Original Article BACTERIOLOGICAL AND PHYSICOCHEMICAL ANALYSIS OF WATER FROM MINING PONDS IN BASSA AND JOS SOUTH LOCAL GOVERNMENT AREAS OF PLATEAU STATE ¹Oyeleke, S. B., *¹Oyewole, O. A., ²Shaba, A. M., ³Mohammed, S. S. D., ¹Adelere, I. A., ¹Dung, C. S. and ¹Salahudeen, A. O. ¹Department of Microbiology, Federal University of Technology, Minna, Nigeria ²Department of Biological Sciences, Niger State Polytechnic Zungeru, Niger State, Nigeria ³Department of Microbiology, Kaduna State University, Kaduna State, Nigeria Submitted: March, 2017; Accepted: April 2017; Published: June, 2017 ### ABSTRACT The bacteriological and physicochemical quality of water from mining ponds was carried out in this study. A total of 180 water samples from ten mining ponds in Bassa and Jos South Local Government Areas of Plateau State were collected in wet and dry seasons. The water samples were evaluated for bacteriological quality and physicochemical properties using standard methods. The results showed that the mean total viable bacterial count (TVBC) ranged from 1.3×10^6 – 1.65×10^6 cfu/ml. The highest mean TVBC (1.65 x 10^6 cfu/ml) was observed in water from Gura-Topp, with least count $(1.30 \times 10^6 \ \text{cfu/ml})$ observed in Topp tin mining pond. The total coliform count (TCC) ranged from 54 - 493 mpn/100 ml. Variations in TVBC and TCC within ponds and seasons were observed. Predominately, eight bacteria: Escherichia coli, Salmonella Typhi, Vibrio cholerae, Proteus vulgaris, Yersinia enterocolitica, Shigella dysenteriae, Bacillus subtilis, and Salmonella enteritidis, were isolated from the water samples. Physicochemical properties showed that pH ranged from 7.76 - 7.86, temperature 22.35 - 23.37°C, dissolved oxygen (DO) 5.11 - 8.17 mg/L, total dissolved solids (TDS) 180.6 -196 mg/L, total suspended solids (TSS) 1.50 - 30.17 mg/L, chemical oxygen demand (COD) 4.63 - 18.8 mg/L and biological oxygen demand (BOD) 6.38 - 8.53 mg/L. Heavy metals detected included zinc, lead, cadmium, cobalt, chromium and arsenic. Lead, arsenic, cadmium and chromium were above the recommended standards. Consistently, physicochemical values obtained were found to significantly (p<0.05) vary among ponds and seasons. This study showed that the tin mining ponds are bacteriologically not safe for drinking purposes and contain high concentration of some heavy metals. Key words: bacteriological quality, physicochemical quality, heavy metals, tin mining ponds *Correspondence author: oa.oyewole@futminna.edu.ng ### INTRODUCTION Mining is a major source of heavy metals in water has received much attention due to its great health implications (Edema, 2001). Its impact on the environment is so adverse in most of the localities especially in Bassa and Jos South, Local Government Areas of Plateau State, Nigeria. The mining of minerals has been reported to lead to indiscriminate disposal of some toxic substances, such as heavy metals on land and in the aquatic system (Gyang and Ashano, 2010; Ezeaku, 2012). In addition, the inhabitants of the region are living with the mining scar characterized by mounds, ponds, tintailings and other hard metals, which make the area vulnerable to erosion and other environmental factors (Wapwera, 2014). Heavy metals accumulation of in freshwater ecosystem has been a major concern as they may gain entrance into aquatic environment *via* natural or anthropogenic means, which may include industrial effluent, domestic watewater, mining and agricultural wastes discharge (Vautukuru, 2005). The harmful effect of mining activities can be determined by assessing the concentration and distribution of heavy metals as well as other contaminants in water (Gyang and Ashano, 2010). Many diseases in developing countries are caused by drinking contaminated water (Fawell and Nieuwenhuijsen, 2013). This is because both quality and quantity of water are affected