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Abstract
The domain of healthcare is characterized by a high degree of complexity and a diversity of perspectives, and modelers
are often confronted with the challenge of formulating a simulation model that captures this complexity in a systematic
and manageable manner. Most often, the diverse perspectives of healthcare systems are studied in isolation and using
specific formalisms. As it turns out, answering questions concerning behavioral properties of the overall system becomes
difficult and therefore not sufficient for an efficient design and analysis of the system under study. In this article, we pro-
pose a framework for multi-paradigm modeling and holistic simulation of healthcare systems. We present a modeling
methodology with a plethora of formalisms to allow the modeler to choose an appropriate formalism at a given level of
abstraction while model transformation relates the different formalisms. Furthermore, we develop an integrative
approach for the interactions between models of different perspectives through dynamic update of model output-to-
parameter integration during concurrent simulations. Such an approach provides multiple levels of explanation for the
same system, while offering, at the same time, an integrated view of the whole. The framework has successfully been
applied to study part of the Nigerian healthcare system.
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1. Introduction

Modeling and Simulation (M&S) is becoming a consider-

able means of studying healthcare systems. However, cap-

turing all significant processes involved in the behavior of

such systems is not obvious. This is due to the fact that

healthcare systems are composed of distributed compo-

nents interrelated with intricate processes that can be

revealed only from various perspectives. Consequently,

research efforts interested by only one perspective use

parameters to approximate all the hidden processes result-

ing from the ignored perspectives. However, simulations

from isolated perspectives are not sufficient for a compre-

hensive study of a healthcare system. Rather, a holistic

framework, such as the one proposed in this paper, is

needed to allow multiple levels of explanation as well as to

derive results that could not be accurately addressed in any

of the perspectives taken alone. The outbreak of Ebola in

Nigeria in 2014 will be used as a running example to intro-

duce the framework proposed and show how it applies.

On 20 July 2014, the contagious Ebola Virus Disease

(EVD) was imported into Nigeria from a Liberian traveler

who, after contracting the virus in his country, flew to

Lagos International Airport.1 He died five days later in a

Lagos hospital where he was admitted but after having

wreaked havoc by infecting healthcare providers at the

hospital. Within the first days of Ebola case diagnosis,

nine healthcare workers were infected and 898 contacts

were generated throughout the country. The urgent need to

control the epidemic prompted the Federal Ministry of

Health to declare a national Ebola emergency, and the

World Health Organization (WHO) declared it a public

health emergency of international concern. An intervention

plan was swiftly developed, with about USD $11.5 million

allocated to establish coordination offices and operation
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centers, along with a massive campaign of awareness of

Ebola to the public. Several factors made the control of the

pandemic difficult, including the following.

1. The transmission vectors of the disease include

any contact with sweat, saliva, vomit, or other bod-

ily fluids of an infected person, even when dead.

As a result, care providers, women, and children

are among the most vulnerable. The former are in

direct contact with patients. The others live in a

great promiscuity within rural communities.

2. With a population of about 14 millions, Lagos,

ranked Africa’s largest city, is an attractive busi-

ness area for day laborers, including poor people

living in rural areas and slums.

3. Cultural practices in some places mean that dead

people are transported from one place to another to

be buried near their ancestors, while putting car-

riers, gravediggers, and neighboring places at high

risk of infection.

We argue that studying in isolation the Ebola outbreak,

without integrating characteristics of the Nigerian health-

care system that can be seen from other perspectives, may

fail to provide all the necessary levels of explanation for

policymakers to design efficient decisions. This includes

the allocation of scarce health resources, the vibrant

population dynamics, and socio-cultural behavior of indi-

viduals. The EVD spreading can be modeled by a com-

partmental model.2 Taken alone, this perspective provides

a level of explanation for the epidemiological understand-

ing of the disease outbreak (as detailed in section 4),

where the influence of all other possible perspectives is

approximated by parameters. For example, population

dynamics, as well as cultural behavior, are all considered

together and assumed to lead to transmission rates, without

distinction between urban/rural areas or between health

workers and the remaining part of the population. It would

be interesting to have a platform that allows us to study

how the problems in one perspective evolve with respect

to those in the others. For example, how do the dynamics

of the population and/or the resource allocation strategy

deployed by the government affect the evolution of the

disease, and vice versa? While the simulation from one

perspective abstracts all realities concerning the rest of the

perspectives, connecting different perspectives simultane-

ously takes into consideration all realities.

This paper presents a multi-paradigm modeling (MPM)

methodology to support a holistic simulation of healthcare

systems through a stratification of the levels of abstraction

into multiple perspectives and their integration in a com-

mon model-driven engineering (MDE) framework. This

feature is capable of providing multiple levels of explana-

tion, while the resulting global model allows deriving

results that could not be accurately addressed in any of the

perspectives taken alone. The rest of this paper is orga-

nized as follows. Section 2 gives the technical background

of this work. Section 3 presents the framework proposed.

Results of its application are shown and discussed in

Section 4. Section 5 compares our contribution to related

works in the literature. Section 6 concludes the paper and

gives perspectives for future efforts.

2. Background

In this section, we briefly introduce the terminology with

respect to the work reported. Interested readers may refer

to Vangheluwe et al.,3 Cellier,4 Praehofer,5 Mosterman,6

and Fishwick7 for elaborate discussions of the terms used.

MPM was introduced by Vangheluwe et al.3 as integrating

three dimensions: (a) model abstraction; (b) multi-

formalism modeling; and (c) meta-modeling. While the

first dimension is concerned with the relationship between

models at different levels of abstraction, the second one

concerns the coupling of models described in different

formalisms, and the last one with formalism specification.

This paper addresses the first dimension in Section 3.2,

while the second and the third dimensions are addressed in

Section 3.5.

2.1. Abstraction: single perspective versus multiple
perspectives

In the M&S study of problems in the healthcare domain,

we refer to the scope of an approach as the extent to which

it covers the different perspectives of the domain. In this

context, a single-perspective simulation approach (which

is most of the cases in literature) refers to a simulation

study within an isolated view of healthcare issues (e.g.,

resource allocation, or disease spreading). A multi-

perspective approach refers to the concurrent studies of

problems within two or more perspectives as well as their

inter-perspective interactions (e.g., combined impact of

resource allocation strategy and disease spreading in an

area). The contributions of the present paper are specifi-

cally in the multi-perspective approach. Since healthcare

systems M&S is nothing but a domain-specific application

of M&S principles, it is noteworthy here to state that both

approaches may use one or more formalisms and their

underlying M&S paradigms.

2.2. Multi-formalism: discrete, continuous, or hybrid
simulation

As the names imply, multi-formalism modeling refers to

the use of a mixture of appropriate formalisms (e.g., Petri

Nets, Differential Equations, Discrete Event System

Specification (DEVS).) to model the different compo-

nents of a system. As argued by Fishwick,7 one formalism
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cannot effectively model all aspects of a complex system,

considering the diversity of the variables of interest as well

as the mechanisms of the evolutions of such variables.

