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The wavelet packet transform as a mathematical tool has found recent application in

spectrum sensing. The result of this application has produced very promising results.
Primarily, wavelets were designed for edge detection in images. Recently, cognitive radio
literature have reported on wavelet application to detect sub-band frequency edges in
wide band spectrum. In this paper, we present the combination of the Hilbert transform
and the wavelet packet transform with the aim of enhancing the detection of the sub-
band frequency edges of a wavelet-packet-decomposed signal. The simulation results
show the effectiveness of this approach. The new scheme detected sub-band frequency
edges of the wavelet-packet-decomposed signal much better than the wavelet packet
transform without combination with the Hilbert transform.
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1. Introduction

Wavelet packets are an extension of the discrete wavelet transform (DWT) with
the difference being that while the DWT decomposes only the low-pass frequency
component of an input signal, the wavelet packet decomposes both the low-pass
frequency and high-pass frequency components of an input signal. This results in
the wavelet packets having higher resolution and better fidelity.

Wavelet packets are usually implemented using filter banks, and such an imple-
mentation is called a wavelet system, which is defined as the representation of a
signal or function by a set of building blocks. Figure 1, called the analysis filter
bank, shows the implementation of a wavelet packet using filter banks. For each of
the filters in the analysis bank, the filter processes half of the total frequency band
of the input signal at that stage.23

Fig. 1. Analysis filter bank of a wavelet packet.
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This paper focuses on the terminal nodes of the analysis part of the filter bank.
Each of the terminal nodes of the analysis part of the filter bank outputs frequencies
(also called sub-band frequencies) of different range from a decomposed signal. From
the structure of the analysis filter bank shown in Fig. 1, the sub-band frequencies
occur adjacent to each other. In this paper, the Hilbert transform will be applied
to the signals at the terminal nodes of the analysis filter bank in order to achieve
improved sub-band frequency edge detection.

2. Brief Theory of Wavelet Detection

An edge is a place of local transitions from one object to another. They are usu-
ally not complete borders, and are just locally-identifiable probable transitions. In
the analysis of the properties of transient signals like communication signals and
vibration signals,25 edges are viewed as points of sharp variations. Edges can have
one dimension or higher dimensions. One-dimensional edges are the focus of this
research because the low-pass and high-pass filters in Fig. 1 are one-dimensional.
There are different types of one-dimensional edges as depicted in Fig. 2.

The step edge occurs when a signal has sudden and abrupt change in value on
one side of a discontinuity or another. The line edge occurs when there is an abrupt
change in value, but the signal returns to the starting value within a short interval.
The ramp edge occurs in a signal when the change in intensity is not instantaneous;
the change usually occurs over a finite distance. The roof edge is similar to the ramp
edge, but it is usually generated by the intersection of surfaces.

The points of sharp variations in a signal are identified as either a local maxi-
mum, or a local minimum. The local maximum is defined as the highest value in a
portion of a given set of points, but not necessarily the highest point in all values
of the set. Similarly, the local minimum is defined as the lowest value in a portion
of a given set of points, but not necessarily the lowest point in all the values of
the set. Local maxima and local minima are the basis of wavelet-based detection of
wideband signals, which uses edges (points of sharp variations) in wideband signals
to identify the frequency bands that make up the signal spectrum. The methods
for detecting edges are briefly introduced below.

Fig. 2. Types of one-dimensional edges.
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Fig. 3. Classification of edge detection methods.

2.1. Edge detection methods

The methods employed in edge detection are broadly categorized into three7:

(i) First-order derivative/gradient method
(ii) Second-order derivative method
(iii) Optimal edge detection method.

Figure 3 depicts the classification of these methods of edge detection. The
first-order derivative is also called a gradient method, and it makes use of three
operators4,5,13,17,27: Roberts operator, Prewitt operator, and Sobel operator. Edge
determination using the first-order derivative method involves the determination of
the minimum and maximum points in a signal through the first-order differential
equation of the signal.