by an increase in anthropogenic activities and pollution (chemical or physical) that causes changes in the quality of the recurring water body (Kagoro et al., 2011). In most communities in Plateau State, Nigeria, the supply of pipe borne water is inadequate. Communities in tin mining settlement often rely on the use water from mining ponds for domestic use as is particularly prevalent in those rural areas. The major challenge has been how to make these sources safe for human consumption. Ideally, drinking should not contain microorganism known to be pathogenic or indicative of faecal pollution (WHO, 2004). Therefore the aim of this study was to assess the bacteriological and physicochemical properties of water from tin mining ponds in Bassa and Jos South, Local Government Areas (LGA) of Plateau State, Nigeria. ### MATERIALS AND METHODS ## Collection of water samples A total of 180 water samples were collected from ten mining ponds from two Local Government Areas of Jos (Jos South and Bassa) (Figure 1). Three water samples were obtained from each pond every month from August to October 2015, (rainy season) and November to January 2016 (dry season) which add up to six months. Water samples were collected in one liter sterile bottle in duplicates by 'grab' method. This was done by submerging the bottles to a depth of 0.5 meter and immediately placed in a light proof insulated box containing ice-packs with water to ensure rapid cooling. After collection, the water samples were immediately transported laboratory where they were analyzed within 6 hours. Figure 1. Map of Plateau State indicating for South and Bassa Local Government Area University of Jos, Nigeria (2016) # Bacteriological Analysis of Water Samples No jeke et al. The water samples were serially diluted and 1 ml of the diluted water samples (that is 10^{-3} , 10^{-4} and 10^{-5} dilutions) were inoculated in the respective media. Enumeration and isolation of bacteria Enumeration of total viable bacteria was done on sterile nutrient agar plate using pour plate method. The Petri plates were incubated at 37°C for 24 hours. The colonies, which developed after the incubation were counted and recorded as colony forming units per milliliter (cfu/ml) of the water sample (Chessbrough, 2006). The Most Probable Number (MPN) was adopted for the determination of total coliform bacteria. This was carried out in three stages which were the presumptive test, confirmed test and completed test (WHO, 2004). Isolation of Salmonella and Shigella species were carried out by inoculating water samples into Salmonella-Shigella agar. Vibrio cholera was also isolated by inoculating water samples into Thiosulfate Citrate Bilesalts Sucrose (TCBS) (Cheesbrough, 2006). ## Detection of Faecal Streptococci The presence of faecal Streptococci was determined by inoculating water samples on sterile Azide Dextrose Broth (ADB) and incubated at 37°C for 48 hours. The broth was observed for growth (turbidity) which is positive for feacal streptococci. For confirmatory test, a loopful of the broth after 48 hours incubation was streaked on Bile Esculin Azide Agar (BEAA) plate and further incubated at 37°C for 24hours. After incubation, BEAA plate was observed for brownish-black colonies with brown halos to confirm the presence of faecal Streptococci (WHO, 2011). # Physicochemical Analysis of Water Samples The water samples were analysed for the following physicochemical properties: pH, temperature, phosphate, fluoride, chloride, chemical oxygen demand (COD), biological oxygen demand (BOD), total dissolved solids (TDS), turbidity, total hardness dissolved oxygen (DO) and total suspended solids (TSS) and heavy metals (Cr, Pb, Cd, Zn, As and Co) using the methods of American Public Health Association, APHA (1998). ## Characterization and Identification of Bacterial Isolates The bacteria isolated were subjected