While the concept of formalism refers to the modeling para-

digm, it has an underlying simulation paradigm, which

refers to the approach used to generate the behavior of the

system represented. Simulation paradigms fall into discrete

simulation, continuous simulation, and hybrid simulation.

The latter is a combination of the formers.4–6 Table 1 shows

examples pertaining to each modeling/simulation paradigm.

2.3. Meta-modeling: toward model-driven
engineering

While multi-formalism enables the use of suitable formal-

isms to model different perspectives of a system, generat-

ing the overall simulation code can be challenging. To

achieve this goal, each of the formalism-specific compo-

nents can be simulated with its corresponding formalism-

specific simulator, and interactions due to coupling are

resolved at the trajectory level. This approach, known as

co-simulation, discards a variety of useful information3

and involves speed and numerical accuracy problems.8

Another approach (which is adopted in this paper) is to

transform all the different formalism-specific components

into one single target formalism (therefore reducing multi-

formalism to mono-formalism), from which the final

simulation code is derived.3 To automate these successive

transformations, all formalisms involved need to be repre-

sented by their meta-models (a meta-model is a model of

a formalism), and rules need to be defined to map meta-

models onto each other. In that way, for any component

specified in formalism A, its counterpart specification in

formalism B is obtained by applying the rules that map the

meta-model of A onto the one of B. MDE provides the

methodology to capture these concepts and organize

the systematic application of model transformation. The

state-of-practice in the domain-specific applications of

MDE-based M&S can be in one of the following forms:

(a) to use suitable formalisms to create high-level

models with which to drive the (semi-)automated

syntheses of the executable simulation codes;

(b) to define a Domain-specific Language (DSL)

based on some established simulation formalisms

but with the notations of the beneficiary domain

(e.g., healthcare) providing the concrete syntax;

(c) to define a mapping of the concepts of an existing

DSL of the beneficiary domain to the concepts cap-

tured in an existing simulation tool and automate

mapping using model transformation technologies.

Considering the complexity of healthcare systems and the

diversity of their various components, it would be difficult

to make a one-fits-all selection from the existing

approaches for a comprehensive MDE-based M&S of

healthcare systems. This paper proposes an approach that

supports (a) and (b). As depicted by Figure 4 in Section

3.5, the idea is to enable analysts to use the most suitable

formalisms to model the different perspectives of health-

care systems, and systematically generate the final simula-

tion code from the disparate models through a DEVS-

based M&S framework. To achieve this goal, we have

specified a dedicated model transformation from each of

the possible modeling formalisms to the target framework

in the transformation middleware shown in Figure 2.

Thus, we add legacy and modeling tools to the overall

framework by adding suitable transformations to the mid-

dleware. Details of the underlying framework for holistic

M&S of healthcare systems are discussed in the next

section.

3. Holistic approach to healthcare
Modeling and Simulation

We first lay the basis of our approach with an ontology for

healthcare systems M&S. Based on that, we secondly sug-

gest a modeling framework of four perspectives that can

serve to develop models at each level of abstraction and

couple them. Consequently, the top model within each of

the perspectives is coupled with its experimental frame to

run simulations and derive results. Perspectives are identi-

fied by the categories of questions that the corresponding

experimental frames can allow one to answer. Thirdly, we

build a library of theoretical models that are categorized

along this multi-perspective approach, in which model

Table 1. Modeling versus simulation paradigms.

Discrete simulation Continuous simulation Hybrid simulation

Mono-formalism modeling Petri Nets
DEVS
Cellular automata

Bond graph
System dynamics
Differential Equations
Block diagrams

DEV&DESS
Hybrid DAE

Multi-formalism modeling Cellular automata
combined with Petri Nets

Block Diagrams combined
with Differential Equations

Cellular automata combined
with Differential Equations

DEVS: Discrete Event Systems Specification; DESS: Differential Equation Systems Specification; DAE: Differential Algebraic Equation.
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components can be selected to build the model of an over-

all healthcare system. Lastly, we propose to integrate mod-

els from various perspectives, linking outputs of some to

parameters of the others. These steps are detailed in the

next sections.

The principles of our holistic approach stand, regardless

of the formalism used to express models. However, we

choose DEVS as the reference formalism for the two fol-

lowing reasons: (a) DEVS is a universal discrete event

simulation formalism that can serve as a common denomi-

nator,9 including when hybrid simulation is needed10; and

(b) supporting tools for DEVS simulation are readily avail-

able.11 Section 3.4 of this section shows how we extend

the framework to allow multi-formalism modeling to

DEVS simulation.

3.1. Ontological view

Based on an extensive literature review, we have built an

ontology to capture and share a common understanding of

the knowledge available in the range of healthcare M&S.

We adopted a useful way to begin building this ontology

by surveying existing taxonomies of healthcare models as

offered by Brailsford,12 Günal and Pidd,13 and Roberts,14

and we used the System Entity Structure Model Base

(SES/MB) framework15 to formally express it. Figure 1

presents the SES hierarchy of the ontology. SES/MB pro-

vides an ontological framework for knowledge representa-

tion of decomposition, taxonomy, and coupling of

systems. The SES/MB representation of a system is a

directed and labeled tree composed of Entity nodes con-

nected by Aspect, Specialization, and Multi-aspect edges.

An Entity (represented by a box) is a system component

of interest, and variables (mentioned below the box) can

be attached to it. An Aspect (represented by a vertical line)

denotes the decomposition relationship of an entity, while

a Specialization (represented by vertical double lines) rep-

resents its taxonomy (i.e., derived entities in the sense of

object-oriented modeling). A Multiple-aspect (represented

by three vertical lines) specifies that the parent entity is a

composition of multiple entities of the same type. SES/

MB axioms include uniformity, strict hierarchy, the alter-

nation mode, and valid brothers. The first axiom ensures

that any two nodes with the same labels have isomorphic

subtrees. The second axiom ensures that no label appears

more than once down any path of the tree. The third axiom

ensures that if a node is Entity, then the successor is

Aspect, Multi-aspect, or Specialization, and vice versa.

The fourth axiom ensures that no two brothers can have

the same label.

3.2. Stratification of abstractions

Along with the SES-based ontology, we have identified the

categories of healthcare problems studied in the literature.

They fall into four perspectives (as presented in Figure 2),

each encompassing a family of questions that can be formu-

lated through experimental frames15 with which models are

coupled to derive answers. They are as follows.

1. The Resource Allocation (RA) perspective. This

encompasses all scheduling and planning problems,

mostly in the context of limited resource provisions

(such as beds, rooms, medical records, doctors,

nurses, funds.) to meet the healthcare demand.

2. The Health Diffusion (HD) perspective. This cov-

ers simulation studies of contagion spreading,

whether positive (such as information or vaccina-

tion) or negative (such as disease or panic).

3. Population Dynamics (PD) perspective. This com-

prises all studies of the dynamics in the population

of a community (immigration, emigration, birth,

death.).

4. Individual Behavior (IB) perspective. This covers

studies of social behavior in relation to how its

components (such as educational level, physical

state, emotion, cognition, decision.) affect the

willingness/ability of individuals in a community

to effectively access available healthcare services.

