diversity on wind speed
interpolations.

The aim of this study was to investigate the appropriateness of anisotropic variogram models within
ordinary kriging for interpolation of monthly mean wind speed data of six selected wind stations which
include: Sokoto, Maiduguri, llorin, Ikeja, Port Harcourt and Enugu in Nigeria. Different theoretical
models such as linear, spherical, exponential, and Gaussian were fitted to determine the best fitted
model and finally, draw wind speed spatial distribution maps for each wind station.

2. Materials and Methods

2.1 Study Area and Data Used

Nigeria co-ordinates on latitude 10.00°N and longitude 8.00°E. The climate is tropical; humid in the
south and semi-arid in the north. It comprises various ecotypes and climatic zones. There are two main
seasons, namely, rainy and dry seasons. The rainy season lasts from March to November in the south

and May to October in the north. During December to March, the Nigerian climate is entirely
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dominated by the north east trade winds, locally called "harmattan”, which originate from Sub-Tropical
Anticyclones (STA).This “harmattan” is associated with the occurrence of thick dust haze and early
morning fog and mist as a result of radiation cooling at night under clear skies. The climate is
dominated by the influence of Tropical Maritime (TM) air mass, the Tropical Continental (TC) air

mass and the Equatorial Easterlies (EE) (Ojo, 1977) in (Abiodun et al, 2011).
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Figure 1: Nigeria annual average wind speeds distribution (isovents at 10 m height) showing four
different wind speed regimes (Source: Ojosu and Salawu, 1990b)

The monthly mean wind speed data were obtained from archives of the Nigerian Meteorological
Agency (NIMET) Oshodi, Lagos, Nigeria. The data obtained covered a period of twenty-six years
(1990-2015) for six stations which include: Sokoto, Maiduguri, llorin, Ikeja, Port Harcourt and Enugu
wind stations. Figure 1 is the map of Nigeria showing the anemometer stations used in the study Some
missing entries were observed in the monthly wind speed data and were not replaced. Only one station

got some missing observations. In geostatistics, data in the worksheet that are marked as missing are
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ignored during data builds and subsequent analyses. These values can be overridden by values
specified. Permanent missing values appear as blank cells. The default missing value indicator (MV1)
is the numeric value -99.0 but this can be changed in the user preferences window. Missing values
appear in output files when a value cannot be interpolated because the location appears in an exclusive
polygon or because numerical limitations disallow its computation (such as when a variogram model
is inappropriately used during kriging). The examination of the monthly wind speed data indicated that

they were not significantly different from a normal distribution (Figure 2).
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Figure 2: Non transformed frequency distribution for the six selected wind stations

2.2. Geostatistical methods

2.2.1. Kriging

NonTransformed Port Harcourt (w/s)

NonTransformed Enugu (w/s)

Kriging (Krige, 1966) is a stochastic technique similar to IDW, in that it uses a linear combination of
weights at known points to estimate the value at an unknown point. Kriging weights are derived from
a statistical model of spatial correlation expressed as semivariograms that characterize the spatial
dependency and structure in the data. During surface construction, ordinary kriging was chosen to
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interpolate wind station data based on its superiority over other techniques (Luo et al. 2008; Akkala et
al. 2010; Zlatev et al. 2010; Luo et al. 2011). Ordinary kriging is represented as
D AZ(S)

Zo(s)=1" 1)

!

i=1
where, Z., (s,) is the spatial locations,; s,

is the location of measurement i; n is the number of

observations to consider and /; is a real weight.