to colonial, microscopic and biochemical characterization using the conventional bacteriological methods described by Cheesbrough (2006). The bacterial isolates were identified by comparing their characteristics with those of known taxa (Holt et al., 1994). Data analysis Data generated from bacteriological and physicochemical analyses of water samples were expressed as mean ± standard deviation. To determine variation between mean of samples obtained, data were subjected to one way Analyses of variance (ANOVA) using Microsoft excel package. #### RESULTS Bacteriological quality of water samples The contamination level of the water sample showed that high TVBC occurred in wet seasons; September in Zawan Gura-Topp (2.09x106cfu/ml), (2.07x106cfu/ml) and Rufam-Gwamna (1.92x106cfu/ml) and October in Gura-Topp (1.94x106cfu/ml) and Zawan (1.74x106cfu/ml) (Table 1). The results also showed that low TVBC counts was observed in dry seasons (for example Du-Kwang had a TVBC count of 8.50 x 10⁵cfu/ml in January) (Table 1). **Total Coliform Counts (TCC)** The TCC of the water samples (Table 2) showed that highest value (1600 MPN/100ml) occurred in wet seasons; September and October in both Malempe and Zawan mining ponds. The lowest TCC (23 MPN/100ml) were recorded in dry seasons; November and December in Mista-Ali, Du-Kwang and Topp tin mining ponds. Occurrence of bacteria in mining ponds A total of 8 bacterial species, Escherichia Salmonella typhi, Salmonella enteritidis, Vibrio cholerae, Proteus vulgaris, Yersinia enterocolitica, Bacillus subtilis and Shigella dysenteriae were isolated from tin mining ponds. Physicochemical Properties of Water the obtained for result physicochemical parameters studies is presented in Table 3. The values obtained showed that the pH, temperature, total hardness, TSS, BOD, COD fall within the recommended values of NSDWQ (2007) and WHO (2011) while the values obtained for TDS, DO, turbidity and Phosphate did not fall within their standards. The results also showed that the zinc, lead, cadmium, cobalt, chromium and arsenic were detected in the water. The values obtained for lead, cadmium, chromium were above the arsenic and recommended limits especially in the months of November, December and lanuary. The values obtained in Table 4 show that turbidity values in all the ponds are greater than the required limits (NSDWQ, 2007; WHO, 2011). TDS values of 996 mg/ml and 666.17 were obtained in Mista-Ali and Doruwa respectively. These values are above the required limits (NSDWQ, 2007; WHO, 2011). The cadmium value of 0.06 mg/ml in Buji-yelwa is also above the standards. Arsenic was found in Mista-Ali with 0.07 mg/ml above the required limit (NSDWQ, 2007; WHO, 2011) SCHRAMON I TO SITE Oyeleke et al International Journal of Applied Biological Research 2017 Table 1 Total Viable Bacterial Counts of Water from Mining Ponds in Bassa and jos South Local Government Area | | Total Viable E | Bacterial Counts mean | x106 (cfu/ml) | | | | | |-------------|----------------|-----------------------|-----------------|-----------------|------------------------|-----------------|-------------| | Pond | | Month | | | | | ** | | | August | September | October | November | December | January | Total (mean | | Mısta Ali | 1.57+1.17 | 1.75+1.06 | 0.85±0.35 | 1.20±0.42 | 1.53±0.64 | 0.94 ± 0.30 | 131±067 | | ribu iii | 10, 21,11 | | **** | | | | 1.47±0.75° | | Malempe | 1.75±1.05 | 1.85 ± 1.34 | 1.45±0.92 | 1.53±0.67 | $1.35 \times \pm 0.89$ | 0.90±0.28 | | | | | | | | | | 1 52±0 60 | | RufamGwamna | 1.62±0.40 | 1.92±1.24 | 1.25±0.78 | 1.65±0.64 | 1.51 ± 0.71 | 1.18 ± 0.23 | | | Buji-Yelwa | 1.46±0.45 | 1.70+1.13 | 1.37+0.69 | 1.77±0.96 | 1.59±0.81 | 1.17±0.40 | 151±061 | | Kwang | 1.46±0.73 | 1.88±1.25 | 0.92 ± 0.45 | 1.50 ± 0.72 | 1.40 ± 0.71 | 0.97 ± 0.33 | 135±065 | | Du-Kwang | 1.78+1.02 | 1.86+1.01 | 1.30 ± 0.57 | 1.71±071 | 161±076 | 0.85 ± 0.34 | 1 52±0 60 | | Торр | 1.54+0.79 | 1.75±0.93 | 1.04 ± 0.22 | 1.15 ± 0.35 | 1.33 ± 0.39 | 0.99 ± 0.19 | 130±0500 | | Gura- Topp | 1.81±0.98 | 2.07+1.03 | 1.94 ± 1.17 | 1.71 ± 0.98 | 1.15±0.50 | 1.20 ± 0.42 | 1.65±0.75 | | Doruwa | 1.61±0.83 | 1.53±0.67 | 1.44 ± 0.79 | 1.43 ± 0.88 | 1.51 ± 0.74 | 0.96 ± 0.33 | 141±058 | | Zawan | 1.86+0.91 | 2.09 ± 1.10 | 1.74 ± 0.93 | 1.33 ± 0.94 | 1.33±0.39 | 0.86±0.33 | 1.53±0.73 | Values are mean \pm standard error of mean of duplicate determinations. Means having the same superscripts are not significantly different (p >0.05) 13 ble 2: Total Coliform Counts in Mining Ponds in Bassa and Jos South Local Government Area | ame of Pond | Total Coliform Counts (MPN/100ml)/ Month | | | | | | | | | | | |---|--|---|---|---|---|---------------------------------------|---|--|--|--|--| | ment 19 mille francische mentelle finder mehr verst. In deren besonder gebruike geschlichen der der der der der | Wet seas | on
September | October | Dry season
November | December | January | | | | | | | Mista Ali
Malempe
Rufam Gwamna
BujiYelwa
Kwang
Du-Kwang
Topp
Gura Topp
Doruwa
Zawan | August 90 170 140 280 50 40 50 280 350 350 | 90
1600
280
350
280
90
90
110
170
350
341 | 30
110
140
90
110
90
90
170
170
1600 | 23
90
110
70
80
40
80
110
90
350 | 23
40
90
40
50
23
23
90
40
170
58.9 | 70 23 30 90 170 90 140 50 70 140 87.3 | 54 ^a 339 ^c 132 ^b 153 ^b 123 ^b 62 ^a 79 ^a 135 ^b 148 ^b 493 ^c 171 erscripts ar | | | | | Values are mean \pm standard error of mean of duplicate determinations. Means with different superscripts are significantly different (p < 0.05) from each other while means with the same superscripts are not significantly different (p > 0.05). Opeleke et al International Journal of Applied Biological Research 2017 | tue 3. Morrison Porsecut
estimateris | Montos | and the second s | on Table | | Jan Still See | anuar) | mandants.
2017 | (WHO 2021) | |--|-------------------|--|-----------------|--|---|------------------|-------------------|--| | | \$10 <u>0</u> 200 | September | Constant | THE SECTION OF SE | AND AND THE PROPERTY OF THE PARTY AND ADDRESS OF THE PARTY. | | FUNDAMENT. | Variable | | The state of s | 21.83* | 23.39 | 23.39 | 23.37°
7.45% | 21.51°
7.64 | 775 | 65-85
- | \$5-\$5 | | reperature (°C) | 8.174 | 7.75 | 7.63°
73.00° | 59.00 | 1514 | 270 | 5 | 100 | | roughly (NTU) | 46.90° | 110.80°
26.40° | 9.80 | 11.60 | 1.500 | 5.50%
475.40% | 500 | 300 | | S (mg/L) | 325.89 | 328 80* | 257.49 | 244.10 | 655.03*
687* | 5.18 | | 201-200
200-200 | | $\delta(mg/L)$ (mg/L) | 5.26 | 8.55 | 9.53°
40.15° | 831°
1738° | 12 550 | £.55 | 150 | 350 | | car Handmess (mg/L) | 22.27°
13.21° | 35.62°
5.52° | 5.33 | 5 334 | 13 41 | 12.93 | | N | | O(mg/L) | 3.75* | 13.3" | 8.43 | 11.91 | 5.23* | 2.12 | | 1.00
25-60 | | 0 (mg/L)
osphate (mg/L) | 0.29 | 0.29 | 2220 | 116 | 2. Taye | 11.45 | 251 | <15 | | Sonide (mg/L) | 9.97* | 17.42* | 68.10°
<0.1° | <0.1:
27.91; | <0.12 | <1.1 | 15
30 | 40 | | poride (mg/L) | <01* | <01° | 0.154 | 0.175 | 2.163 | 0.065*
0.196* | 1.11 | 1.11 | | ne (mg/L) | 0.031*
0.026b | 0.002* | 0.005 | 1.015 | 11.199-
1.517* | 1113 | 1.003 | 0.05 | | ad (mg/L)
sdmium (mg/L) | 0.025* | 0.021 | 2.040 | 1.133 | 2.004 | 1.0051 | 4.35 | 1.13 | | obalt (mg/L) | 0.050* | 0.0125 | 0.015 | A. 1015-51 | 1.015 | 1.117* | T. Tim | 9.00
per iter - not pre
