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Abstract v ;
Planning and management of water resources systems in recent time predictably entail modelling. This
has assisted 10 a great extend in understanding some hydrological processes and river flow dynamics;
however, there are still some flaws or bottlenecks arising from model error. Though, inherent limitation of
models as representations of any real system is crystal clear, appropriateness of variables and their
combination (,‘Oupl'(@{‘y\fil/z their mathematical relationships could bring closeness of models 10 the real
system. Thus, stochastic approach to river flow system is better incorporated wiih possibility for
nonlinearity and heteroscedasticity of the entire dynamics for determining an appropriate model structure.
More importantly, sm(rj/ze noncfmear mechanism, vis-a-vis conditional heteroscedasticity in hydrological

processes has been very austere, modelling data with time varying conditional variance could be
aitempted in various ways using either the non-parametric or parametvic approach in the context of

integrated modelling and forecasting of hydrologic processes. : .

Introddction
Inherent in the principles of water resources management is the judicious utilisation and conservation of
the available water resources. One of the ways to enhance this is the proper estimation of water demand

- both quantitauvely and qualitatively. Within this overall management system, the hydrologist is often
required to estimate the magnitude of the extreme events, whereas operations of some of the design works

are dependent on reliable estimates of flow for an ensuing period of time. Since river is an essential
conmponent of the hydrologic cycle; its flow forecasting provides veritable and basic information on a wide
range of problems related to the design and operation of the entire river system. A very common constraint
encountered in the context of water resources planning is madequacy of streamflow records. Thus, a
system designed on the basis of Lhe historical records ‘only faces a chance of being madequate’ for the

ywi {low sequence that the system might experience. Hence, the reliability of a system has to be
evaluated under different probable scenarios which might not be possible with the historical records alone.
Besides the issues of forecasting, one aspect that bothers hydrologists of late is ‘the structure of
hydrological processes. The tremendous spatial and temporal variability of the hydrological processes has
been oc,;ewd until recently to be due to the influence of a large number of variables (Otache er al., 201 1a).
Consequently, the majority of previous investigations on modelling hydrological processes have essentially

enmpioved the concept of stochastic processes (Otache ef al., 2011b); but however, recent studies have

tedt that even simple deterministic systems influenced by a few nonjinear interdependent variables
give rise to very complicated structures, i.e., deternmnistic chaos (Sivakumar, 2000). It is imperative

- therelore to mote that since river flow dynamics is linked both to the climate, through precipitation,

radiation, etc., and to the inflow-runoff wansformation (Sivakumar, 2000), the existence of chaos cannot be
excluded a priori. However, this does not connote that river flows are exclusively reducible to a nonlinear
mieractions of a few degrees of freedom purely based on the concept of fractals or nonlinear determinism.




Basically, in the light of the dssire to understand the river flow dynarnics, it suffices to realise that a
physical variable that is not very uséful for forecasting on its own can often be useful when.us

conjunction with other variables. Given the number of physical variables that could be consider:
potentially relevant, it is apparent that a very large number of different combinations of both variables and

mathematical relationships that I'nk them together are available when devzioping a forecasting model. But

then determining an appropriate model structure by trial-and-error process is net always practical (Zealan
et al., 199); this is so because river flow is usually treated as a random process, purely stochastic {Otache ef

al., 2011a); rather than incorporating the possibility for nonlinedrity and at best, heteroscedasticity of
entire dynarmcs (Otache ef al., 2011a).

Materials and Methods
(a) Data
In this study, historical time series for gauging stations at the base of the Benue River (i.e., Lower Bevue
River Basin) at Makurdi (centre at 7°44' N, 8°32’ E) location was used; a total of 26 vears (1974-2000)
water stage and discharge data were obtained and used. For purposes of this study, the daily flow data were
aggreggiteci to monthly and annual data series by taking the average of =ach month’s flow and calendar
year. Similarly, the annual maximum and minimum daily average discharges are obtained according to the
vater year, i.e., months of April to March for the streamflow process. In doing this, the whole data series
was considered rather than being separated into parts conforming with the period from which the river was
dammed upstream; the simple reason being that the distance from Makurdi to the dan
(Lagdao dam in Cameroon) is relatively large and thus it is believed that whatever
operations may have down the river channel must have been significantly mitigated.