The second-order derivative method is also known as the Laplacian method, and
it involves locating edges in a signal through the search for zero crossings.3,22,28

The third type of edge detector is the optimal edge detector, which makes use of
the Canny operator. The Canny operator works by defining edges as zero crossings
of second derivatives in the direction of the greatest first derivative.6 The definition
of the edges as zero crossing of the second order derivative is achieved through a
multi-stage process which involves the use of a Gaussian convolution to smooth
a given signal, and then highlighting the regions of the signal with high spatial
derivatives.12,14,15,18,24

2.2. Canny edge detector as a local maxima of a wavelet

transform modulus

According to Ref. 21, the local maxima of a wavelet transform modulus is equiv-
alent to the Canny edge detector. Mathematically, this assertion is presented
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as follows:

Definition 2.1. We define a smoothing function θ(x) (which could be Gaussian)
that has an integral of 1, and at infinity it converges to 0. Assume that θ(x) is
differentiable twice, and that ψa(x) is the first-order derivative of θ(x) and ψb(x)
is the second-order derivative of θ(x).21

From Definition 2.1, ψa(x) and ψb(x) can be expressed as:

ψa(x) =
dθ(x)
dx

(2.1)

ψb(x) =
d2θ(x)
dx2

(2.2)

Also, from Definition 2.1, we can posit that:∫ ∞

−∞
ψa(x)dx = 0 and

∫ ∞

−∞
ψb(x)dx = 0. (2.3)

By (2.3), ψa(x) and ψb(x) are said to be wavelets since their integral is 0. Given a
function ξ(x), we dilate it by a scaling factor s, such that:

ξs(x) =
1
s
ξ

(
1
s

)
. (2.4)

For any signal, the wavelet transform can be obtained by the convolution of the
signal with the dilated wavelet. Hence, this implies that given the wavelet ψa(x)
defined in (2.3), the wavelet transform of the function f(x) at the scale s and
position x can be calculated as:

wa
sf(x) = f∗ψa

s (x). (2.5)

Similarly,

wb
sf(x) = f∗ψb

s(x). (2.6)

Substituting ψa(x) and ψb(x) from (2.1) and (2.2) into (2.5) and (2.6) yields:

wa
sf(x) = f ∗

(
s
dθs

dx

)
x = s

d

dx
(f ∗ θs)(x) (2.7)

wb
sf(x) = f ∗

(
s2
d2θs

dx2

)
x = s2

d2

dx2
(f ∗ θs)(x) (2.8)

wa
sf(x) in (2.7) is the wavelet transform of f(x) of the first-order derivative

smoothed at a scale s, and wb
sf(x) in (2.8) is the wavelet transform of the second-

order derivative also smoothed at a scale s.
By the classification of edge detection methods shown in Fig. 3, the local extrema

of wa
sf(x) (since it is a first-order derivative method) corresponds to the zero cross-

ings of wb
sf(x) (since it is a second-order derivative method), and inflection points

of f ∗ θs. When θ(x) is Gaussian, the extrema detection corresponds to Canny edge
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detection.8 A large value of the scale s guarantees that the convolution with θs(x)
removes small fluctuations.

The operation f ∗θs yields an inflection point which could either be a maximum
or minimum of the absolute value of its first-order derivative. Sharp variation points
are identified by the maxima of the absolute value of the first-order derivative, and
slow variations are identified by the minima of the absolute value.18 Hence, the
points of sharp variations or edges can be identified and selected by detecting the
local maxima of the wavelet transform of f(x) i.e.

x̂n = max
x

|wa
sf(x)|. (2.9)

Equation (2.9) is the basis by which wavelet achieves edge detection in a wide-band
signal spectrum.

3. Brief Review of Hilbert Transform

The Hilbert transform is a technique used in signal analysis, and has application in
different fields of science and engineering including the detection and diagnosis of
faults,10 gear box fault diagnosis,26 QRS-wave detection in biomedical engineering.2

The major advantage of the Hilbert transform over other transforms is that it does
not require any change in domain for its operation.1 Given a real valued signal
x(t), the Hilbert transform of such a signal is defined as the convolution of x(t)
with 1/πt. The parameter 1/πt is defined as the kernel of the Hilbert transformer.
Mathematically, the Hilbert transform of x(t) can be expressed as9:

y(t) = h(t) ∗ x(t) =
1
πt
x(t) (3.1)

y(t) =
1
π

∫ ∞

−∞
x(τ)

1
t − τ

dτ = − 1
π

∫ ∞

−∞
x(τ)

1
τ − t

dτ, (3.2)

where h(t) is the Hilbert transformer. The coupling at t = τ is possible owing to
the Cauchy principal value of the integral. The summation of x(t) and its Hilbert
transform forms an analytic signal, which is expressed as:

z(t) = x(t) + iy(t). (3.3)

In polar notation (3.3) can be expressed as:

z(t) = A(t)eiφ(t), (3.4)

where

A(t) =
√
x2(t) + y2(t) and φ(t) = tan−1

[
y(t)
x(t)

]
. (3.5)

In (3.5), A(t) represents the instantaneous amplitude, and φ(t) represents the
instantaneous phase of the analytic signal respectively. The rate of change of the
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instantaneous phase is defined as instantaneous frequency.20 Hence:

w(t) = φ′(t) =
d

dt
φ(t), (3.6)

where w(t) is the instantaneous frequency.
The instantaneous frequency (IF) is a very important concept in communication.