significantly differ | Arsenic (mg/L) Arsenic (mg/L) NTD Nephelometric turbulity unit, 755: cotal suspended solids, TDS, total dissolved solids, DO: dissolved oxygen, mg/L, milligram per liter, - not present, NSDWQ NTD Nephelometric turbulity unit, 755: cotal suspended solids, TDS, total dissolved solids, DO: dissolved oxygen, mg/L, milligram per liter, - not present, NSDWQ Noperian Standard for Drinking Water Quality, Values are mean of duplicate determination. Means with different superscripts are significantly different (p > 0.05) Noperian Standard for Drinking Water Quality, Values are mean of duplicately different (p > 0.05) Irom each other while means with the same superscripts are not significantly different (p > 0.05) Oyeleke et al. International Journal of Applied Biological Research 2017 Table 4. Physicochemical properties of Water from Tin Mining Ponds in Bassa and Jos South | ond | Mean ' | Value of | Physicoch | nemical P | arameters | | | | | | | | | | | | | |---------------|--------|----------|-----------|-----------|-----------|------|-------|-------|------|-------|------|------|-------|-------|------|------|-------| | cation | | | | | | | | | 40 D | BOD | Phos | Zn | Pb | Cd | Со | Cr | Ar | | | рН | Tem | Turb | TSS | TDS | DO | Cl | Hard | COD | | 0.76 | 0.16 | *0.24 | 0.02 | 0.05 | 0.03 | *0.07 | | ista- | 7.68 | 22.35 | *43.83 | 10.33 | *996.00 | 7.12 | 33.32 | 22.27 | 18.8 | 8.08 | | | *0.02 | 0.03 | 0.05 | 0.03 | | | li
Ialempe | 7.70 | 22.40 | *34.33 | 30.17 | 203.67 | 6.57 | 32.72 | 35.02 | 9.08 | 8.53 | 0.43 | 0.17 | 0.02 | | | 0.02 | | | ufam | | | *36.00 | 23.00 | 347.33 | 7.57 | 32.57 | 40.16 | 8.04 | 7.63 | 0.58 | 0.11 | *0.15 | 0.05 | 0.06 | 0.03 | | | wamna | 7.81 | 22.67 | 30.00 | 23.00 | | | | 47.20 | 766 | 7.17 | 0.18 | 0.06 | 0.01 | *0.06 | 0.01 | 0.01 | • | | uji-
elwa | 7.68 | 22.38 | *32.83 | 15.67 | 180.67 | 8.17 | 21.69 | 17.38 | 7.66 | | | 0.07 | *0.07 | 0.02 | 0.01 | 0.01 | | | wang | 7.74 | 22.65 | *80.00 | 5.33 | 336.33 | 6.75 | 14.53 | 12.93 | 9.95 | 7.43 | 0.57 | | | 0.02 | 0.02 | 0.01 | _ | |)u- | 7.73 | 22.58 | *74.17 | 7.00 | 301.50 | 7.00 | 15.17 | 8.69 | 8.74 | 7.48 | 0.41 | 0.07 | 0.01 | | | 0.02 | | | (wang | 7.86 | 22.55 | *32.00 | 1.50 | 199.83 | 8.01 | 21.99 | 9.29 | 4.63 | 7.75 | 0.15 | 0.07 | 0.01 | 0.02 | 0.01 | | | | Горр
Gura- | | | | 3.33 | 220.83 | 7.19 | 19.59 | 15.17 | 6.4 | 7.67 | 0.20 | 0.07 | *0.02 | 0.01 | 0.01 | 0.01 | • | | Горр | 7.73 | 23.70 | *17.00 | 3.33 | 220.03 | | | | 470 | 11.62 | 1.18 | 0.21 | *0.18 | 0.03 | 0.02 | 0.01 | - | | Doruwa | 7.64 | 22.65 | *66.33 | 2.83 | *666.17 | 5.11 | 16.50 | 12.08 | 17.3 | | | | | 0.02 | 0.02 | 0.01 | | | Zawan | 7.86 | 22.37 | *73.33 | 2.83 | 375.33 | 6.10 | 22.94 | 25.37 | 7.86 | 6.28 | 0.72 | 0.14 | *0.01 | | | | | | Mean | 7.74 | 22.63 | 48.98 | 10.20 | 382.77 | 6.96 | 23.10 | 19.84 | 9.85 | 7.96 | 0.52 | 0.11 | 0.07 | 0.02 | 0.03 | 0.02 | | Tem: Temperature Turbid: Turbidity, TSS: Total Suspended Solid, TDS: Total Dissolved Solid, DO: Dissolved Oxygen, Cl: Chloride, Hard: hardness, COD: Chemical Oxygen Demand, BOD: Biological Oxygen Demand, phos: phosphate, Zn: Zinc, Pb: Lead, Cd: Cadmium, Co: Cobalt, Cr: Chromium, Ar: Arsenic. Values with * show high values than standard, -: not detected #### DISCUSSION eke et al. Based on the total plate count, water from tin mining ponds were contaminated by the presence of bacterial population considered to be unfit for drinking purposes. The total bacterial count exceeded the limit of 1.0 x102 cfu/ml standard limits for drinking water (Environmental Protection Agency, EPA, 2015). According to EPA (2015), for water to be considered no risk to human health, the total viable bacteria count should not exceed 500 cfu/ml. The present study provides evidence of higher microbial contamination in pond water and consistent with previous result on assessment of surface water sources (Odeyemi et al., 2011). In most cases this has been attributed to high rate of human activities such as swimming, agricultural activities, washing and defecation within and around these water sources (EPA, 2015). Presence of coliform provides a definite evidence of faecal contamination in water, which also indicates the capacity of the mining pond to transmit diseases relating to water pollution. Variation in contamination level among the ponds with higher viable counts encountered during the rainy seasons agrees with the findings