2.2.2. Semivariance Analysis of Wind Speed Interpolation

In contrast with deterministic methods, kriging provides a solution to the problem of estimation of the
surface by taking account of the spatial correlation. The spatial correlation between the measurements
points can be quantified by means of the semi-variance function: The experimental variogram
measures the average degree of dissimilarity between un-sampled values and a nearby data value and
consequently can depict autocorrelation at various distances. The value of the experimental variogram

for a separation distance of h (referred to as the lag) is half of the average squared difference between
the value at z(x;) and the value at z(x, +h) (Robinson and Metternicht, 2006):

1 NN

?(h)=m iZ:;[Z(Xi)—z(xi +h)J* (2)

where N(h) is the number of data pairs of measurement points with distance h apart. Using an analysis
of experimental variogram model of ordinary kriging, a suitable four isotropic and anisotropic
variogram models were fitted by different theoretical models such as spherical, exponential, linear, or
Gaussian to determine three semivariogram parameters: the nugget (Co), the sill (Co + C), and the range
(A).

2.2.3 Accounting for Directional Influences— Anisotropic Variogram Models
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There are two types of directional components that can affect the predictions in output surface: global
trends and directional influences on the semivariogram or covariance (known as anisotropy). A global
trend is an overriding process that affects all measurements in a deterministic manner. The global trend
can be represented by a mathematical formula (e.g., a polynomial) and removed from the analysis of
the measured points but added back in before predictions are made. This process is referred to as
detrending

The shape of the semivariogram or covariance curve may also vary with direction (anisotropy) after
the global trend is removed or if no trend exists. Anisotropy differs from the global trend because the
global trend can be described by a physical process and modelled by a mathematical formula. The
cause of the anisotropy (directional influence) in the semivariogram is not usually known, so it is
modelled as random error. Even without knowing the cause, anisotropic influences can be quantified
and accounted for.

Anisotropy is usually not a deterministic process that can be described by a single mathematical
formula. It does not have a single source or influence that predictably affects all measured points.
Anisotropy is a characteristic of a random process that shows higher autocorrelation in one direction
than in another. For anisotropy, the shape of the semivariogram may vary with direction. Isotropy
exists when the semivariogram does not vary according to direction. Isotropic variogram is a graph of
semivariance against. separation distance. Where autocorrelation is present, semivariance is lower at
smaller separation distances (autocorrelation is greater). This typically yields a curve such as that
described in this analysis,

Anisotropic variogram models are similar to those for isotropic variograms but include directional
information in the range parameter. Anisotropy refers to a direction-dependent trend in the data. The

study used geometric anisotropy, i.e. anisotropy which is expressed as variograms with different ranges
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in different directions. The principal anisotropic axis (the major axis of the anisotropic model) is the
direction with the longest range, i.e. the direction of major spatial continuity. The best way to evaluate
anisotropy is to view the anisotropic semivariance surface (variogram map), and use the azimuth
function to define and then set the principal anisotropic axis to the direction aligned with the lowest
semivariance values (the direction of maximum spatial continuity, or major axis of the anisotropic
variogram model). Anisotropic semivariograms were created during the interpolation procedure to
account for directional dependence of wind speeds at varying distances, creating a spatial relationship
for each direction that cannot be described by a single formula.

The principal axis is the direction of maximum spatial continuity, or base axis from which the offset
angles for anisotropic analyses are calculated. Offset angles in this study are 0°, 45°, 90°, and 135°
clockwise from the base axis; points aligned sufficiently close to one or another of these angles are
included in the anisotropic analysis for that angle. The axis orientation should correspond to the axis
of maximum spatial continuity, i.e. the major anisotropic axis. The default axis is 0° from the north-
south (y) axis.

In anisotropic analyses, the offset tolerance determined how closely the alignment between any two
points needs to be for those points to be included in the analysis for a given offset angle. Two points
will be included in the analysis for a given offset angle if the angle between them is within the offset
tolerance from the offset angle. For example, if the angle between two points is 59.3° and the offset
tolerance is 15.0°, the points will be included only in the 45° angle class, which would include all
angles between 30° and 60°. The default tolerance is 22.5°.