Given the spectrum of a signal, instantaneous frequency can be used to obtain the
differences in the local phase of the signal (since it is the derivative of a phase), and
at the same time detect variations in frequency of the given spectrum. This property
of instantaneous frequency makes it better in the detection of edges (frequency
variation points) in a signal spectrum, than the constant frequency method used
in the Fourier transform (Fourier transform assumes the frequency of a spectrum
is constant). Furthermore, owing to its ability to detect the differences in the local
phase of a signal, it outperforms power amplitude method and power spectrum
method in side channel analysis.16

4. Instantaneous Frequency Spread

Given an instantaneous frequency (IF), its spread σ2
IF is defined as11:

σ2
IF =

∫
[ϕ′(t) − 〈wi〉]2|s(t)|2dt, (4.1)

where s(t) is the signal, ϕ′(t) is derivative of phase, and 〈wi〉 is the average weight
at i.

If we assume that the average instantaneous frequency is the mean frequency,
i.e. 〈wi〉 = 〈w〉, then (4.1) becomes:

σ2
IF =

∫
[ϕ′(t) − 〈w〉]2|s(t)|2dt. (4.2)

Let the bandwidth of a signal be defined as11:

B2 =
∫ [

A′(t)
A(t)

]2

A2(t)dt+
∫

[ϕ′(t) − 〈w〉]2A(t)2dt, (4.3)

where A is the amplitude.
In (4.3), the bandwidth is an average of two terms, with one depending on the

amplitude, and the other depending on the phase. A comparison between (4.2) and
(4.3) shows that the second term on the right in (4.3) is actually (4.2). Hence, (4.3)
can be rewritten as:

B2 = σ2
IF +

∫ [
A′(t)
A(t)

]2

A2(t)dt. (4.4)

Since the second term on the right in (4.4) is positive, then it implies that:

B2 −
∫ [

A′(t)
A(t)

]2

A2(t)dt = σ2
IF. (4.5)
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From (4.5), it can be seen that the spread of the instantaneous frequency will always
be smaller than the bandwidth of the signal i.e.:

σIF ≤ B. (4.6)

The implication of (4.6) is that since the spread of the instantaneous frequency is
smaller than the bandwidth of the signal under consideration, then the instanta-
neous frequency can detect variations in frequency of a given signal spectrum which
occur at the edges (boundary) of different frequency bandwidth; and it can be used
easily to obtain differences in the local phase of the signal.

5. Application of Hilbert Transform to Discrete Wavelet Packet
Transform

To improve the edge detection of the wavelet packet, we consider a wide-band signal
characterized by consecutive bands Bn, having power spectrum density (PSD) that
is piecewise smooth, as shown in Fig. 4.

The signal spectrum shown in Fig. 4 is characterized by the following:

(i) The location of the spectrum bands is between f0 and fN

(ii) An nth band is defined as: Bn : {fεBn : fn−1 ≤ f ≤ fn}, n = 1, 2, . . . , N
(iii) For the nth band, the center frequency is defined as: fc,n = fn+1+fn

2 .

The structure of the PSD in Fig. 4 is such that in the wide-band spectrum
under consideration whose frequency bandwidth spans f0 to fN , there are signals
whose frequency bandwidth span a finite length fN−1 to fn within the bandwidth
of the spectrum. These signals have frequency edges called sub-band frequency
edges which mark their starting point and ending point. The sub-band frequency
edges can be detected by the discrete wavelet packet transform (DWPT) technique.
However, subjecting the DWPT to a Hilbert transform, which is the focus of this
section, will yield better results owing to the properties of the Hilbert transform
described in Sec. 3.

Fig. 4. Spectrum of interest.
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If the received power is Sr(f), then by (2.9):

x̂n = max
x

|wa
ssr(f)|. (5.1)

According to Ref. 19, the wavelet packets in Fig. 1 perform wavelet packet transform
decomposition on a signal by the set of recursion equations:

ξ2p
l+1[n] =

√
2
∑

k

h[k]ξp
l [2n− k], n = 0, 1, 2, . . . , N, (5.2)

where ξ2p
l+1[n] are the wavelet packet coefficients generated using the scaling filter,

h[k] is the low-pass filter, and p is the node at level l of the recursion.

ξ2p+1
l+1 [n] =

√
2
∑

k

g[k]ξp
l [2n− k], n = 0, 1, 2, . . . , N, (5.3)

where ξ2p
l+1[n] are the wavelet packet coefficients generated using the scaling filter,

g[k] is the high-pass filter, and p is the node at level l of the recursion.
Applying (5.2) and (5.3) to (2.9) yields the following set of equations:

x̂nh
= max

n
|ξ2p

l+1[n]| = max
n

∣∣∣∣∣
√

2
∑

k

h[k]ξp
l [2n− k]

∣∣∣∣∣, n = 0, 1, 2, . . . , N (5.4)

x̂ng = max
n

|ξ2p+1
l+1 [n]| = max

n

∣∣∣∣∣
√

2
∑

k

g[k]ξp
l [2n− k]

∣∣∣∣∣, n = 0, 1, 2, . . . , N, (5.5)

where x̂nh
is the local maximum obtained for the lowpass filter h[k] at level l and

node p in a given wavelet packet filter bank. Similarly x̂ng is the local maximum
obtained for the highpass filter g[k] at level l and node p in a given wavelet packet
filter bank. This local maximum for ξ2p

l+1[n] and ξ2p+1
l+1 [n] clearly identifies the bound-

ary for each sub-band piecewise PSD at different levels of decomposition for the
signal.

From the Hilbert transform defined in (3.2), (5.4) and (5.5) can be written as:

yh(m) = − 1
π
P

∫ ∞

−∞

ξ2p
l+1[n]
n−m

dn, n = 0, 1, 2, . . . , N (5.6)

yh(m) = − 1
π
P

∫ ∞

−∞

√
2
∑

k

h[k]ξp
l [2n− k]

n−m
dn, n = 0, 1, 2, . . . , N (5.7)

yg(m) = − 1
π
P

∫ ∞

−∞

ξ2p+1
l+1 [n]
n−m

dn, n = 0, 1, 2, . . . , N (5.8)

yg(m) = − 1
π
P

∫ ∞

−∞

√
2
∑

k

g[k]ξp
l [2n− k]

n−m
dn, n = 0, 1, 2, . . . , N. (5.9)

Equations (5.7) and (5.9) yield the Hilbert transform of the local maximum
produced by the wavelet packet transform ξ2p

l+1[n] and ξ2p+1
l+1 [n] at the sub-band
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edges, which is the point of interest. The Hilbert transform of the local maximum
will detect subtle changes in the instantaneous frequency because by (4.6), the
spread of the instantaneous frequency derived from the Hilbert transform is always
less than the bandwidth under consideration.

6. Simulation and Results

Using simulation, (5.7) and (5.9) were verified for a wavelet packet with level-5
decomposition. The simulation is set up under the conditions described in Table 1.
For this paper, level-5 decomposition is considered in the decomposition of the
input signal. This level of decomposition is considered ideal because it gives a fine
level of resolution of the input signal, and any level higher than this does not
necessarily improve accuracy. Figure 5 shows the wavelet packet tree for level-5
decomposition.

At SNR of −15 dB, the input signal to the wavelet packet tree is shown in Fig. 6.
There are 32 channels obtained after level-5 decomposition of the input signal.

Investigation of the matrix used to represent the coefficients in each channel shown
in Fig. 7 reveals that there are 22 coefficients (usually determined by the sampling
rate) in each channel of the terminal nodes of the wavelet packet tree.

The pattern of the distribution of these coefficients in each channel at −15dB
is shown in Fig. 8.

Figure 9 shows the PSD from channel 0 to channel 7, alongside its Hilbert trans-
form. The edge between channels 1 and 2 is amplified. It can be seen that while the
wavelet transform poorly identifies this edge (point 44 on x-axis), the application

Table 1. Experimental set-up parameters.

Amplitude Frequency(Hz)

SIGNAL 1 1.3 15
SIGNAL 2 1.7 40
SIGNAL 3 2.0 67
SIGNAL 4 1.8 81

Note: SNR = −15 dB, −10 dB, 0, 10 dB.

Fig. 5. Wavelet packet tree for level-5 decomposition.
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Fig. 6. Periodogram of input signal at −15 dB.

Fig. 7. A 22 × 32 matrix generated from terminal nodes of wavelet packet tree.

Fig. 8. Distribution pattern of coefficients in each channel at −15 dB.

of the Hilbert transform gives an improved detection of the edge due to the instan-
taneous frequency being able to identify subtle changes in the phase of a signal.

Similarly, Figs. 10–12 show the PSD of the DWPT with the HT version and a
zoomed-in edge of different groups channels. In each case, it could be seen that the
HT has an appreciable enhancement on the detection of the edges.

Figures 13–16 show a comparison between the sub-band frequency edge detec-
tion made by the discrete wavelet packet transform (DWPT) and the Hilbert trans-
form of the DWPT for all the 32 channels in the terminal nodes at SNR values of
−15dB, 10 dB, 0 dB and 10 dB, respectively. It can be seen that the application of

1850009-11
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Fig. 9. PSD of channels 0 to 7 at −15 dB, with corresponding Hilbert transform.

Fig. 10. PSD of channels 8 to 15 at −15 dB, with corresponding Hilbert transform.
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Fig. 11. PSD of channels 16 to 23 at −15 dB, with corresponding Hilbert transform.

Fig. 12. PSD of channels 24 to 31 at −15 dB, with corresponding Hilbert transform.
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Fig. 13. Magnitude of sub-band frequency edge detection at −15 dB.

Fig. 14. Magnitude of sub-band frequency edge detection at −10 dB.

Fig. 15. Magnitude of sub-band frequency edge detection at 0 dB.
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Fig. 16. Magnitude of sub-band frequency edge detection at 10 dB.

the Hilbert transform clearly makes the detection of the sub-band frequency edges
better for all the 32 channels under observation.

7. Significance of Result

In the determination of spectrum holes using discrete wavelet packet based spec-
trum sensing, the accurate identification of the vectors of coefficients in each sub-
band plays a very important role in the reliability and accuracy of the spectrum
sensing technique. Hence, from the results presented in Sec. 6, the application of
the Hilbert transform to a discrete wavelet packet transform (proposed scheme)
significantly increases the accuracy in the identification of the vector of coefficients
in each sub-band by clearly identifying the edges between each sub-band of the
decomposed signal.

Table 2. Comparison of proposed scheme with referred scheme.

Referred scheme Proposed scheme
(DWPT without Hilbert transform) (DWPT with Hilbert transform)

Strength * Requires only one transform * Has higher accuracy than the referred
scheme in detection of sub-band edges

Strength * The use of only one transform * Accuracy of detection remains high as
makes it a faster technique SNR varies

Strength * Has lower complexity than the * The Hilbert transform makes it easy
proposed scheme to obtain the instantaneous phase of

the signal

Weakness * It is less accurate than the proposed * Has a higher level of complexity due
scheme in the detection of sub-band to the combination of two transforms
edges

Weakness * Accuracy of detection degrades * The use of two transforms makes it
with varying SNR slower than the referred scheme

Weakness * Absence of the Hilbert transform which can be remedied with a fast
makes it difficult to obtain the processor
instantaneous phase of a signal

1850009-15
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8. Comparison with Referred Scheme

Like any other technique, the proposed scheme also has its strength and weakness.
Table 2 shows the comparison made between the proposed scheme and the referred
scheme.

9. Conclusion

In this paper, we presented two transforms: the discrete wavelet packet transform
(DWPT) and the Hilbert transform. The method by which the DWPT detects
edges in a signal was analyzed by reviewing the Canny edge detector as a local
maxima of a wavelet transform modulus. The main objective of the paper which
is to achieve an enhanced DWPT sub-band frequency edge detection using Hilbert
transform (the proposed scheme) was realized by taking the Hilbert transform of
a DWPT decomposed signal. The simulation experiments showed very promising
results in that the proposed scheme outperformed the referred scheme (DWPT of
a signal) in the detection of the frequency edges in all the sub-band channels of
the terminal nodes of the discrete wavelet packet analysis bank shown in Fig. 1
for different values of signal-to-noise ratio. Considering the importance of spectrum
sensing in CR implementation and the challenges of existing techniques, the prop-
erties of wavelets make it a promising solution to this problem. The improvement in
accuracy achieved in this work could be said to outweigh the anticipated delay due
to complexity. The reason is that a fast processor can go a long way in reducing the
delay.
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