of Avotri et al. (2002). In this study, a positive and significant relationship was observed between viable counts of bacteria cell and season of the year. This is a pattern observed globally in most surface water attributed to agricultural usage, wastewater resulting from human activities, and surface water runoff (Avotri et al., 2002; Odeyemi et al., 2011; EPA, 2015). Escherichia coli, Shigella dysenteriae, Vibrio cholerae, Proteus vulgaris, Yersina enterocolitica, Bacillus subtilis, Salmonella enteritidis and Salmonella Typhi were predominant in this study. Similar reports by Ichor et al. (2014) on microbial contamination of surface water sources in rural areas reported the isolation of E. coli, Klebsiella species, Shigella species, and S. aureus. presence Therefore. the organisms as predominant bacteria species in the water pond indicates that the water is polluted with human and animal faeces (EPA, 2015). Water contaminated with these bacterial species is regarded as a greater risk to human health. When E. coli is found in water, it suggests the presence of pathogens causing waterborne illnesses (Olsen et al., 2002). Infection of persons with E. coli 0157:H7 may lead serotype haemorrhagic colitis, gastroenteritis and haemolytic-uraemic syndrome and (Bahiru et al., 2013). The results of this study showed variations in mean pH with higher values observed in wet season- an indication of marked significant seasonal fluctuations (P < 0.05). The seasonal variation in pH values agrees with results obtained by Usman et al. (2014), with highest pH in the wet season and lower values in late rainy season. The seasonality in the pH of water may be due to the influx and decay of debris in the area as well as imbalance level of H+ ions input from surface runduring the rains. Significant variations (p<0.05) in TSS level in the water sample from mining ponds and seasons observed agree with earlier reports (Usman et al., 2014). The higher TSS during wet season may be due to the continuous discharge of effluents from houses that carries many materials into the ponds. Bilotta and Brazier (2008) reported that fine particles sometime act as food source for filter feeders, which are 1 part of the food chain, leading to biomagnification of chemical pollutants in fish and ultimately, in man. In this study, 100% of the mining ponds had TDS above recommended maximum value of <300 mg/L for drinking water (WHO, 2011). Palatability of water with a TDS level of less than 500 mg/L is generally considered to be good (NSDWQ, 2007) hence, drinking water needs treatment when TDS concentrations exceed 500 mg/L, or 500 parts per million (ppm). High TDS concentration may indicate elevated levels of ions such as aluminum, arsenic, copper, lead, nitrate and others that do pose a health concern (EPA, 2015). The turbidity values obtained varied between ponds and exceeded the WHO (2011) guidelines of <5 NTU for domestic water use. The relatively high level of turbidity during the wet season is expected since the period is characterized by heavy rainfall. Generally during wet season, suspended particles in the water are always in motion due to high rate of water circulation whereas in the dry season, the particles tend to settle on submerged logs as there is little turbulence (Avotri, 2002). If the concentration of dissolved oxygen falls below 5 mg/L, it may have adverse effects on how biological communities function and survive and if it is below 2 mg/L, it may lead to death of fishes (Chapman, 1996). Generally, the finding of this study revealed that the water from the mine ponds was well oxygenated during wet and dry seasons within allowable limit for use as raw water. Higher values of dissolved oxygen obtained in the wet seasons could be due to agitation and frequent wind current in the water (Kolo and Yisa 2000; Ramulu and Benarjee, 2013). The BOD value