3.0 Results and Discussions

3.1 Descriptive Spatial Statistics
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The descriptive spatial statistics of monthly wind speeds for six selected stations are given in Table 1.
The calculated spatial statistic included mean centre, standard distance (Sp), minimum and maximum,
relative distance (Rp), skewness and kurtosis. The relative distances (Rp) of 66.00%, 50.73% and
50.30% were stronger, which indicated high spatial variability of wind speed for Sokoto, Maiduguri
and Enugu stations respectively. While Port Harcourt, Ikeja and Ilorin stations indicated low spatial
variability with Rp of 44.95%, 40.52% and 37.70% respectively. Sokoto in the northwest indicated the
windiest station with spectacular mean centre wind speeds of 7.02 m/s. Maiduguri and Enugu are in
the same mean centre region between 3.44 to 3.56 m/s and lkeja and Port Harcourt are in the same
region between 3.32 to 3.37 m/s. The monthly mean of the wind speed are relatively low in the south
west cities of llorn (2.34m/s). Studies on the wind speed pattern across Nigeria by Adekoya and
Adewale (1992) based on wind data from 30 meteorological stations and Fagbenle and Karayiannis
(1994) based on wind data for 18 stations and from 1979-1988 were consistent with current study.
Fagbenle and Karayiannis (1994) specifically mentioned that average wind speeds in Nigeria range
from about 2 m/s to about 4 m/s with highest average speeds of about 3.5 m/s and 7.5 m/s in the south
and north areas, respectively.

Table 1: Descriptive Spatial Statistics for the Six Selected Wind Stations

Station Mean So Min Max Rp (%) | Skew Kur
Center
Sokoto 7.021 4.634 3.70 12.50 66.002 0.000 0.180
Maiduguri 3.566 1.809 2.10 8.50 50.729 0.120 | -0.490
llorin 2.341 0.906 1.30 5.00 37.701 | -0.350 | 0.670
Ikeja 3.329 1.349 1.00 7.50 40.522 | -0.130 | 0.430
Port Harcourt 3.373 1.516 1.60 7.70 44.945 0.290 0.190
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Enugu 3.447 1.734 0.00 5.30 50.304. | -0.05 0.791

The variations of wind speed across the six stations are due to some roughness of the environment
surrounding the stations, variations in the height and position of anemometers, and atmospheric forcing
(atmospheric circulation) changes also produce substantial effects. Bichet et al. reported that increasing
the vegetation roughness length caused by increasing vegetation decreases the land wind speed. Wind
speed tend to be higher at well exposed sites than at stations in the vicinity of forests, hills, mountains
and other intervening structures such as high rise buildings. The results observed here is expected since
the north belongs to the arid and semi-arid ecotypes while the south is dominated by mangrove, swamp
forests, tropical rainforests and guinea savanna tall grasslands Bichet et al, 2012.

Table 2: Best-fit Isotropic Variogram Models for the Six Selected Wind Stations

Station Best-fit | Nugget | Sill Range | RSS R2 | C/(Co+C
C
Model ©) ey | A )
Sokoto Spherical 0.1850 | 2.6860 | 0.1560 | 0.618 | 0.173 0.931

Maiduguri Exponential | 1.475 | 4.2880 | 18.0270 | 0.547 | 0.718 0.656
llorin Exponential | 0.0630 | 0.3910 | 0.1060 | 0.029 | 0.000 0.839
Ikeja Spherical 0.0640 | 1.0940 | 0.1420 | 0.085 | 0.101 0.941

Port Harcourt Linear 1.0175 | 1.0175 | 2.7480 | 0.059 | 0.000 0.000

Enugu Spherical | 0.0010 | 2.4550 | 0.2400 | 0.840 | 0.098 1.000

In order to fit the best isotropic and anisotropic variogram models, three statistics to aid the
interpretation of model output was provided in Table 2 & 3: residual sums of squares (RSS)—provides
an exact measure of how well the model fits the variogram data; the lower the reduced sums of squares,