Figure 2 shows that we place this stratification of abstrac-

tions in the context of the hierarchy of systems specifica-

tion introduced by Zeigler.16 Consequently, models can be

developed within each perspective and coupled together.

The resulting top model in each perspective can be coupled

with its experimental frame to derive results specific to this

perspective. The stratification of perspectives (and thus of

M&S objectives) provides multiple levels of explanation

for the same system, while modelers are assisted in select-

ing suitable model components from the Model Base (MB)

introduced in the next section (or in deriving new ones

from existing models).

To facilitate a holistic simulation study of healthcare

systems, which encompasses both the isolated simulations

in the four perspectives and their influences on one another,

we have defined an integration mechanism to enable live

exchange of information between concurrent simulations in

the different perspectives as described in Figure 2. While

the dashed boxes depict concurrent simulations in the dif-

ferent perspectives, the double arrows represent the live

exchanges of information between them. The idea is to

allow for the transmissions of the outputs of the simulations

in one perspective to provide live feedbacks to the simula-

tion parameters in other perspectives where required.

Section 3.4 provides more details on this integration.

3.3. Model Base

SES/MB introduces two mechanisms to allow interactive

or automatic generation of an executable simulation

238 Simulation: Transactions of the Society for Modeling and Simulation International 94(3)



model: the MB and the pruning process. The MB is a

repository where basic models (i.e., entities of the SES

tree) with a predefined input/output interface are orga-

nized. Pruning is the process of extracting from the SES

tree a specific system configuration (called PES for

Pruned Entity Structure), resolving the choices in Aspect,

Multi-aspect, and Specialization relations (i.e., selecting

particular subsets of Aspects, cardinalities of Multi-

aspects, and instances of Specializations), and assigning

values to the variables. We are implementing in the MB

for healthcare systems M&S, a large spectrum of DEVS-

based parameterized theoretical models, organized along

the stratification of abstractions proposed in our frame-

work. This includes SIR17 and its derived SEIR, SIRQ,

MSEIR. models18 for the HD perspective, Prey-

Predator19 and cohort-component models20 for the PD per-

spective, queuing theory models21 for the RA perspective,

and agent-based models22 for the IB perspective.

3.4. Integration approach

In practice, M&S processes in each of the identified per-

spectives are often executed in isolation, that is, without

recourse to the processes from other perspectives. In real-

ity, however, processes usually have mutual influences.

For instance, when there is an epidemic in a community

(HD perspective), it will naturally affect the provisions

and allocations of the human and infrastructural healthcare

resources in the health centers within the community (RA

perspective) and the migrations of people into and out of

the community (PD perspective). To allow a holistic simu-

lation, which encompasses isolated perspective-specific

simulations and their mutual influences, we suggest an

integration mechanism to enable live exchanges of infor-

mation between models from the different perspectives.

Figure 1. Ontology for healthcare system Modeling and Simulation.

Figure 2. Multi-perspective framework for holistic Modeling
and Simulation of healthcare systems.
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At this point, it is important to identify the difference

between perspective integration in the context of this paper

and the concept of coupling between components of a

complex model as formalized by DEVS. While ‘‘cou-

pling’’ refers to the connections between the ports of the

components of a coupled model within the same perspec-

tive, ‘‘integration’’ refers to logical connections between

the output ports of the model in one perspective and the

parameters of the models in some other perspectives.

We use HiLLS, a DEVS-based visual language,23 to

effectively realize this ‘‘integration’’ concept. Indeed,

HiLLS provides an object-oriented feature allowing defin-

ing methods for a model. A model method is a set of activ-

ities that the model can instantaneously perform on call

without affecting its state. Such activities must not change

the value of the model’s state variables, but can modify

the value of its parameters. Parameters (such as a trans-

mission rate in a disease-spreading model) are static infor-

mation that does not pertain to the state information of a

model. Rather, they are used for the computations required

when the model changes state. Consequently, calling a

model’s method results in reading/modifying the value of

some of its parameters, while sending of a message to a

port of the model results in a change of state within the

model. Readers can refer to the Appendix for details on

HiLLS representation of DEVS models.

Figure 3 schematizes the technical difference between

‘‘coupling’’ and ‘‘integration’’ in the context of this work.

By coupling the output of a disease-spreading model to the

input of an integrator, we create a coupled model under

the HD perspective. The role of this integrator is to inter-

pret the outputs received from the disease model and

translate it into new values for the parameters of a popula-

tion dynamics model. The integrator will then call the

method of the population dynamics model to modify its

parameters. Similarly, the population dynamics model is

coupled to an integrator that translates its output to values

for the parameters of the disease-spreading model. A holis-

tic model of the healthcare system is obtained by introdu-

cing appropriate integrators between perspective-specific

models.

3.5. Multi-formalism modeling capabilities

Considering the diversity of the constituent variables of

the models in the different perspectives, a multi-formalism

modeling approach is needed to effectively capture the

concerns of the various stakeholders. This is necessary to

accommodate the diverse familiarities of experts with

modeling formalisms, reuse of existing models, easiness to

capture some realities in some specific formalisms, and

other realities in other formalisms. Hence, we suggest a

multi-formalism modeling approach at the top layer of the

proposed framework for holistic M&S of healthcare sys-

tems. As mentioned previously, in practice, multi-

formalism M&S can be achieved with either co-simulation

or formalism transformation. While the former promotes

the simulations of the disparate models based on their

respective formalisms with a mechanism for data

exchange, the latter involves the translation of the dispa-

rate models into a formalism upon which the simulation

will be based. In this work, we choose to use formalism

transformation such that users can model the different per-

spectives in their preferred formalisms while we translate

Figure 3. Model coupling and integration. HD: Health Diffusion; PD: Population Dynamics.
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all models to DEVS for simulation. Therefore, the pro-

posed MDE-based framework for holistic M&S of health-

care systems will remove the constraint on the choice of

modeling formalism, thereby making the modeling easier,

while we use model transformation technologies to sys-

tematically generate the final DEVS-based simulation

model.

Figure 4 presents the overall framework at the concep-

tual level. The topmost layer contains the meta-models of

prospective formalisms for modeling the different perspec-

tives of healthcare systems. Note that the list in the figure

is not exhaustive. Hence, each of the perspective models

in the third layer must conform to the meta-model of the

formalism chosen to create it. We use the ATL (Atlas

Transformation Language) technology24 to transform the

disparate perspective models into SimStudio implementa-

tions of DEVS simulation models25 at the bottom layer.

4. Application and results

In order to study the Nigerian healthcare system in a holis-

tic way and in the context of the Ebola outbreak, we

applied our framework and built models in each of the per-

spectives identified, that is:

� a model of the Ebola outbreak and its experimental

frame;
� a model of migrations between Nigerian states and

its experimental frame;

� a model of daily workers strategy and its experi-

mental frame; and
� a model of hospital resource allocation in Lagos

and its experimental frame.

We studied each model in isolation and derived some

results, and then integrated all the models together to pro-

duce a holistic view of the situation. The subsequent sec-

tions present each of the perspective-specific models

developed, as well as the integrators needed to integrate

them together.