(b) Stochastic Modelling

(i) Thomas Fiering or M‘arl{ov Model (i.e. lag one)
Thomas and Fiering describe a liéear stochastic model for simulaiing synihetic flow dsta. On a monthiy
basis this model represents the means, the standard deviations, the serial correlations between suce

gssive
flows, and the Skewness. This mbdel uses a linear regression relationship to relate the flow "+ in the

~

1
<! 1n the t month. If =/ and
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(t+1)th month, (1 being from the start of the generated sequence) to the flow
QJ"” be the mean monthly dischéi;ges during months j and j+f, respectively, within a repetitive annual

b, . : . g s ,
cycle of 12 months, "/ be the regression coefficient for estimating the flow in the (j+1)th month from the i
month, and t be a normal deviate with zero mean and unit variance, the Thomas-Fierin g Schema can be
expressed according as in equation {1).
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If an average first-order serial correlation coefficient 1; is used to replace the 12 monthly 1j values, it can
easily be shown using the relationship
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that the model (1.98) is the first-order case of the general non-seasonal autoregressive medel
Y=y ra
=1 3
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Application of the Thomas-Fiering model
in tropical countries iike Niger

a, there cam be practically no flow during the dry season
generate

n a stream. To
synthetic disgharge sequences for this case, the Thomas-Fiering mode] was used with the
tollowing modifications: Calculate mean and standard deviation of each monthly flow. Find out the
correlation coefficients between all the s'accessiveb‘nxmths. If N is the number of vears of data available.
then let n; be the number of years out of N for which the flow is available for the months. To illustrate, if
20 years of data are available then for June, say let there be 18 vears or which flow is available. The value
otmy=ns =18 Here, J1s taken as 6 for June Thus, calculate P; =nyN for all the months. Fit the T homas-
Fiering model t0 thege successive pairs of months. The synthetic, sequences of monthly flows are as
follows. For month 1. choose a pseudo-random number rectangularly distributed over (0, 1) The pseudo-
random numbers generated are available in statistical handbooks. These numbers are continuously matched
with the p; values for all months. For the month of say July, the valys of D is always 1, therefore flow is
definitely to be generated for this month. For any month if the number is less than pj but greater than zero,
then flow is to occur in the month j, otherwise no flow is to occut. Ifno flow is to occur in the month j,
then generation of the flow for the month may not be carried out. If flow is to occur in the month j and
tlow also has already occurred in the month j-1, then use the regressicn equation of Thomas-Fiering model
to obtain the flow for the month 3~ Sometimes negative values are generated while using Thomas-Fiering
model. Where negative values are encountered, it is recommended that these values should be retained and
used to derive the subsequerit values in the sequence. Once the generated sequence is cormpleted, all the

ive values in the generated sequence should be replaced by .éﬁcro. For the specific detail of the
pplication here, the monthly streamflows were logarithraically transformed to overcome the occurrence of

negative values in the generated sequence. In addition too, since there is flow all year round in the Renue
River, article 6 wag ignored.

1
t

(i) ARIMA Analysis of the moenthly flow data
D=0,d=0¢

Autocorrslation

=0,d=1 D=1d=1

: Estimated autocorrelations for logarithmic differenced monthly flow series
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To be able to 1dentify the most suitable model to fit the flovw series, serial correlations were calculated for
possible differencing schemes d =5 0, 1, 2 and D = -0, 1, 2, where d and''D stand for non-sessonal and
seasonal differencing, respectively’ Fig. 1 shows the autocorrelation function plots for these differe
schemes. To account for runoff ph%’nomenor' in the streamflow data, the prospect of scasonal differen
seem more pronising or more likeable since seasonality cannot really be accounted for by non-seas

differencing, nor is an integrated’ moving average ‘scheme expected toiaccount for the non-seasos

autoregressive bebaviour. Thus considering this factor, a multiplcative A P IMA model

was examined. This model has the form

e, and seasonal moving

where, ”, ™, and "' stand for non-seasonal autoregressive, seaso

average parameters respectively; whereas z and at are logarithric tran
shocks. !