the better the model fits. When isotropic and anisotropic variogram models were fitted, RSS chooses
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parameters for each of the variogram models by determining a combination of parameter values that
minimizes RSS for any given model. R%>—provides an indication of how well the model fits the
variogram data; this value is not as sensitive or robust as the RSS value for best-fit calculations. And
proportion C/(Co+C) -- this statistic provides a measure of the proportion of sample variance (Co+C)
that is explained by spatially structured variance C. This value will be 1.0 for a variogram with no
nugget variance (e.g. Enugu was one indicating the nugget variance is zero where the curve passes
through the origin); conversely, it will be O where there is no spatially dependent variation at the range

specified, (e.g. Port Harcourt was zero indicating no spatially dependent variation where there is a pure

nugget effect (Table 2).
Table3: Best-fit Anisotropic VVariogram Models for the Six Selected Wind Stations
Station Best-fit Nugget | Sill Range A C/(Cot+C)
(Co) : . X
Model (Co+C) | Minor Major | RSS R
Sokoto Linear 2.6430 | 5.9878 | 11710.00 | 11711.00 | 10.50 | 0.171 0.559

Maiduguri Gaussian 1.6520 | 8.3502 | 10.636 11.135 | 11.50 | 0.406 0.802

llorin Exponential | 0.3600 | 0.9560 | 29.910 92.640 | 0.217 | 0.134 0.623

Ikeja Gaussian 1.0580 | 3.5710 | 16.731 24.872 2.710 | 0.150 0.704
Port Gaussian 0.9950 | 2.9240 | 10.895 21.806 1.980 | 0.243 0.660
Harcourt

Gaussian | 2.4230 | 11.209 | 911.578 | 911.578 | 1.450 | 0.059 0.784

Enugu

The study used RSS to judge the effect of changes in model parameters. For isotropic models, spherical
model was found to be the best fitted for Sokoto, Ikeja and Enugu with RSS values 0.618, 0.085 and
0.840 respectively; whereas spatial structures of Maiduguri and llorin were best fitted by the

exponential model with RSS values 0.0.547 and 0.0.029 respectively and linear model was best fitted
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for Port Harcourt with RSS value 0.059 (Table 2). The corresponding isotropic variograms were given

in figure 3 below.
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Figure 3: Best fitted Isotropic Variograms for the Six Selected Wind Stations

In other hand, for anisotropic models, linear model was found to be the best fitted for Sokoto, with
RSS value 10.50; whereas spatial structures of Maiduguri, Ikeja, Port Harcourt and Enugu were best
fitted by the Gaussian model with RSS values 11.50, 2.710, 1.980 and 1.450 respectively and
exponential model was best fitted for llorin with RSS value 0.217 (Table 3).

The anisotropic variograms were fitted in four different directions. For consistency, the angles in the
semivariances are between 0° and 180°, so that a value greater than 180° will appear as that value less
180° (e.g. 225° will be opposite of 90° in the semivariance). The nugget variance is the semivariance
intercept of the model and can never be greater than the sill. The best-fitted isotropic and anisotropic
models have low nugget variances (Figure 3 & 4). The range is the separation distance over which

spatial dependence is apparent and cannot be less than 0. All values of range were greater than or equal
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to 0.1060m for isotropic variogram models (Table 2) and greater than or equal to range value from
10.636m to 11.135m for anisotropic variogram models (Table 3). Therefore, all the six selected wind
stations had a range value greater than zero indicating existence of a spatial structure for them (Figure
3 & 4). In addition, the ordinary kriging with anisotropic produced an outline map of each wind speed
within the larger interpolation grid area. Based on the Nigeria wind speeds classification, winds are
classified into four different regimes: very low wind speeds (1.0-2.0 m/s), low wind speeds (2.1- 3.0
m/s), high wind speeds (3.1-4.0 m/s) and very high wind speeds (> 4.1 m/s). High wind speeds
appeared in yellow and low wind speeds appeared in blue (Figure 4). The spatial distributions of
Sokoto wind speed is stronger (>7.8m/s), Maiduguri and Enugu showed similar wind speed patterns