4.1. Model of disease spreading

The EVD spreading can be modeled by the following com-

partmental model, which extends the work presented by

Althaus et al.2 to take into account of the possibility of

infection by dead individuals:

dS

dt
= � bSI � aSD ð1Þ

dE

dt
= SI + SD� E ð2Þ

dI

dt
=E � I ð3Þ

dR

dt
= 1� fð ÞI ð4Þ

Figure 4. Model-driven Engineering-based framework for holistic Modeling and Simulation of healthcare systems. DEVS: Discrete
Event System Specification; RA: Resource Allocation; HD: Health Diffusion; PD: Population Dynamics; IB: Individual Behavior.
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dD

dt
= fI ð5Þ

where

� S is the number of susceptible individuals in the

population;
� E is the number of exposed individuals (susceptible

individuals become exposed before being infected);
� I is the number of infectious individuals;
� R is the number of recovered individuals;
� D is the number of dead individuals;
� b is the transmission rate with infected individuals;
� a is the transmission rate with dead individuals;
� s is the incubation rate;
� g is the ‘‘recovery or death’’ rate;
� f is the case fatality rate.

This PDE (Partial Differential Equation) model (which

can also be seen as a System Dynamics model) is given

from the HD perspective of our framework. Its HiLLS rep-

resentation is shown in Appendix. Following the rules

described, the DEVS counterpart is an atomic model with

S, E, I, R, and D as state variables, which applies

Equations (1)–(5) during each of its internal transitions to

get the values of the state variables in the new state, and

for which time advance is always equal to 1 day. A spe-

cific DEVS-based experimental frame is built to experi-

ment with the model and answer questions such as the

distribution of health statuses in the population over a

period of time, and the sensitivity of the disease spread to

variations of parameters.

Figure 5 shows how the respective numbers of suscepti-

ble, exposed, infected, recovered, and dead evolve over a

period of 100 days. Initial conditions are 1,000,000 sus-

ceptible individuals, only one, infected person, and no

exposed, recovered, or dead individual. Parameters b, a,

s, g, and f are respectively set to 1.22e-06, 0, 0.33, 0.71,

and 0.42, as calibrated by Althaus et al.,2 whose model of

spreading without control measures coincides with our

model for a= 0.

Because of the scarcity of reliable data in the Nigerian

healthcare management system, validation is a major issue

(e.g., a good estimate of the population size of Nigerian

states or cities is frequently disputed by national agencies).

However, understanding the dynamics of the disease diffu-

sion as regards to the variation of parameters is paramount

to getting the exact figures for each health status at a given

time.

Figure 6 shows such an exploration, with a focus on the

level of disease penetration on the one hand (variation of

I=S, the ratio between initial numbers of infected and sus-

ceptible individuals), and on the other hand, the impact of

some socio-cultural dimension (variation of a). We con-

sidered four levels of infectious situations: the disease

appearance stage (i.e., only one infection over a million of

individuals, something comparable to what happened in

Figure 5. Ebola spreading in a period of 100 days, with calibrated parameters.
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large and medium cities in Nigeria, but also in Liberia,

Guinea, and Sierra Leone); state of emergency level (i.e.,

1000 infections over a million of individuals, a level at

which countries often activate very special measures); cat-

astrophe level (i.e., 10% of the population infected); and

chaos level (i.e., 50% of the population infected). We also

considered three levels of social interaction: safe burial

level (i.e., dead persons are buried with the maximum of

caution, not allowing any direct contact with any living

individuals); classic burial level (i.e., burial ceremonies

are making interactions with dead persons as intensive as

with living persons); and feasting burial (i.e., burial cere-

monies take many days and go to many places, with direct

contact between dead and living individuals).

The top-down reading of Figure 6 shows that there

is a drastic change of trajectories when burial-based

socio-cultural interactions come into play compared to

safe burial situations, but their intensity does not have a

very significant impact above a certain limit. The left-to-

right reading of the same figure shows that above a certain

threshold, the infection penetration is out of control,

regardless of variations in the socio-cultural interactions.

These are two simple conclusions derived, where much

more can be explored to get a full level of explanation of

this HD perspective-oriented issue.

4.2. Model of migrations

The dynamics of a population play a key role in its health-

care system. Numerous theoretical models exist to repre-

sent population dynamics; emblematic examples are

Volterra,19 Rogers,26 Allen,27 and Sikdar and Karmeshu.28

Figure 6. Sensitivity of the Ebola spreading to variations of parameters.
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We developed a model inspired by Sheppard,29 but with

the following specificities.

� We consider the Nigerian population at state levels.

Nigeria is a federal country with 36 states (each

having its capital city) and a Federal Capital

Territory (FCT).
� Cellular automata (CA) are used for modeling

interstate migration flows. The neighborhood of a

cell includes all other cells of the CA. Each cell is

defined by a reference (0 for FCT, and 1–36 for the

states) and is assigned a geographical position (i.e.,

latitude and longitude of its capital city). The state

of a cell at a given time is the population of the cor-

responding federal state at that time.

The general rule of the CA is expressed by the following

equation:

ni t+ 1ð Þ= gini tð Þ+
X

i 6¼j
ai � aj

� �
ni � nj

�� ��e�tdij ð6Þ

where

� ni tð Þ is the population of state i at time t;
� gi is the net growth rate (i.e., birth-death6

migrations from/toward outside the country) of

state i;
� ai is the relative attractivity of state i (i.e., the gross

domestic product (GDP) per capita of state i over

the GDP per capita of the country);
� dij is the distance between the capital cities of states

i and j;
� t is a constant positive number.

Equation (6) is inspired by Sheppard29 in that the rate of

migration between any pair of federal states depends on

the population distribution. However, while Sheppard29

considers the attractivity of a place grows with its size,

and eventually declines as it approaches its capacity, we

address this aspect in a different way, as follows.

� The interstate migrations for each federal state are

addressed in the second member of Equation (6) by

its second term.
� Here ai � aj expresses that between any pair of

federal states, the more attractive one ‘‘wins.’’ One

can notice that the number of migrants leaving a

source state (ai � aj \ 0) is the same as that enter-

ing the target state (ai � aj . 0).
� Here ni � nj

�� �� expresses that states with nearly the

same size have few attractions to each other. The

greater the difference of size is, the higher is the

attraction (in favor of the more attractive one).
� Here e�tdij expresses that attractivity between any

pair of states is amplified or reduced by the distance

between them. Closer states have more attractivity

to each other (the extreme case is dij = 0, which

gives e�tdij = 1), while very distant states have a

low attractivity to each other (the extreme case is

dij =+‘, which gives e�tdij = 0)

This CA model is given from the PD perspective of our

framework. Its DEVS counterpart is an atomic model that

has the CA grid as its state variable, and that applies the

CA rules during each of its internal transitions. Time

advance is always equal to 1 day. A specific DEVS-based

experimental frame is built to experiment with the model

and answer questions such as the distribution of population

in the Nigerian states over a period of time.