Flow forecasting
The ARIMA modei‘forecast is u‘,.d to forecast ﬂc;ws for one 1o 24-mounth ahead. With reference io an

origin at time t (here, t = 288), the ‘nodel is use ed to make mininwm mean square error forec:
L=1

, where L 1s the lead time; th: vahies forecasted for zws, for an ori igin ai tv

2 (L)

written as . Diagnostic checking or verification of the adequacy of the model is ¢

. y 3
L O cif Y TION-Tanaom

the autocorrelation function for the residuals by modifying the model to take zcco

features. Figure 2 and Tables 1. 2, and 3, show the residual autocorrelation function for n

(1,0,2)x(1,1,1

/

-

N .

12, parameter estbnation and the final parameter va lnes; as well as the corresponding
diagnostic check for adequacy, respectively as fitted to the 26 years flow data. Values of the {Q-test statistic

2

compared with the value of x at-the 5% level is not significant whereas ‘he autocorrelation p
model residual reflects that the resic lual series may be considersd random

S s o B i B b

R R o o S S i et 5L

=




; Tabie1: Estimation of ARIMA modal parameters
| QQE , A :
% Iteration St s  SROTIRERR - = 6 O s
' 0 54.5264 0.100 0.100 0.100 . 0100 0.160
] 54.8937 0.012 0.055 -0.050 - 0.089 0.145
| 2 50 0.056 0352 -0.151 0.071 0.295
‘ 3 “0.162 0171 -0.301 " 0.037 0.386
20275 - 0.149 -0.451 0.007 ' 0.424
f 3 +(.394 0.124 -0.601 + -0.055 0.447
6 ° -0.244 0.075 -0.507  -0.071 0.479
7 -0.084 0.072 -0.259 -0.035 0.480
8 0.056 0.069 -(.212 . 0.003 0.481
9 1.206 0.066 -0.064 ©0.041 0.482
1 10 0.356 0.063 -0.083 - 0.081 0.484
. 11 £.506 0.059 0.231 0.120 0.486
12 34.9998% £.656 © 0.054 0.377 0.161 0.488
13 34.2944 6 806 0.043 0.521 ©0.204 0.494
14 32.1154 0.956" -0.002 0.642 . 0.253 0.519
15 28.0190 (0.943 -0.102 0.544 . 0.269 0.699
i6 27.2837 0.946 -0.181 0.486 - 0.266 0.700
17 27.2450 (.954 -0.179 - 0.483 #0270, 719
18 272367 0.957 -0.173 0.484 0.274 0.730
19 272931 0.958 -0.168 0.485 0.276 0.738
20 27.2317 0.959 -0.166 0.486 1 0277 . 0,742
21 27.2317 0.960 -0.166 . 0.486 :0.278 0.743
22 27.2312 0.960 -0.166 0.486 - 0.278 0.745
s Fhao is seasonal autoregressive parameter; O 1s seasonal moving averags parameter
Table 2: Final model parameter estimates
Parameters Statistics
! Type Coef SE Coef T P P
; AR 1 0.9600 - 0.0284 3383 - 0.000
| SAR 12%*  .0.1657 0.0748 2994 0.028
i MA,} 0.4859 0.0667 gl LI 0.000
k MA 0.2782 0.0646 4.31 0.000
| ‘\‘MA 12% 0.7447 0.0544 13.69 0.000
_ Constant 0.000318 0.001155 0.28 0.783
"% Seasonal autoregressiv enqmmeter, * seasonal moving average parameter
|
} Table 3: Modified Box-Pierce (L;ung-Box) Chi-Square statistic
_ Lag 12 24 36 48
| . Chi-Square 1G.2 299 . 46.3 ‘ 60.4
| Critical value 12.6 28.9 43.8 58.1
DF : 6 18 .30 ] 42
_p-Value 0.115 0.044 0011 0.021

In terms of the forecasting function, the general nRI MA model can be written in three altern am e forms: as

& dif 1u ence equation; as an infinite sum of the cunent and weighted jirevicus values of shocks at; and as

an infinite sum of weighted previous observations plus the current vak ue of at. Conditional expectation of
i o any of these forms supplies a forecasting function; in this regard, the diiference equation 15 used here.
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Byrecalling that )7V B , wing square brackets to signify conditiona’ expectation, noting that

[z,_}.m:z,_j. ‘ J"":O,],Z,-'» '
z4]=£,(J) b2,

la]=a.,=2~2_,,(1) j*0L2:

[a.,]=0 =1, 2, |

and taking expectation of the mode: which Las the general form

<1 h ¢1B) (1 B ¢1>1?B!2 ) . :(.1 B @U?}Bn ) {\l e 92'32 } N , the forecasting function can be obtained thus
Ziap =20+ BiaZira -¢1¢1,_22r:—z—13 4 =080 =050, O |
+0,0,,a,,, 15 +92®1,xzar+1,—14 . p

o

This can be expanded for the respsciive lead time (L) to make the forecasts wi
forecast variable as-a function of L.

Zw+, 45 the depend ent

(iii) Forecasts from the Thomas-Fiering and ARIMA models

scaste rornit

Both models were used to make forccasts of the monthly flow series, and subsequently, ¢he

e A
LA o7 e

the models are compared with the flows that actually occurred; in doing this, the final 2 vear

ior the comparison. Because the lac: 2 years flow data is used for the comparison, the parameters are (e
estimated for both models for the enfire flow series shortened by 2 vears (3.2 the model fit 15 done with 26

years of flow data). The flow forecests are considered from the aspect of cheosing a pa

ular time ¢
and taking coguisance of the hehaviour of the fo:rcca:;i: i imction 45 ithe lead time { increases; that is
long-term behaviour of the forecast function sheuld be a usefinl theoretical check on the fit of a 1o
Taking the origin t = 288, forecasts for the logarithms of the flow were mzde using both models. Figure 3

chows the behaviour of the ARIMZA model forecast function; the forecasts ara quite close to the monthly
rneans. Baring data quality problems, stationarity issues, and model over-fitting, intuitis /ciy for an ideal

o

forecast function this behaviour is “5 be expected; forecasts in the disfant future for a wend-free seies
should be the unconditional estimarss of the means. Considering Fig.3, the forecasts are all within the
bounds with respect to the actual flcws; based on this, and considering the data size for model fitting, ihe
ARIMA model has reproduced the nthly means well.

Figure 4 illustrates the standard e cors of the forecasts. This figure compares the monthiy standard
deviations of the logarithms of the ronthly flow with the standard ervors for forecasis of the two models

L 0L €24

under discourse, respectively, for . As L. becomes large (say, greater than 4), the standard error
of a forecast for Thomas—henng medel, tends closely to that of the. histori~ flow, whereas the ARIMA
model deviates away significantly. The behaviour of the Thomas-Fiering i del in fhis regard is furth
explained by Figure 5, where it 1s us»d to simulate the flow regime for 26 ycurs; it was able o reproduc
the flow dynamics clearly well, this “einforces its suitability to be used for lng- fo
the Benue River. The failure of the' ARIMA modsl to account for the seasonal pattern in the standard
deviations is a major limitation of the model Tn par ticutar, it Teads to problems in wansforming
flow logarithms into forecc.sted ﬂows

term flow forecusting of
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&

‘ (¢) Nenlinear Determinism .

E- The first step in the search for a de érministic behaviour is to attempt to reccastruct the dynanics in phase
' space. The delay time method as proposed by Takens (1981) and Packard er 22/, (1980) was employed; this
was done by analysing the autocorrelation structure as in Fig. 6 while Fig. 7 ¢hows the attractor diagram or

phase-space constructs.
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(i} Kstimation of Correlation Dimension

The most commonly used algonthm for computing the correlation dimens:on is the Grassherger-Procaccia
algorithm (Grassberger and Procaccia, 1583a). For m-dimensional phase-space, the basic formula is given

v

"

N N

Vs Lot i)

~1

subrect 1o the constraints:

S

il
)
3
2
I/\

} -0
'B(.t)zl_, if x>0

is the Heaviside step function, and r is the radius between the pair of points in phase space.
The straightforward estimator, Equation (7), is biased towards too small dimensions when the pairs
entering the sum are siatistically independent (Holger and Schreiber, 1957). For time series data with
nonzero autecorrelations, independence cannot be assumed; for instance, the embedding vectors at
successive times are often also,.close in phase space due to the ront’inuor’f; time evolutjon [ibid], called
teraporal correiation. In the calculation of correlation dimension, temporal orrelatlon may lead to serious
tmation unless the necessary care is taken.

In order to avoid the problem of ‘emporal correlation, a modified form wf Equation (7) is used in the

computation of the correlation dlmcn\wn as given by Equation (8) and 1m)lemcme(i 1n the TISEAN 3.0
Software package. ’ .

[y . LA ll\
C(r)=-— > @ —lx —x,
) ( V—n_, )( N — n. __1 g | Jll)

where. nmin is a threshold value such that pairs of vectors in the m-dimensional phase space which are
closer in time than it are discarded to aveid temporal correlations that may contaminate the result. For the
implementation of Equation (8), #minis set to 182 for the daily flow series &s suggested by Wang (2006).

'he correlation integral C(r) and the correlation exponent D were computed for the data, using different
values of the dela Yy time in order to be disposed to exaniine objectively the apuropriate delay time.

For s finite data set, thers is a radius below which there are no pairs of points, whereas at the other
extreme, when the radius approache: the diameter of the cloud of points, the number of pairs will no longer
ncrease as the radius increases (e, saturation point). The scaling region would be found somewhere
between deoopulauon and saturation. When InC(r) versus Inr is plotted (_Fiig_;. 8) for a4 given embedding
dimension m whereus Fig. 9 clearly shows the corresponding correlation integrals. The range of Int where
the slepe of the curve is 4pprox‘mdlclv constant is the scaling region where iractal geomefry is indicated.
{n this regon, C(x) ncrease as a power of'r, with the scaling exponent being the correlation dimension D.
To vividiy display the scaling regios, local slopes should be computed. Local slopes of InC(r) versus Inr

;

can indeed show clearly the scaling region if it does exist. Figure 10 shows fhe local slopes A‘cornputed
for this case: computations were done according to Equation (9) while Fig. 11 depicts the relationship

between correlation exponent and en “)cddmu dimension for both the original ‘md processed flow data.
. _ xoglf,,v/}] «—vlog C( )l

A, =

log{r ), —log (-”_),_1
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Findings and broplications for Warer Resouvee Planning 2pd Managemeni

There are quite a host of cormponents to water resources planning and management in the overall with
therr respective appurtenant issucs. In this light, the issus of systemic: interactions cannot be ignored or
dewnplayed at all. This is so because, cne alteration to the natural fuactional dynainics of a particular
component produces different corresponding effects on one or more otlier aspects of the tiparian system.
Hence 10 be able 1o understand the nature of these interactions majorly, :nodelling and simulation of some
paris of the overall system is usually carried out; the o /e basically :» to enhance cur understanding of
the workings of the svetem 'v\/rl’;-~|‘¢'-,"';’,{.‘ for purpou-\,s of proactive actions :nd management of the system in
the overail in a {utunstic manner. To this end, usvally both physical and yrocess based data are extensively
mobilised; tut more often than not, these data are of secondary nature and thus not devoid of basic

hydrologic problems like randommess, quantity and quality as well as contiruity and homogeneity
15, ete. Hence, in this context, the findings here can be appraised under the themes as presented

below.

Stochasticity and Hetesfosmdafﬁcitg;

(a) Data Characteristics and préé;vmcessing '
fn hydrologic modelling of 'systems of interest for purposes of plamiing and management of water
resources, historical records areusually extensively collected. But statiszcally, the historical record is a
sample out of a population of natural processes; for instance, sireamflov. Thus, the generated sequence
are representative of likely time series of the given process or phenomenca. Using streamflow as a case of
analogy in this context, streamiiOWw being a natural phenomenon has a random component, though not
fully random since it has been ooserved that it exhibits heteroscedastic behavioural pattern (Otache et al.,
_____ Considering this, data length, quality as well as consistency.issues become paramount; for
mstance, mn the face of acute dearth of long and continuous data availabiiity, can realistic generalisations
be made from forecasting the dynamics of a particular river flow systerr: In the same twist, considering
the complex nature of river flow and the sigrificant variability it exhibits in both time and space, what is
the appropriateness of enploying stochastic approaches for modelling it? ““hese portend serious issues for
effective planning and management of water resources. Intertwined in 11 this, for effective stochastic
modelling, usually, stationarity conditions are adhered to; doing this, entails some levels or forms of data
pre-processing but not without its asscciated problems for water resourve managers. - Linear stochastic
models like SARIMA, deseasonalised ARMA, and periodic models like Markov models are the most
commonly used in modelling hydrological processes. But considering snodel formulation in terms of
consttutive equations, though the seasonal variation in the variance preser: in the original time series can

~ be dealt with basically by the deseasonalisation approach, neither of the SARIMA and ARMA models

take into account the seasonal variation in the variance of the residual seri:s since the mmmovation series 1s
assumed to be independent and icentically distributed. Generally, the pre-jirocessing strategy irrespective
of the type to a large extent dlSIOI‘» the original spectrum of the time series.:

(b) Non-determinate nature of modeis - »

Following the fine of thought in (a), forecasting river flow in general or after heavy rainfall events is
wmportant for public safety, environmental issues and water management. For ,these purposes,
mathematical models have been.developed based either on physical considerations or on statistical
analysis. But the n(m-deterrmnate a-‘)?’xﬂodels poses critical issues for water resource managers; the non-
determinaie nature of model struct LJt’, for instance, streamflow models, can be really be appreciated in a
wider context considering the fact inat streamnflow is usually treated as a random process, purely stochastic

.
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(c) Conditional hetersscedusticity ] .
When modelling hydrologic time ;z:.z'it:'s;. the foa
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behaviour, or the first order moric

second order moments; although viconditional season-de ependent

increased inportance piay&‘i by risk and unce

flood contro! prac‘dnw as well as in modern hyvdrolozy theory. &
new time sertes techniques that all'w for the mc sl

aonlinear

evidence to argue that a time ser’es with random ar Dpearance

difficulty is in telling what kind of : onlinear d yramics flong

and heteroscedasticity or volatility. This aspect is pararoount as it
fat tail behaviour), which is very ¢ smimon in hydrologic processes, a
clustering depicts a phenomienon in wiich large changes tend to fmA 1A l_af‘gf: s::h_a’r;ge;@ 41
tend to follow small changes. fu ¢itl o of these ¢ -25¢s, the changes from one period {0 the nex
of unpredictable sign. To address it s time varying phenomenon is not ouf rightlv easy :
the development of Generalised Ay ‘oregressive Conditional Hetergscedasticity tvpe-model
modelling and sirnulation.

Noulinearity and Noulinear Detern inism
(a) Nonlinearity } &
The pliysical mechanisms governin g river flow or streamflow dynamics are many, and act on a !
of temporal and spatial scales and ths pose a lot of concerns for water resource planners. and managers in
real time. Although not all componeiis are conmlex in {hf’*rrbe}vca the vastuiss of the space-time domarn,
the number of the processes invol red, and the fact that almost all of frem present some degres of
nonlinearity, make the problem of river flow or streamflow formation highly
Ridolfi, 1997). To model such & complex system, one hopes that. only few of the various Eﬂ"f"]dﬂh S
become prevalent in the different phases . of the process;. so that L’l&/ %ys:z:emAdynami;s undergoes a
simplification due to a reduction in t1e nuinber, of the effeciive degrees « f freedom (Amilcare and Ridelfi.
2003). Therefore, it is important > attempt. qualitative - determination of the degree of linearity of
particular catchments, because they: pamit an assezsment of the, range of approximation fikely tohe
obtained from the application of e'ther linear or Jow-grder nonlinear met
inflow- outflow relationships (Otache ez al., 26 11a). Generally, 2 reliable detecton ofnos
essential imformation in addressing’ modelling efforts, Tho ugh theevelving paradigm
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acceptance of the fact that many nttural systerns:ate nomiinesr with feedbacks over mMany. space and
timescales, however, certain aspects Of these systerms may be less nonlinear than others and the niture of

nonlinearity may not always be that ¢lear; thi §.1s an aspect that water resource planners and mmana

are interested in real time sitmilation” of the nver.flow or streamflotw syst

able to draw any objective. conclesions. on analvsis aimed at de
components or nenlinear dynamics are o be expected in vver-flow tim
determinism is related to chimate d yamics that produces the input of the
and also determines in many ways the state of the basin
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determinism, it is velevant to wace” its course and ¢ causes, especially why
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cover, soil saturation, etc. Considerir g these facts ¢ 15 imperative to note

dynamics of atmosphere at a meteore ogical time se

y of the kind of
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f & high dimension, the coupling with the basin with its various feedbacks could also give rise to
recurrent low-dimensional conipohents, as teported by Amilcare and; Ridolfi (2003). In view of the
complex nature and dimension of the subject of nonlinearity and the cory vesponding issues associated with

(

o

it to explore all its different kinds will be a treacherous task.
(&) Newnlinear Determinism: : i

One aspect which hydrologists have: been eanslveiy working on s the structure of hydrological
processes, such as rainfall and runcff (Sivakumar, 2000). Even though, during the past decades, a number
of mathematical models have been proposed for modelling hydrolo ogicauprocesses, there is, hOW@V"I ne
umbied nm‘ﬁmc-bcal approach. I part, this d!.ﬁmuh_\y sterns from the:fact that hydrological processes
exhibit considerable and temporal variability, by extension, another pait of this difficulty is due to the
limitation in the availability of ‘sppropriate’ mathematical tools to exploit the structure underlying the

] logical processes {'Sivakuman 2000). The wemendous spatial und temporal variability of the
h_'ydnﬂ;oﬂcﬁl processes has beer believed, until recently, to be due to the influence of a large number of ‘
;‘,qu ently, the mejority of the previous investigations on modelling hydrological processes
have essentially enmloyed the co ncept of a stochastic process. However, wecent stadies have indicated that
¢ systerss, in fluenced by a few nonlinear interdependent variables, might give rise
ctures (i'e., deterministic chaos (Sivakumar, 2060). Thersfore, it is now believed
uctures of the seermingly hydrological processes, suchi as rainfall and mmoff, might be
better understood using nonhingar- deterministic chaotic models than the stochastic ones. Despite this
th(mv:rn it is highly iniprobable that complex natural phenometa may be controlled only by the

a chactic dynaniics:rather, if it is present, it most likely coexists with other types {Andlcare
it 1s therefors a wesker form of determinism which maay be hidden in complex natural

flf: et al.,

Tective water resctrce planuing and management, an infégrated forecastng framework is
1. But it suf

#1

ces W note that the appropriateness of the stochastic Jrocess for every flow series may
bated in the context of non'.}inea: deterministn and chaos; this holds true considering the fact that

gly complex and irregular bebaviours could be the outcome of skmple deterministic systems with
' & few noniinear interdependent variables with sensitive dependence on initial conditions. In the
!, nonlivear determumstic methods couid be viable complement » the linear stochastic ones for
r the dy

amics of river flow system Despite this thongh, it is inerative to note that the stidy of

" the dynamics of river Hlow, conducted in the Hght of chaos theory may have conflicting results; some are

more of a speculative ch

scter whereas others may have practical poteatials. Since it is obvious from
available Titerature that discussion on the nonlinear mechanism, vis-a-vis:conditional heteroscedasticity in

logical processes has been we

y austere, modelling data with time varying conditional variance could

be ;mempted. in various ways using either the non-parametric or paramstric approach in the context of

micgrated modelling and forecasting ot uydrologic processes.
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