(3.1-4.0m/s) and the spatial distribution of Ikeja and Port Harcourt is between (2.1-3.0m/s) whereas

24™ - 28™ JUNE, 2019

Ilorin showed a pattern of low wind speeds (<2.0m/s).
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Figure 4: Best fitted anisotropic variograms in the directions N 0° E, N 45° E, N 90° E, and N 135° E
with angular tolerance of 22.5 for the Six Selected Wind Stations

=12
[— ERlH
I - 104
| Bl
-4
[ -5
=54
=72
-
-2
EE =65
=50
-5
B =50
=45
T 1 126 —
< i Sokitow's) 08

9]

P;

2]
o)

SPSBIC2019

Sokotowie) 6.22

]
Maiduguri{wis)

576 |Page

Maiduguri{w/s]
=371
[
- G50
| BEE
T B
| EEET
=33
[_=33
[ By
-
-6
B -in
-

| B -300
-2



FUTMINNA - SCHOOL OF PHYSICAL SCIENCES BIENNIAL INTERNATIONAL CONFERENCE ~— 24™ - 28™ JUNE, 2019

g
3
H
@

3

(w/s)

v
o™
8
v
o™
4

>629
>607
>358%
>58¢
=542
>521
>4%8
>478
>45
>432
>413
>3N
>3
>38

FONTOAN TR

[—
| IR
=
=
=
=
=
1]
R
.| S
=
=)
=
| IR
=

’ Enugu (wis]
1.3

72 = 1ra 128

72 Al 103 126 C
Port Harcourt (wis) Enugu (wis)

.Figure 5: Anisotropic kriging wind speed interpolation for six selected wind stations

The comparison between estimated and actual values of monthly wind speed for each sample station
is given in figure 6. The regression coefficient described at the right corner of the graph represents a
measure of the goodness of fit for the least-squares model describing the linear regression equation. A
perfect 1:1 fit would have a regression coefficient (slope) of 1.00 and the best-fit line (the solid line in
the graph above) would coincide with the dotted 45-degree line on the graph. The standard error refers
to the standard error of the regression coefficient; the r? value is the proportion of variation explained
by the best-fit line; and the y-intercept of the best-fit line is also provided. The SE Prediction term is
defined as SDx(1 - r?)®% , where SD is standard deviation of the actual data (the data graphed on the y-

axis).
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Figure 6: Comparison between actual and estimated wind speed via kriging

4. Conclusions

This study extended previous findings (e.g. Luo et al. 2008; Zlatev et al. 2009, Carol et al. 2016) about
the appropriateness of kriging for the interpolation of wind data by analysing isotropic and anisotropic
semivariogram-derived kriging surfaces and evaluating a large surface across geographically diverse
terrain. A geostatistical approach was applied to investigate the appropriateness of anisotropic
variogram models within ordinary kriging on monthly mean wind speed data of six selected wind
stations which include: Sokoto, Maiduguri, llorin, Ikeja, Port Harcourt and Enugu in Nigeria. The
calculated relative distances (Rp) of 66.00%, 50.73% and 50.30% were stronger, which indicated high
spatial variability of wind speed for Sokoto, Maiduguri and Enugu stations respectively, whereas Port
Harcourt, Ikeja and llorin stations indicated low spatial variability with Rp of 44.95%, 40.52% and
37.70% respectively. Sokoto in the northwest indicated the windiest station with spectacular mean

centre wind speeds of 7.02 m/s. Maiduguri and Enugu are in the same mean centre region between
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3.44 m/s to 3.56 m/s and Ikeja and Port Harcourt are in the same region between 3.32 m/s to 3.37 m/s.
The monthly mean of the wind speed are relatively low in the south west cities of Ilorn (2.34m/s). The
empirical semivariograms of the six wind stations could be best fitted by linear, Gaussian and
exponential anisotropic models.
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