observed throughout the study period indicates that the tin-mine ponds are polluted and contain high content of easily degradable organic materials. Heavy metals found in the environment may occur from natural processes and as pollutants from human activities (Franca et al., 2005). In this report however, low levels of heavy metals were observed among the mining ponds and were within limits (World acceptable Organization, 2004; Nigeria Standard for Drinking Water Quality, NSDWQ, 2007; Standards Organization of Nigeria, SON, 2007). The only exception to the heavy metals concentration was lead. Study has also reviewed high lead in Zamfara, Nigeria which results to the killing of estimated 400 children (MSF, 2012). The concentration of cadmium and chromium also exceeded the recommended limits in the months of December and January. Arsenic was also observed in one of the mining pond (Mista-Ali, 0.07 mg/L) which is also above the recommended standards of 0.01 mg/L (WHO, 2004; NSDWQ, 2007). Arsenic is known for its toxicity and carcinogenic properties (NSDWQ, 2007) and exposure to arsenic may occur *via* inhalation, ingestion, dermal contact, and parenteral routes (WHO, 2004). Contamination of water with arsenic may also be due to inappropriate disposal of arsenical chemicals within the mining ponds (Singh *et al.*, 2007). #### CONCLUSIONS Water from the tin mining ponds were heavily contaminated with bacteria higher than the recommended standards of WHO and NSDWQ for domestic and drinking purposes. The study also showed significant seasonal variation in the bacterial loads, with months of September and October (wet seasons) having highest contamination level. Escherichia coli, Bacillus subtilis, Vibrio cholerae. Shigella enteritidis. Salmonella enterocolitica, Yersinia dvsenteriae, Proteus vulgaris and Salmonella Typhi were more consistently isolated from the mining ponds. There were seasonal influences on the physicochemical properties of the ponds with the highest impact occurring in the wet season during the month of August to October. Heavy metal contaminants detected in the tin mining ponds were lead, cadmium and arsenic. However, lead occurred most and significantly higher than recommended limits though variations existed in their levels between ponds and seasons. ### REFERENCES American Public Health Association, APHA. (1998). Standard Methods for the Examination of Water and Wastewater, 18th Edition. American Public Health Association Washington, DC, 45-60. Avotri, T. S. M., Amegbey, N. A., Sandow, M. A. and Forson, S. A. K., (2002). The health impact of cyanide spillage at gold fields Ghana Ltd., Tarkwa. *Journal of Environmental Science*, 7, 5-12. Bahiru, A. A., Emire, S. A. and Ayele, A. K. (2013). The prevalence of antibiotic resistant *Escherichia coli* isolates from fecal and water sources. *Academia Journal of Microbiology Research*, 1(1), 001-010. Bilotta, G. S. and Brazier, R. E. (2008). Understanding the influence of suspended solids on water quality and aquatic biota. *Water Resources*, 42 (3), 2849–2861. Chapman, D. (1996). Water Quality Assessments. A Guide to the use of Biota, Sediment and water in Environmental Monitoring. 2nd Edition. Chapman and Hall, London. Cheesbrough, M. (2006). *District Laboratory Practice in Tropical Countries*. Part 2, Cambridge University, Press U.K., 325. Edema, M. O., Omemu, A.M. and Fapetu, O. M. (2001). Microbiology and Physicochemical Analysis of different sources of drinking water in Abeokuta. Nigeria. Nigeria Journal of Microbiology, 15 (1), 57-61. Environmental Protection Agency, EPA. (2015). EPA Secondary Maximum Contaminant Levels: A Strategy for Drinking Water Quality and Consumer Acceptability. Water Research Foundation (WRF) Web Report #4537 U.S.A. Ezeaku, P. I. (2012). Evaluating the influence of open cast mining of solid minerals on soil, landuse and livelihood system