Figure 7 shows how the respective states evolve over a

period of 1460 days (i.e., four-year period). Calibrating

data are taken from the annual report of the National

Bureau of Statistics (NBS).30 The initial distribution of

population considers the figures from the 2006 census. Net

growth rates are calculated for the period of time from

2006 to 2010. Attractivity rates are calculated for year

2010. We use the Euclidian distance and t = 0:01. The
experimental frame for the study displays each state by

coloring it according to the range in which the daily

growth of the state’s population falls. Figure 7 displays

snapshots at respective times 1, 183, 364, 545, 726, 907,

1088, 1261, and 1442 (top-down and left-to-right), that is,

every semester approximatively.

We compared the evolution curves obtained from the

CA simulation, with data available for the period from

2008 to 2011. Figure 8(a) shows how cumulative real data

evolve for all states (horizontal axis) and for four years

(vertical axis cumulating annual rates). Figure 8(b) how

cumulative simulation results evolve, using the same lay-

out. Differences are in the interval of confidence of 95%

for all states, except Gombe state and Kwara state, which

have lesser annual growth rates with simulation than in

reality. We have no explanation for this difference.

4.3. Model of a daily worker

Models form the IB perspective of our framework capture

the micro level of explanation (i.e., at the individual level)

of phenomena that are often described at the macro level

(i.e., at population level) in healthcare systems simulation.

For the running example of this paper, let us focus on the

agent-based model of daily workers in the Nigerian popu-

lation. They constitute a very significant part of intrastate

and interstate migration flows. The objective of this agent-

based model is to simulate the impact of a simple social

strategy in the working condition of a daily worker. The

model generates the result of scenarios depicting decisions

by a daily worker to move from a working area to another

one, based on the situation of the local labor market and
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the consequential effect on his working rate (i.e., the aver-

age number of worked days, hence the worker’s earnings).

In this study, local labor market refers to a combination

of labor parameters such as the probability r for a primo

entering to get a job daily, the probability p for a worker

to keep the same job for the next day, and the probability

q for a jobless person to find a new job. These parameters

affect the behavior of the daily worker in the way

described by Figure 9.

Arriving in a new place as a primo entering, it takes 3

days to establish and understand how the local market

works. This time represents for the daily worker the cost of

moving from one area to another, since the corresponding

days are lost in terms of earnings. The transition diagram

of Figure 9 shows that the primo entering individual gets a

job with probability r, and is jobless with probability 1–r.

A job is kept with probability p and lost with probability

1–p. A jobless individual will daily seek for a new oppor-

tunity, with a level of patience of x days. If he does not get

any new job after this deadline, he will move to another

working area (a counter n is used to find at each time the

number of jobless days). We assume he will not go back to

a place he formerly visited, and that the national labor mar-

ket is uniform (therefore, probabilities do not change from

one local labor market to another one). This may look con-

tradictory, since the daily worker would probably move to

a new place with higher probabilities. However, in reality,

daily workers randomly change their areas of research

since they do not have a clear visibility of the labor market

map. Their strategy relies solely on the choice of the value

of x. Indeed, r being greater than q, any new relocation

increases the potential for a jobless person to get a new

job, at the cost of the time lost in relocating.

This agent-based model is easily described by a DEVS

atomic model. Each node of the transition diagram given

in Figure 9 is a state of the DEVS model. Transitions are

all internal transitions in the DEVS model. Time advance

is 1 day for JOB and JOBLESS states, while it is 3 days

Figure 7. Snapshots of population dynamics simulation (daily growth) in Nigerian states.
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for the PRIMO state. Internal transitions are triggered

depending on probabilities, except for the case of the

worker moving to a new place. The perspective-specific

DEVS-based experimental frame built to experiment with

the model explores for various values of x the trajectories

of two variables: (a) the percentage of worked days; and

(b) the frequency of moves. For each value of x, 1000

experiments are run, each for 1460 days (4 years). Figure

10 shows the impact of the worker’s decision (frequency

of relocations) on his job performances (percentage of

worked days), respectively for x= 6, x= 3, and x= 1

((a)–(c)). Values of r, p, and q are respectively 0.45, 0.85,

and 0.05. The strategy of highest mobility, although show-

ing high uncertainty of performances at the beginning, is

the most rewarding for the daily worker (highest average

number of worked days). This result echoes the reality on

the grounds of day labor (low segment of the labor mar-

ket) and its resulting migration flows.

4.4. Model of hospital resource allocation

Healthcare affordability is a topic of immense interest to

both individuals and national policymakers. An accurate

depiction of healthcare affordability requires adequate con-

sideration of the way resources can be allocated to meet

the healthcare demand. As identified in the ontology pre-

sented in Figure 1, such resources can be human (doctors,

nurses, etc.), physical (beds, rooms, vaccines, drugs, etc.),

financial (funds, taxes, out-of-pocket payments, etc.), or

information (health records, training, adverts, etc.). The

model developed in this section, using Forrester’s system

dynamics, is meant to help policymakers understand and

anticipate bed acquisition and management in a Lagos hos-

pital. System dynamics is a popular modeling approach in

Figure 8. Real data versus simulation results (cumulative population growth rate per state).

Figure 9. Individual behavior model of a daily worker.
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healthcare systems M&S. A general survey of system

dynamics in healthcare systems studies can be found in

Homer and Hirsch.31

The system dynamics-based model is presented in

Figure 11. The demand for hospital services is modeled by

the admission stock, which derives from an admission rate

applied to the population stock. The population demo-

graphics change dynamically due to births, mortality, and

migration. The mortality rate is disaggregated in the model

into the external death rate (i.e., deaths caused indepen-

dently from the hospital intervention) and the failure rate

(i.e., deaths caused within the hospital). The net migration

rate aggregates inflow and outflow migrants. While the

admission rate subtracts quantities from population, the

success rate re-injects into the population those hospita-

lized patients who do not die at the hospital. Also, non-

Figure 10. Relocations frequency (upper curve) versus job performances (lower curve) in three different scenarios ((a)-(c)).
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hospitalized patients return to the population stock. The

bed occupancy rate (i.e., the ratio of beds daily occupied

by patients over the number of beds available) controls the

bed occupation stock, the latter being an indicator of

resource need for policymakers.

This model is given from the RA perspective of our

framework. Its DEVS counterpart is an atomic model that

defines a state variable to represent each stock of the sys-

tem dynamics model, and internal transitions of which

modify the values of these variables according to the rates

given as parameters. The time advance is always equal to

1 day. The DEVS-based experimental frame specifically

built to study the behavior of this model displays the

results shown in Figure 12. Figure 12(a) shows the daily

evolution over 1460 days (i.e., four years) of respectively

the number of admissions (upper curve) and the number of

beds occupied. Figure 12(b) shows the ratio of bed occu-

pancy in proportion of the population. The model has been

calibrated using 2010 data from the NBS records (hospi-

tal-specific data are averaged over major hospitals and

health centers of Lagos): birth rate = 19.854 per thousand

annually; net migration rate = 20.40 per thousand annu-

ally; external death rate = 7.95 per thousand annually;

admission rate = 0.45 annually; bed occupancy rate = 0.73

annually; success rate = 850 per thousand annually; failure

rate = 150 per thousand annually.

4.5. Integrators

Transfer models describe how the outputs of some of the

models we have described affect the parameters of others

(as previously explained in Figure 3). These models, each

described as a DEVS atomic model, allow one to integrate

together all the models given in the different perspectives

of our framework. The DEVS atomic model, in each case,

has only two states: a waiting state, for which time advance

is+N, and a generating state, for which time advance is 0.

Only an external transition is possible from the waiting

state to the generating state (which corresponds to the

receipt of new outputs from the feeding model). In the gen-

erating state, the transfer model computes new values for

parameters of its target model, then calls the target model

to change the values of its parameters, and then executes

an internal transition to go back to its waiting state.

If the healthcare system to study is taken at the scale of

a hospital located in a popular area of Lagos, the flow of

patients will depend on what is going on in the direct envi-

ronment. Therefore, the individual behavior of the majority

of inhabitants (i.e., day workers) as well as the population

dynamics of the federal state and the impact of the out-

break of Ebola would greatly influence the admission rate

and the bed occupancy rate as well. In contrast, perfor-

mances of the hospital (i.e., cure and death frequencies)

would impact on the relative attractivity of the area as well

as the spreading of the disease. A causal loop diagram is

shown in Figure 13 that illustrates key influences between

outputs (in blue) and parameters (in red) of models devel-

oped in this paper (the four vertical layers that are apparent

in the figure correspond respectively to the RA, HD, PD,

and IB models). Outputs are influencing variables and

parameters are influenced ones. A positive feedback (e.g.,

from number of infectious individuals to admission rate)

indicates that an increase (respectively a decrease) of the

influencing variable results in an increase (respectively a

decrease) of the influenced variable. A negative feedback

indicates that both variables evolve in the opposite

direction.

The experimental frame built to experiment with the

resulting holistic model allows one to see how all models

impact on each other simultaneously, and in various sce-

narios of influence. Figure 14 shows results for the case

where a linear influence has been defined for each output-

to-parameter integration.

Experiments are run for 100 days and each model is

initialized to coincide with the outbreak of the EBV

period. On top of Figure 14 are the new evolutions of

Figure 11. Model of demand for hospital services.
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Figure 12. Evolution of health demand and supply indicators.

Figure 13. Causal loop diagram between outputs and parameters. (Color online only.)
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respectively the disease-related variables (as the ones

shown in Figure 5) and job performances of daily workers

in relation to the frequency of relocations. In the middle of

the figure is the daily evolution of the population in Lagos

state. At the bottom of the figure are evolutions of respec-

tively the number of admissions and beds occupied (red

and green curves) and bed occupancy in proportion of the

population (blue curve). The key interest of this holistic

simulation is less to forecast actual future values of the

system than to learn about the relative impacts of alterna-

tive assumptions and interventions.

4.6. Discussion

The running example has illustrated how the framework

can address multiple levels of explanation. Experimental

frames from the different perspectives focus on

perspective-related questions. Models are abstractions and

Figure 14. Holistic simulation results. (Color online only.)
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approximations by essence, so a model developed within

any perspective will necessarily use parameters to repre-

sent the aggregated dynamics of all influencing factors

from other perspectives, ceteris paribus. The disaggrega-

tion of parameters binds representations from different

perspectives to each other. Therefore, models in each per-

spective are sources of explanation of the hidden influen-

cing processes of models in the other perspectives. That is

why the resulting global model allows deriving results that

could not be accurately addressed in any of the perspec-

tives taken alone.

The key issue is how to relate outputs of some models

to parameters of others. In other words, how do we model

the disaggregation of parameters for any given model,

using information provided by others? How do we validate

such model? Two approaches can be considered.

1. In the static integration approach, a model’s para-

meters remain constant during a simulation. Each

variation of a parameter implies running new

experiments on the model. Therefore, a significant

effort is needed to run many simulations, collect

quantities of data, and statistically establish a cor-

relation (linear, quadratic, polynomial, etc.)

between outputs of some models and parameters

of others.

2. In the dynamic integration approach (i.e., the one

we adopted) parameters of a model are modified

during the simulation, by the outputs of others.

This is possible only if an a priori knowledge of

such correlation exist (which may come from an

interpolation built using the static approach).

Therefore, a transfer model is nothing more than

the description of correlation knowledge in the

form of a discrete event system.

If the healthcare system we studied was taken at the scale

of the country, each cell of the population dynamics model

(i.e., each federal state) would have been associated to a

disease-spreading model, many hospital models (as many as

the number of health centers of the state), and many individ-

ual behavior models (for categories of workers). Such a

fine-grained holistic model, thought to be computationally

more expensive than simple models, provides a more accu-

rate understanding of the national healthcare system. This is

of tremendous interest for decision-makers and has a huge

impact on cost, access, and affordability concerns.

5. Related works

A literature review in healthcare M&S shows a huge

amount of efforts and results. Surveys can be found in

Thorwarth and Arisha,32 Katsaliaki and Mustafee,33

Almagooshi,34 and Powell and Mustafee,35 among others.

We argue that our contribution is original in that none of

these works offer a systematic way to identify, address

concurrently, and simulate the four perspectives of our

framework in a holistic way and in a multi-formalism con-

text. A classification of perspectives is given by Roberts,14

but is limited to two perspectives: (a) patient flow optimi-

zation and analysis; and (b) healthcare asset allocation.

The idea of a framework allowing multi-level abstraction

and multi-views modeling of the healthcare domain, which

provides a multi-disciplinary coverage, has also been sug-

gested by Barjis,36 although it is not yet nurtured to matu-

rity. Many research works concentrate on only one of our

four perspectives.13,37–43 Some works combine two or

three of them. Table 2 shows a representative sample of

such contributions.

The closest work to our contribution is Jeffers,59 in

which a similar integration approach is proposed, with all

Table 2. A benchmark of integrated healthcare Modeling and Simulation (M&S) frameworks.

Integrated healthcare M&S frameworks Resource allocation Health diffusion Population dynamics Individual behavior

[44] U U

[45] U U U

[46] U U

[47] U U

[48] U U

[49] U U

[50] U U

[51] U U

[52] U U

[53] U U

[54] U

[55] U U

[56] U U

[57] U U

[58]
[59] U U U
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models developed in Forrester’s System Dynamics. This

work, although not proposing a generic framework, is a

perfect illustration of a possible application of our frame-

work, where models have been developed in three perspec-

tives and the outputs of some used to feed the parameters

of others. This integration approach is not used by the

works presented in Table 2.

Another dimension of our work that is not conveyed in

the related works mentioned is the use of a MDE approach

to allow multi-formalism modeling on top of our frame-

work. In recent decades, M&S practitioners have been

adopting MDE techniques to facilitate M&S processes.

Prominent among such approaches is the development of

model-driven environments that provide tooling supports

for specific simulation formalisms by offering high-level

notations, which are graphical in most cases, for model

editing. Such high-level models serve as the basis for sys-

tematic and progressive synthesis of executable codes for

the targeted simulation platforms. Examples of environ-

ments, which are based on discrete event simulation form-

alisms, have been reported by Kofman et al.,60 Mittal and

Martı́n,61 Bonaventura et al.,62 Ighoroje et al.,63 Zeigler,64

Mittal and Douglass,65 and Risco-Martı́n et al.66

Comparative surveys of the relative strengths of some of

these environments have been done independently by

Aliyu et al.23 and Franceschini et al.67 Specific applica-

tions of MDE techniques to healthcare processes and sys-

tems are described by Jones et al.,68 Song et al.,69 and

Antonacci et al.70

6. Conclusion

We have proposed a holistic modeling framework based

on multi-perspective modeling of healthcare systems and

their discrete event simulation. In this framework, differ-

ent aspects of the same system can be modeled using

same/different backgrounds (i.e., simulation paradigms

and theoretical models), and the representations resulting

from these views are combined to create a whole system.

While all views can be specified with the same formalism,

the framework also makes room for the use of multiple

formalisms. A MDE approach is then used to assist the

process of transforming the corresponding models into a

homogeneous simulation code. We have shown through a

running example how this framework can be applied. The

general problem is broken down into the four perspectives

suggested: (a) health diffusion; (b) resource allocation; (c)

individual behavior; and (d) population dynamics. A

library of theoretical models for healthcare simulation that

are proposed in the literature and that all fall within one of

these perspectives is used to derive specific models. Since

a multi-formalism modeling approach will most likely be

required to capture the concerns in the different

perspectives, as described in Figure 1, the framework we

propose applies MDE techniques to transform all the mod-

els expressed into a common denominator for simulation.

This allows the stakeholders in the different perspectives

to choose the most suitable formalisms to model their

problems and yet have a common understanding of the

holistic view of the simulations without going through the

hurdles of manually translating the models.

The framework provides multiple levels of explanation

in modeling and simulating healthcare systems. Dedicated

experimental frames can be designed to answer

perspective-specific questions, while a global experimental

frame can be used to derive answers from the resulting

global model that could not be accurately addressed in any

of the perspective taken alone.

Another original and important contribution is that the

integration approach proposed by the framework allows

one to link models that have not been initially designed

for this purpose. This is a significant difference compared

with the classic model coupling approach where outputs of

existing models are connected to input of other ones, pro-

vided the connecting ports were designed to serve that pur-

pose at the time of the construction of these models, and

that the ports fit each other. This approach can be general-

ized beyond the framework to integrate models from other

domains in a holistic study.

DEVS is the common denominator for simulation in

the framework proposed. However, any simulation formal-

ism can be used instead, provided that it subsumes all

other formalisms used during the multi-perspective model-

ing process. A corollary is that this also imposes the strat-

egy of simulation adopted, whether discrete, continuous,

or hybrid. In the case that the common denominator form-

alism chosen allows only discrete event simulation

(respectively only continuous simulation), all continuous

(respectively discrete event) models built during the mod-

eling process in the various perspectives need to be

approximated by their discrete event (respectively continu-

ous) counterparts before or during their transformation

into the final formalism. An alternative to choosing a com-

mon denominator formalism is to build in the framework a

mechanism allowing co-simulation, that is, the concurrent

execution and coordination of all models (whether discrete

or continuous). We do not adopt this strategy.

Our future direction is to expand on each of the devel-

oped models, toward a complete global model for the

Nigerian healthcare system.

Appendix
DEVS model

A DEVS model is defined by the tuple X , Y , S,
dint, dext, dconf , l, ta where:
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� X, Y, and S are respectively the input set, output set,

and state set (at any time, the system modeled is in

one of the possible states);
� ta : S ! R

+‘
0 is the time advance function (i.e., it

gives the lifespan of each state), with R
+‘
0 desig-

nating the set of non-negative real numbers, includ-

ing + ;
� dint : S ! S is the internal transition function (i.e.,

it is triggered only when the elapsed time in the sys-

tem’s current state scurr has reached ta scurrð Þ with-
out the system being disturbed by any receipt of

input);
� l : S ! Y is the output function (i.e., it computes

the output of the system, each time an internal tran-

sition is occurring);
� dext : Q 3 X ! S is the external transition function

(i.e., it is triggered only when the system receives an

input, while the elapsed time in the system’s current

state scurr has not reached ta scurrð Þ, and Q=
f s, eð Þjs 2 S, 04 e \ ta sð Þg is called the total state;

� dconf : S 3 X ! S is the confluent transition func-

tion (i.e., it is triggered only when the system

receives an input at exactly the time that the elapsed

time in the system’s current state scurr has reached

ta scurrð Þ).

HiLLS representation of a DEVS model

HiLLS allows one to define DEVS models visually. A

template of how HiLLS represents an un-parameterized

DEVS model is shown below (Figure A).

Formally, such a model is a DEVS model X , Y , S,
dint, dext, dconf , l, ta where:

� X is the abstract set defining the input ports and

their domains;
� Y is the abstract set defining the output ports and

their domains;
� S is the cross-product of the domains of all state

variables;
� dint is the set of all internal transition relationships

visually defined between two states in the transition

diagram;
� dext is the set of all external transition relationships

visually defined between two states in the transition

diagram;
� dconf is the set of all confluent transition relation-

ships visually defined between two states in the

transition diagram;
� l is the set of all output relationships associated to

internal transitions in the transition diagram;
� ta is the set of all lifespan relationships defined for

states in the transition diagram.

HiLLS representation of a parameterized DEVS
model

A template of how HiLLS represents a parameterized

DEVS model is shown below (Figure B).

Formally, such a model is a DEVS model X P, Y P,
SP, dint

P, dext
P, dconf

P, lP, taP, where:

� P is the vector of parameters;
� X , Y , S, dintP, dextP, dconf P

, lP, taP is the strain

model, that is, the DEVS model obtained with the

first template, but whose governing functions

depend on P (i.e., they compute their values, using

the values of P);
� X P =X 3 dom Pð Þ;
� Y P = Y ;
� SP = S 3 P 3R

+‘
0 ;

� taP : SP ! R
+‘
0

� taP s, p,sð Þ=s;
� dint

P : SP ! SP

� dint
P s, p,sð Þ=(dintp sð Þ, p, tap sð Þ);

� lP : SP ! Y P

� lP s, p,sð Þ= lp sð Þ;
� dext

P : QP 3 X P ! SY with

QP = f s, p,s, eð Þj s, p,sð Þ 2 SP, 04 e \ sg
� dext

P s, p,s, e, ;, qð Þ= s, q,s � eð Þ)
� dext

P s, p,s, e, x, ;ð Þ=(dextP s, e, xð Þ, p, taP dextPð
s, e, xð ÞÞ)

� dext
P s, p,s, e, x, qð Þ=(dextP s, e, xð Þ, q, taq

dextP s, e, xð Þð Þ);
� dconf

P : SP 3 X P ! SP

� dconf
P s, p,s, x, ;ð Þ=(dconf P

s, xð Þ, p, taP

dconf P
s, xð Þ

� �
)

� dconf
P s, p,s, x, qð Þ=(dconf P

s, xð Þ, q,
taq dconf P

s, xð Þ
� �

).

Figure A. Template for HiLLS representation of an un-
parameterized Discrete Event System Specification model.
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The parameterized model has the following characteristics.

� It distinguishes inputs that impact on the strain

model’s state from inputs that only modify the val-

ues of parameters.
� The s variable memorizes the remaining time in

any current state of the strain model (i.e., time

before the lifespan expires). It defines the time

advance function in the parameterized model (while

ta defines the time advance function in the strain

model).
� A call to a method of the HiLLS representation cor-

responds to an input to the parameterized model. It

changes the state of the strain model according to

its internal transition function (and s is updated),

but does not affect the parameters. The output of

the parameterized model is then the one of the

strain model.
� A receipt of message on an input port of the HiLLS

representation corresponds to an input to the strain

model. It changes the state of the strain model

according to its external transition function and

time advance function.
� When both a call is made to a method and a mes-

sage is received on an input port of the HiLLS rep-

resentation (which correspond respectively to input

for modification of parameters, and input impacting

the strain model’s state), the new situation is

defined by the strain model’s external transition

and time advance function; the new state of the

strain model is computed based on the old values

of parameters, but the lifespan of this new state is

computed using the new values of parameters.
� The same rules apply for confluent transition.

HiLLS model for Ebola spread

The HiLLS description of the Ebola spread model is given

below (Figure C), and its DEVS counterpart is specified as

follows:

MEbolaSpread =X P, Y P, SP, dint
P, dext

P, dconf
P, lP, taP,

where:

� P= a 2 R
+‘
0 ,b 2 R

+‘
0 , g 2 R

+‘
0 ,s 2 R

+‘
0 ,

�

f 2 R
+‘
0 Þ;

� X P = p, vð Þ, p 2 seta, setb, setg, sets, setff g,f
v 2 R

+‘
0 g;

� Y P = p, vð Þ, p 2 #S,#E,#I ,#R,#Df g, vf
2 R

+‘
0 g;

� SP = currentf g3 R
+‘
0 3R

+‘
0 3R

+‘
0 3

�

R
+‘
0 3R

+‘
0 Þ3R

+‘
0 ;

� taP : SP ! R
+‘
0

� taP current, p, phaseð Þ= phase;
� dint

P : SP ! SP

� dint
P current,a,b, g,s, f , phaseð Þ=

current, , , , , f , 1dayð Þ;
� lP : SP ! Y P

� lP current,a,b, g,s, f , phaseð Þ= #S, Sð Þ,f
#E,Eð Þ, #I , Ið Þ, #R,Rð Þ, #D,Dð Þg;

� dext
P : QP 3 X P ! SY with QP = f s, p, sigma, eð Þj

s, p, sigmað Þ 2 SP, 04 e \ sigmag
� dext

P current,a,b, g,s, f , sigma, e, seta, vð Þð Þ=
current, v,b, g,s, f , sigma� eð Þ

Figure C. HiLLS model of Ebola spread.

Figure B. Template for HiLLS representation of a
parameterized Discrete Event System Specification model.
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� dext
P current,a,b, g,s, f , sigma, e, setb, vð Þð Þ=

current,a, v, g,s, f , sigma� eð Þ
� dext

P current,a,b, g,s, f , sigma, e, setg, vð Þð Þ=
current,a,b, v,s, f , sigma� eð Þ

� dext
P current,a,b, g,s, f , sigma, e, sets, vð Þð Þ=

current,a,b, g, v, f , sigma� eð Þ
� dext

P current,a,b, g,s, f , sigma, e, setf , vð Þð Þ=
current,a,b, g,s, v, sigma� eð Þ.
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25. Traoré MK. SimStudio: a next generation modeling and

simulation framework. In: proceedings of the 1st interna-

tional conference on simulation tools and techniques for

communications, networks and systems & workshops, Article

#67, Marseille, France, 3–7 March 2008, p.67. Marseille,

France: ICST (Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering).

26. Rogers A. Introduction to multiregional mathematical demo-

graphy. London: John Wiley Sons, 1975.

27. Allen PM. Evolution, population dynamics, and stability.

Proc Natl Acad Sci 1976; 73: 665-668.

28. Sikdar PK and Karmeshu PK. On population growth of cities

in a region: a stochastic nonlinear model. Environ Plan A

1982; 14: 585-590.

29. Sheppard E. Urban system population dynamics: incorporat-

ing nonlinearities. Geogr Anal 1985; 17: 47-73.

30. National Bureau of Statistics. Annual Abstract of Statistics,

www.nigerianstat.gov.ng (2012, accessed 24 October 2017).

Djitog et al. 255



31. Homer JB and Hirsch GB. System dynamics modeling for

public health: background and opportunities. Am J Publ

Health 2006; 96: 452-458.

32. Thorwarth M and Arisha A. Application of discrete-event

simulation in health care: a review. Dublin Institute of

Technology Reports, 2009.

33. Katsaliaki K and Mustafee N. Applications of simulation

within the healthcare context. J Oper Res Soc 2011; 62(8):

1431–1451.

34. Almagooshi S. Simulation modelling in healthcare: chal-

lenges and trends. Proc Manuf 2015; 3: 301–307.

35. Powell JH and Mustafee N. Widening requirements capture

with soft methods: an investigation of hybrid M&S studies in

health care. J Oper Res Soc. 2017; 68: 1211–1222.

36. Barjis J. Healthcare simulation and its potential areas and

future trends. SCS M&S Mag 2011; 2: 1–6.

37. Topaloglu S. A multi-objective programming model for

scheduling emergency medicine residents. Comput Ind Eng

2006; 51: 375-388.

38. Khurma N, Salamati F and Pasek ZJ. Simulation of patient

discharge process and its improvement. In: proceedings of

the 2013 winter simulation conference: simulation: making

decisions in a complex world, 8–11 December 2013,

Washington, DC, pp.2452-2462. IEEE Press. DOI: 10.1109/

WSC.2013.6721619.

39. Choi BK, Kang D, Kong J, et al. Simulation-based operation

management of outpatient departments in university hospi-

tals. In: proceedings of the 2013 winter simulation confer-

ence: simulation: making decisions in a complex world,

Washington, DC, 8–11 December 2013, pp.2287-2298.

Piscataway, NJ: IEEE Press.

40. Einzinger P, Popper N, Breitenecker F, et al. The GAP-DRG

model: Simulation of outpatient care for comparison of dif-

ferent reimbursement schemes. In: proceedings of the 2013

winter simulation conference: simulation: making decisions

in a complex world, Washington, DC, 8–11 December 2013,

pp 2299-2308. Piscataway, NJ: IEEE Press. DOI: 10.1109/

WSC.2013.6721619.

41. Aboueljinane L, Sahin E and Jemai Z. A review on simula-

tion models applied to emergency medical service opera-

tions. Comput Ind Eng 2013; 66: 734-750.
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