in selected areas of Nasarawa State, North- Central, Nigeria. *Journal of Ecology and the Natural Environment*, 4(3), 62-70. Fawell, J. and Nieuwenhuijsen, M. J. (2013). Contaminants in drinking water: Environmental pollution and health, British *medical* bulletin 68 (1): 199-208. Franca, A. S., Mendonca, J. C. F. and Oliveira, S. D. (2005). Composition of green and roasted coffees of different cup qualities. LWT-Food Science and Technology, 38, 709-715. Gyang, J. D. and Ashano, E. C. (2010). Effects of Mining on Water Quality and the Environment: A Case Study of Parts of the Jos Plateau, North Central Nigeria. *Pacific Journal of Science and Technology*, 11 (1), 631-639. Holt, J. G. Krieg, N.R., Sneath, P. H. A., Staley, J. T. and Wil-liams, S. T. (1994). Bergy Manual of Determinative Bacteriology. Williams and Wilkins Publishers, Maryland. T., Okerentugba, P. O. and Ichor, (2014).C. G. Okpokwasili, petroleum total Biodegradation of hydrocarbon by aerobic heterotrophic crude from isolated contaminated brackish waters of bodo creek. Journal of Bioremediation and Biodegradation, 5. 236. Kagoro, M. L., Gongden, J. J. and Lawal, R. A. (2011). Water quality assessment: The Jos- Jarawa case, *Journal of Science, Engineering and Technology*, 14, 9900-9908. Kolo, R. J. and Yisa, M. (2000). Preliminary baseline Assessment of water quality of River Suka, Niger State. *Journal of Fisheries Technology*, 91:105. Medecins Sans Frontieres (MSF). (2012). Lead poisoning crisis in Zamfara State Northern Nigeria. *Medecin Sans* Frontieres Briefing paper, 1-5. Nigerian Standard for Drinking Water Quality, NSDWQ. (2007). Nigeria Standard for Drinking Water Quality. Nigeria Industrial Standard, Approve by Standard Organization of Nigeria Governing Council. *International Classification for Standards*, 20, 15-19. Odeyemi, A. T., Akinjogunla, O. J. and Ojo, M. A. (2011). Bacteriological, physicochemical and mineral studies of water samples from Artesian bore-hole, spring and hand dug well located at Oke-Osun, Ikere-Ekiti, Nigeria. Archives Applied Science Resources, 3(3), 94–108. Olsen, S. J., Miller, G., Breuer. T., Kennedy, M., Higgins, C. and Walford, J. (2002). A waterborne outbreak of *Escherichia coli* 0157:H7 infections and haemolytic uremic syndrome: implications for rural water systems. *Emergent Infective Diseases*, 8, 370-375. Ramulu, N. K. and Benarjee, G. (2013): Physicochemical parameters influenced plankton biodiversity and fish abundance – A case study of Nagram tank of Warangal, Andhra Pradesh. *International Journal of Life Science and Biotechnology, Pharmaceutical Resource*, 2(2), 248-260. Singh, N., Kumar, D. and Sahu, A. (2007). Arsenic in the environment: effects on human health and possible prevention. *Journal of Environmental Biology*, 28(2), 359–365. Standards Organization of Nigeria, (2007). Nigerian standard for drinking water quality. Nigerian Industrial Standard (NIS 554). Standards Organisation of Nigeria (SON), Abuja, Nigeria, 14–17. N. M. MINATALT OF Usman, A., Solomon, S. G. and Okayi, R. G. (2014). Some Physico-Chemical Parameters and Macro-element of Lake Alau, North East Nigeria. Nigerian Journal of Fisheries and Aquaculture, 2(1), 24–36. Vautukuru, S. S. (2005). Heavy metals contaminating water and fish from Fayoum Governorate, Egypt Food Chemistry. *International Journal of Environmental Resource Public Health*, 2(3), 456-462. Wapwera, S. D. (2014). Spatial Planning Framework for Urban Development and Management in Jos Metropolis Nigeria (Unpublished PhD) thesis submitted to the University of Salford, Manchester United Kingdom. World Health Organization, WHO (2004). *Guidelines for drinking water quality*. 3rd edition vol. 1, Recommendations WHO Geneva 2004. World Health Organization, WHO (2011). Lead in drinking-water. Background document for preparation of WHO Guidelines for drinking-water quality. Geneva: