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We present HiLLS (High Level Language for System Specification), a graphical for-
malism that allows to specify Discrete Event System (DES) models for analysis using
methodologies like simulation, formal methods and enactment. HiLLS’ syntax is built
from the integration of concepts from System Theory and Software Engineering aided by
simple concrete notations to describe the structural and behavioral aspects of DESs. This
paper provides the syntax of HiLLS and its simulation semantics which is based on the
Discrete Event System Specification (DEVS) formalism. From DEVS-based Modeling
and Simulation (M&S) perspective, HiLLS is a platform-independent visual language
with generic expressions that can serve as a front-end for most existing DEVS-based
simulation environments with the aid of Model-Driven Engineering (MDE) techniques.
It also suggests ways to fill some gaps in existing DEVS-based visual formalisms that
inhibit complete specification of the behavior of complex DESs. We provide a case study
to illustrate the core features of the language.
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1. Introduction

In science, engineering and many other disciplines, models are used to deal with the
complexity of reality either as descriptive representations of existing systems or as
constructive artifacts for creating nonexistent systems.1 Analysis methodologies like
Simulation, Formal Methods (FM) and Enactment are used to manipulate models
for clearer understanding of the real world under study and forecast some realities
that may be encountered in the future.

A typical simulation methodology allows to compress time and evaluate or ana-
lyze a model over a specified period. The results obtained may be used to predict
system’s performance, identify problems and their causes, etc.2 Comprehensive lists
of problems that are suitable for simulation are given in Refs. 2 and 3. FM are lan-
guages based on mathematical notations and techniques applied to the specification,
analysis, design and implementation of complex software and hardware systems.4–6

FM are used for rigorous logical investigation of the consistency of models through
exhaustive exploration of its fulfilment of certain requirements and the generation
of boundary test cases to give the assurance that a system will always produce
desired results.7,8 Enactment refers to the execution or interpretation of software
process definitions which may involve interactions with the physical environment
(e.g., human-in-the-loop).9 In the context of model-based system engineering, enact-
ment may be described as execution of the software representation of a system for
a real-time verification of its behavioral properties.10 The real time here refers to
the use of clock-time as the reference for the scheduling and execution of activities
specified in the software prototype of the system.

Due to the relative suitability of different methods to study disparate proper-
ties, a practical approach for exhaustive study of a complex system would be a
systematic combination of different methods such that their results complement
one another. For example, we may first use FM to investigate the fidelity of a
model with regards to the system’s requirements and then proceed to study the
behavior of the accredited model and evaluate its performance using suitable sim-
ulation methodologies. We may also generate a software prototype for enactment.
This approach will, on one hand, help each stakeholder see more clearly, how his/her
interests affects those of others and vice versa and on the other hand, help engineers
construct highly reliable systems.

We claim that a realization of this vision is possible through an integrated
formalism that is expressive enough to specify reference models from which the
models or specifications for the different target analysis methods can be obtained.
Following this philosophy, we have defined HiLLS (High Level Language for Sys-
tem Specification), a graphical language whose abstract syntax is derived from
an integration of concepts from system theory and software engineering. Figure 1
describes the rationale of HiLLS; it offers a unified abstract syntax for describ-
ing Discrete Event System (DES), a graphico-textual concrete syntax and three
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main semantics domains: Unified Modeling Language (UML),11 Discrete Event Sys-
tem Specification (DEVS),12 and FM for enactment, simulation and logical anal-
ysis, respectively. Therefore, a HiLLS model serves as a reference from which to
automatically derive models for simulation, formal analysis and enactment using
Model-Driven Engineering (MDE) techniques. We expect this approach to make the
different analysis techniques more accessible especially to nonexpect users as well
as reduce modeling efforts for expert users and foster communications among them.

The focus of the present paper is to present the syntax of HiLLS and its sim-
ulation semantics which is defined based on DEVS. Our choice of DEVS as the
semantics domain for simulation-based analysis is motivated by its recognition as a
common denominator for other DES formalisms as described in Ref. 13; therefore,
we expect to be able to simulate a wider range of DES than would be possible with
any other DES formalism as HiLLS’ simulation semantics domain. Hence, to the
discrete event simulation community, HiLLS may be seen as one of such graphical
languages that seek to align the expressiveness and communicability of graphical
concrete notations in Software Engineering with DEVS’ foundational system theory
to make the latter accessible to a diverse community of users. It must be noted,
however, that HiLLS is not just a graphical notations for DEVS; DEVS is just one
of its semantics domains as depicted in Fig. 1. We highlight some key benefits of
HiLLS to DEVS-based graphical modeling:

• It allows for models to be subjected to rigorous logical analysis using FM to
increase user’s confidence in the model and hence, in the simulation results.

• It offers a more precise way to “graphically” describe the states and time advance
of a complex system which, to our knowledge, are not yet adequately dealt with
in the literature; these features are discussed in greater details in later sections
of this paper.

• HiLLS allows for graphical description of dynamic structure systems. The details
of this feature is out of the scope of this paper. Interested reader may refer to
Ref. 14 for more details.

• It allows for code synthesis for system enactment.
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In the next section, we present the state-of-the-art of DEVS-based visual lan-
guages and highlight some areas where there are needs for improvements. Overviews
of DEVS and other formalisms from which DES concepts have been adopted to build
the syntax of HiLLS are provided in Sec. 3. HiLLS’ abstract and concrete syntax
are presented in Sec. 4 followed by its simulation semantics, defined in DEVS, in
Sec. 5 and a case study in Sec. 6 illustrate the use of the language. We compare
and contrast HiLLS with existing DEVS-based visual languages in Sec. 7 before
providing concluding remarks and directions for future work in Sec. 8.

2. DEVS-based Visual Languages: The State-of-the-Art

In this section, we present a short survey of existing DEVS-based graphical
modeling languages and tools where we highlight their strengths and limitations
with respect to some selected features. Based on the methodology and meth-
ods of model presentation, we classify the existing languages and tools into three
categories:

• UML-Based presentation: a group of UML diagrams and/UML profiles to
describe DEVS models.

• SysML-Based presentation: System Modeling Language (SysML) profiles to
describe DEVS models.

• DSL: a new Domain-Specific Language (DSL) is created with user-defined con-
crete syntax.

Languages in the first category rely on the universality of the UML for software
modeling, its wide acceptability in the industry and availability of supporting tools
to leverage the complexity of abstract DEVS specification and to make DEVS acces-
sible to a wider community of users. Examples of such proposals can be found in
Refs. 15–17. They combine different kinds of formalisms in the UML family of dia-
grams to describe structural and behavioral aspects of DEVS. What is common to
the different approaches is that they all use restricted stereotypes of UML compo-
nent diagram to describe the structures of atomic and coupled DEVS where the
required and provided UML component interfaces are used to express DEVS output
and input ports, respectively. Hierarchical compositions in DEVS coupled models
are expressed as UML components with sub-components to describe the DEVS
sub-models while the connectors between the interfaces of components and sub-
components express the different DEVS couplings. Different combinations of UML
formalisms e.g., activity, sequence and state diagrams are used by different authors
to describe the behaviors of atomic DEVS models. For instance, in eUDEVS,15

the authors show how the variants of UML’s sequence, timing and state machine
diagrams can independently express the internal details of atomic DEVS models.
In Ref. 17, the authors use activity diagrams attached to input ports to model
DEVS external state transitions and state diagrams to model DEVS internal state
transitions.
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The second category, SysML-based representations,18,19 use stereotypes of
SysML20 diagrams to describe DEVS models. The authors of Ref. 18 argue that
SysML is more suitable than UML for graphical description of DEVS than UML
since the former, and especially its block diagrams naturally provide the means
to describe model compositions in line with the DEVS formalism. Basically, the
external structure of DEVS atomic and coupled models are expressed with SysML
blocks with inflow and outflow ports describing the DEVS input and output ports.
Hierarchical compositions of sub models in DEVS coupled models are described
with the SysML’s Block Definition Diagram while the couplings between the vari-
ous sub-models are described in a separate SysML Internal Block Diagram (IBD).
The internal structure and behavior of a DEVS atomic model is described with
four separate diagrams to express its state space, state transitions and output
functions.

The third category is the creation of new DSL to express DEVS concepts. Some
prominent examples in this category are CD++,21,22 DEVS diagram,23 and DEVS-
Driven Modeling Language (DDML)24–26 and MS4 Modeling Environment (MS4
Me)27,28 which offers graphical and textual modeling interfaces for domain and
system experts, respectively.

In Ref. 23, Song and Kim argue that a dedicated DSL would allow to create more
suitable notations originally for DEVS to describe complex systems effectively than
relying on existing notations that have been created for some other purposes. CD++
describes a DEVS model as a directed graph with bubbles as nodes and arrow
edges connecting them. The sub-models of a DEVS Coupled model are described
by bubbles with directed arrows indicating the couplings between them. In DEVS
atomic models, states are bubbles containing the state id and the value of time
advance while directed edges connecting them express state transitions. The DEVS
Diagram describes the external structure of a DEVS model as a rectangle with input
and output ports indicated on its left and right sides, respectively. The hierarchical
construction of DEVS coupled models are achieved by nesting the sub-models inside
the parent models and expressing the couplings with directed lines between ports.
The behavior of a DEVS atomic model is described by a structured form of DEVS
Graph where states are structured into state variables and a finite set of phases such
that a phase is an abstraction of states that produce the same outputs and/or have
the same time advance. The DDML present DEVS models in a similar manner as
the DEVS Diagram except for a few differences in the description of DEVS atomic
models; in addition to the features provided by the latter, the former also allows
for the specification of methods to describe functional processes that may be used
in the computation events and reconfiguration of state variables.

MS4 Me is a DEVS-based Modeling and Simulation environment that provides
interfaces to support users with varying/different levels of expertise, concerns, needs
and roles. As such, it serves as a platform for collaborative building of models
and simulations between domain experts and DEVS modelers. MS4 Me allows
a domain expert to generate DEVS structural and behavioral models from the
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UML11 sequence and state diagrams, respectively. For the DEVS modeler, however,
complex DEVS models are built in MS4 Me with a combination of two main for-
malisms: ‘enhanced’ Finite Deterministic DEVS (FDDEVS) (see Chapters 4 and 12
in Ref. 27) and System Entity Structure (SES).29 Enhanced FDDEVS and SES
use Xtext-based constrained/restricted natural language to precisely specify DEVS
atomic and coupled models, respectively. The former uses Java codes placed in tag
blocks to specify the logics of state transition and output functions so that the codes
are directly copied in the appropriate file during code synthesis. A major strength
of the SES is that it allows for the specification of a family of hierarchical models
rather than a single composition. It offers the concept of decomposition that breaks
a complex system into simpler hierarchical modules (from certain perspectives)
called components that are coupled together through the specification of message
flows between their I/O ports. The specialization feature allows for the specification
of multiple kinds of certain components so that the modeler can explore different
combinations of alternatives offered by the specialization through a process called
pruning.

Having studied a good number of previous work in this context, we suggest
four questions that may need to be answered by a DEVS-based visual modeling
language in order to make modeling more easier and to provide means to represent
complex systems more accurately:

(1) Can component model be reused within the same specification?
(2) How are the states of atomic DEVS models described?
(3) How are the time advances of states specified?
(4) Can a complex input event or port type be accurately specified?

These questions are not problems with code-based modeling tools as the underlying
programming languages often offer the flexibility to deal with each of them. It is,
however, not the case for graphical modeling languages and that is why majority
of them have to resort to manual programming to complete the modeling tasks
especially in the specification of system behaviors.

Recent works on DEVS-based textual languages have proffered some interesting
answers to some of these questions; notable among them are DEVSML 2.0 (DEVS
Modeling Language 2.0) by Mittal and Douglass30 and CML-DEVS by Hollmann
et al.31 The Xtext-based32 DEVSML 2.0 deals with (1) and (4). It addresses (1)
through the importation of packages containing model components and entities
wherever they are needed in similitude to what is done in programming languages
like Java and C++ while nonprimitive message and port types are defined as struct-
like data structures to address (4). CML-DEVS, inspired by FM, addresses (2) and
(4) using rigorous mathematical system specifications. In addressing (2), CML-
DEVS declares typed state variables such that the instantaneous states of the sys-
tem are defined by the sets of values of the variables at such instants. Using the type
system that is inherent in FM, it addresses (4) by defining complex data structures
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Table 1. State-of-the-art of DEVS-based visual modeling languages.

Category DEVS-based Component Time State Complex
visual languages reuse advance specification input

UML-based eUDEVSa × Fixed-valued Enumeratedb ×
SysML-based see Refs. 18 and 19 � Fixed-valued Enumeratedb ×

DSL-based

CD++ × Fixed-valued Enumeratedb ×
DEVS Diagram × Fixed-valued Structured statec ×

DDML × Fixed-valued Structured statec ×
MS4 Me � Fixed-valued Structured statec �

Note: aOther examples in Ref. 17.
bA finite set of arbitrary state identifiers.
cState variables and a finite set of phases; a phase is a set of states that satisfy some conditions.

as port and message types. Since the work presented in this paper is a graphical
language, our discussions of related work will be limited to DEVS-based graphical
languages in the rest of the paper.

Table 1 shows the answers of the three categories of DEVS-based graphical
languages to these questions. SysML-based languages favor the reuse of compo-
nent specifications among coupled models more than the other two categories for
graphical languages; DDML takes this feature into consideration in its earliest pro-
posal,24 however, it is not developed further in its implementation stages. Among
the formalisms cited by this paper in the DSL category, only MS4 Me supports the
reuse of specifications as components in multiple coupled DEVS models; DDML
takes this feature into consideration in its earliest proposal,24 however, it is not
developed further in its implementation stages.

In Table 1, a structured state is meant to describe a specification of the states
of a system based on the instantaneous values of its state variables. This is done
by defining unique predicates that mark the properties of each state such that a
state is assumed if and only if its predicate is true. We argue that this approach
offers the modeler a handy means to effectively describe the reality of systems
with reasonable amount of details. An enumerated state specification refers to
the definition of a set of strings to describe states with little details about vari-
ables responsible for each state. With the exception of CD++, the DSL-based
languages we have studied support structured state specifications. Languages in
the other two categories often support enumerated state specification. Considering
that the real state spaces of most systems are infinite, and that it is practically
impossible to graphically represent each individual states, the approach used in
DEVS Diagram and DDML provide a means to accurately model complex systems
by specifying constraints to partition the state space into manageable finite set
of phases.

Our study also reveals that languages in all categories describe time advance as
constant values associated with the specified states/phases. We share the opinion
of Schülz et al.33 that the time advance function plays a critical role in the defini-
tion of the semantics of a model; therefore, we think that more efforts should be
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made to ensure the time advance of states are as close as possible to their actual
values. We argue that all the states grouped together in a phase (as described in
DEVS Diagram) may not necessarily have ‘exactly’ the same value of time advance;
rather, the time advance should be obtainable dynamically from a given equation
or expression which may likely depend on the exact values of some state variables
for each individual state.

Lastly, with the exception of MS4 Me, languages studied in all categories often
permit modeling input events as strings or primitive data types such as integer,
boolean, etc. Where some more complex objects are required as input events, this
is usually done at the programming implementation level. It would be fair, however,
to state that MS4 Me supports this feature at the advanced level with the Xtext-
based textual Constrained Natural Language and not with the graphical editors
meant for use by domain experts. We think it would be interesting to also be able
to specify such complex input objects as part of graphical models. This was also
considered in the early proposal of DDML but it was not development further.

We can arguably say that the realization of a language that satisfactorily answers
the four questions suggested in this section is possible with the exploitation of
Software Engineering techniques. We will show in later sections of this paper how
HiLLS attempts to answer the questions.

3. Background

3.1. DEVS

DEVS12 is a system-theoretic mathematical formalism for specifying DESs as
abstract mathematical objects for simulation. It supports the specification of a full
range of DESs as other formalisms for systems in this category have been proven to
have equivalent DEVS representations.13 It however does not provide any concrete
syntax to express the system constructs; we can take advantage of this freedom by
providing concrete specifications in a DSL with formal semantics that adopt the
DEVS simulation protocol as its operational semantics.

Basically, DEVS defines two abstraction levels for DESs - atomic and coupled
DEVS. An atomic DEVS has a time base; state, input and output sets; and functions
that define successive states and outputs events. A coupled DEVS is an hierarchical
composition of atomic and/or coupled DEVS as components with couplings between
their input/output ports to enable their interactions.

Traditionally, DEVS exists in two major forms: classic DEVS (CDEVS) and
parallel DEVS (PDEVS),12,34 the main difference being that the later supports con-
current state transitions within components of a coupled DEVS while the former
uses a tie-breaking function to enforce sequential state transitions within compo-
nents. Subsequently in this paper, we will use PDEVS and refer to it simply as
DEVS. Atomic DEVS, AM , is defined as:

AM = 〈X, Y, S, δint, δext, δconf , λ, ta〉, (1)
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where:

X = {(p, v) | p ∈ IPorts ∧ v ∈ dom(p)},
Y = {(q, v) | q ∈ OPorts ∧ v ∈ dom(q)},
S : Abstract state set , δint : S → S,
δext : Q × Xb → S with Q = {(s, e) | s ∈ S ∧ 0 ≤ e < ta(s)},
δconf : S × Xb → S, λ : S → Y b and ta : S → R

+
0,∞.

X and Y are the sets of input and output events respectively with IPorts as set
of input ports and OPorts as set of output ports. An event, v, in this context is a
value generated in form of a message that triggers an action by its recipient. Intu-
itively, an input event is associated to an input port through which it was received.
Similarly, an event generated for output is associated to an output port through
which it is sent to the system’s environment. S is the set of states; at any given
moment, the system is in a state s ∈ S. The time advance function, ta, maps each
state to a specified duration after which a scheduled internal state transition, δint,
is automatically fired. The external transition function, δext, specifies the system’s
response to the input event(s) before the expiration of the ta of current state; Q

is called the set of total states and e is the elapsed time since the last state tran-
sition. If the input event coincides with the expiration of the ta, then a confluent
transition function, δconf , is invoked instead. The superscript b of Xb denotes a bag
of input events. The function λ defines the outputs that may accompany internal
and/or confluent state transitions. Similarly, the superscript b of Y b denotes a bag
of output events.

The Coupled DEVS, CM is defined as:

CM = 〈X, Y, D, {Md}d∈D, EIC, EOC, IC〉, (2)

where:

EIC = {((CM, ipCM ), (d, ipd)) | ipCM ∈ IPortsCM ∧ ipd ∈ IPortsd}d∈D,
EOC = {((d, opd), (CM, opCM )) | opCM ∈ OPortsCM ∧ opd ∈ OPortsd}d∈D,
IC = {((a, opa), (b, ipb)) | opa ∈ OPortsa ∧ ipb ∈ IPortsb} with a, b ∈ D.

X and Y are as defined for atomic DEVS and D is the set of names of compo-
nents of CM such that Md is the DEVS specification referred to by d for all d ∈ D.
An EIC, External Input Coupling, is a connection between an input port of CM

and an input port of one of its components, an EOC, External Output Coupling,
is a connection between an output port of CM and an output port of one of its
components and an IC, Internal Coupling, is a connection between the output port
of a component of CM and an input port of another peer component. The essence
of the couplings is to allow for interactions between system components. Given an
element ((S, pS), (R, pR)) of any of the relations EIC, EOC and IC, S (sender)
influences R (receiver) by sending a message (event) from pS to pR. It is impor-
tant to note here that CM defines a logical boundary between all its components
and the environment; therefore, any of the components can only influence (or be
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Fig. 2. Template of Object-Z class.

influenced by) the environment through the interfaces of CM , hence the need for
EOC and EIC. More details on DEVS and its simulation protocols can be found
in Ref. 12.

3.2. Object-Z

Object-Z (see Ref. 35) is an Object-Oriented extension of the Z formal specifica-
tion language.36 It adopts the concept of class in Object Orientation (OO) to add
structure, modularity and clarity to Z specifications. The main units of specifica-
tion in Z are the schemas that declare state variables with possible invariants and
operation schemas that manipulate the state schema(s) to produce state transi-
tion events. On top of the Z’s notion of schema, the Object-Z class encloses a single
state schema and all the operation schemas that manipulate and/or use its declared
variables. The Object-Z class also exhibits OO properties like inheritance, encap-
sulation and polymorphism. Figure 2 shows a general template (as described in
Ref. 35) for specifying an Object-Z class, the basic building block for system spec-
ification in Object-Z, showing its possible elements and the orders in which they
may appear.

An Object-Z class has a unique name as an identifier to differentiate it from
other classes in the specification. In addition to the class name, the header may
also specify some generic parameters. Since the Object-Z class encapsulates its
contents, the visibility list specifies the interface through which the elements of an
object of the class may be accessed i.e., a list of variables and operations that can
be visible outside the class in similitude to public attributes and methods in OO.
An Inherited Class designator provides a reference to an existing Object-Z class
whose definition is imported for reuse in the current class similar to the concept of
inheritance in OO. A Local Definition may be a local type or constant definition
(usually specified in an axiomatic schema) or a reference to another class. A class
may have a maximum of one state schema that defines its state space through
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the declaration of state variables and invariants (if any); an invariant on a set of
variables is a predicate that must always be satisfied throughout the lifespan of the
system. This may be followed by a specification of the initial state simply referred
to as init; the init specifies a set of predicates that must be satisfied by the state
variables (declared in the state schema) of every new object of the class before it
undergoes any change of state. Finally, the operations that use and/or manipulates
the elements of the class. More details about Object-Z’s syntax and semantics can
be found in Ref. 35.

There are many specification formalisms for logical analysis; we have chosen
Object-Z for three properties, two of which it inherits from Z (its base formalism).
(1) Z is said to be considerably universal and suitable for describing DESs for most
kinds of logical analysis; (2) Z allows for separation of concerns i.e., its syntax
enable to decouple the specification of system properties from the requirements
investigation logics and (3) OO (this is peculiar to Object-Z) which enables modular
specification and analysis of complex systems.

4. HiLLS

HiLLS evolves from the DDML,24–26 a graphical modeling language built on DEVS
to facilitate the use of the latter by domain experts via graphical concrete syntax
to describe system models. The goal of HiLLS is to be able to create multi-semantic
models that can be used for simulation, formal analysis and enactment.

HiLLS’ syntax combines system-theoretic and Software Engineering concepts
adopted from the DEVS and Object-Z, respectively. Our choices of system con-
structs from Object-Z and DEVS are motivated by their universalities in their
respective domains; while the former claims suitability for modeling most kinds of
state-based systems for logical reasoning, the later has been proven to be a com-
mon denominator to most DES simulation formalisms.13 Moreover, the combina-
tion allows to reuse Object-Z constructs such as predicates and expressions for the
refinement of abstract constructs such as states and transitions functions adopted
from DEVS. This feature also aids the synthesis of executable program codes for
enactment.

In addition to the DEVS-based system-theoretic concepts in HiLLS, the syntax
also adds concepts to describe structural changes in DSSs. HiLLS’ approach to
modeling DSSs is unique in that it provides a simple and graphical means of doing
it; we demonstrate this with a case study in a later section.

4.1. Abstract syntax

Figure 3 is an excerpt from the HiLLS’ abstract syntax. The segment within a
dashed-box describes a DES as an HSystem which may be an atomic unit or
composed of interacting components (hComponents). It may have input and/or
output ports (class Port) for interacting with its environment by exchanging mes-
sages called Events. By its inheriting the class HClassifier, an HSystem may have

1641003-11



2nd Reading

March 22, 2016 9:23 WSPC/262-IJMSSC/S1793-9623 1641003

H. O. Aliyu, O. Mäıga & M. K. Traoré
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a StateSchema in which state variables are declared with possible constraints, an
AxiomaticSchema that defines global parameters, and Operations that manipulate
the system’s variables and parameters.

The system’s behavior is described by a finite set of configurations and transi-
tions between them. A Configuration is a cluster of all states satisfying a unique
property defined on the state variables. The sojournTime of a configuration is the
duration for which it may be assumed before a scheduled transition occurs. A con-
figuration is regarded as Passive, Transient or Finite if its sojournTime is positive
infinity (+∞), zero (0) or positive real number greater than zero (R+), respec-
tively. A ConfigurationTransition belongs to one of three categories: an internal
transition occurs at the expiration of the sojournTime of the current configura-
tion, an external transition occurs whenever an input is received before the end
of the sojournTime while a confluent transition occurs when the reception of an
input coincides with the expiration of the sojournTime. A transition is accompa-
nied by a sequence of computations that manipulate the state variables to satisfy
the property of the target configuration; it may also involve sending events to some
output ports.

Coupling describes the relations between the ports of the components of a sys-
tem. Systems influence one another by exchanging events through their input and
output ports. Therefore, a coupling is a property that establishes a relation between
a source port (sender) and a target port (receiver) for the exchange of events. Input-
Coupling, InternalCoupling and OutputCoupling have the same definitions as DEVS’
EIC, IC and EOC, respectively. In addition to the amenability of Z to logical rea-
soning, the segment of the meta-model outside the dashed-box are reused for the
refinement of the system-theoretic concepts through their associations with them;
examples are the associations between the following pairs of components: (Property,
Predicate), (Port, Declaration) and (Event, Expression).

The class HClass describes objects/entities that have attributes and operations
but no behavioral specifications. This is similar to Class in UML and its pur-
pose is to enable HiLLS’ users to model complex attributes, ports and message
types.

4.2. Concrete syntax

The concrete notations to express HiLLS’ concepts are described in Figs. 4(a)–4(h).
HClass (a) is denoted by a box with three compartments similar to the UML class
symbol. The first compartment contains the HClass’ name and parameters if any.
The second compartment houses the state and axiomatic schema if any. We adopt
the notations of the state schema and axiomatic schema as used in Z. The third and
last compartment houses the definitions of the class’ operations if any. An oper-
ation is similar to the state schema but with additional information indicated on
its top side. The top bears the name attribute of the operation, the list of param-
eter declarations (if any) and the type of the operation. Similarly, an empty type
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Fig. 4. Concrete syntax of HiLLS.

bracket denotes an operation that does not produce any output. Associations such
as inherited class, composition and class reference use the corresponding notations
in as used in the UML class diagram.

The HSystem (b) notation extends that of HClass; it has four compartments
with the first three serving similar functions as in HClass while the fourth contains
the transition diagram that describes the system’s behavior. The input and output
interfaces are denoted by windows attached to the left and right sides respectively
of the second compartment. In each rectangular window, a port is denoted by a
small arrowhead labeled with the port declaration.

The notation for a finite configuration (d) is a box with five compartments
for label, properties, sojournTime, activities and sub-configurations respectively
from top to bottom. Passive configuration (c) is similar to finite configuration
except that the compartment for sojournTime is not represented; a vertical
stripe is attached to its right side as an indication of its infinite sojournTime.
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Transient configuration (e) is denoted by a circle with three compartments
for its label, properties and activities if any. Its shape depicts its zero
sojournTime.

Configuration transitions are represented by arrow-ended lines (g) from source
to target configurations with associated computations as textual labels. A condi-
tional statement in the path of a transition may initiate a choice between one of
two targets. In such cases, the condition is enclosed within a diamond (h). To dis-
ambiguate the flow of the computations, the transition arrow flows into the left
corner of the diamond and flows out from a small circle attached to one corner if
the condition is true; otherwise, it flows out from either the remaining two corners.
To disambiguate the flow of the computations, the transition arrow flows into the
left corner of the diamond and flows out from a circle attached to the right cor-
ner if the condition is true; otherwise, it flows out from either the top or bottom
corner.

5. Simulation Semantics of HiLLS

This section presents the mapping of HiLLS concepts to the domain of DEVS
for simulation. We have provided a metamodel of HiLLS in the previous section,
it would be reasonable to also provide a metamodel of DEVS concepts so that
the relations between the two domains can be clearly done in the same technical
space.

5.1. DEVS metamodel

Figure 5(a) presents a metamodel of the DEVS concepts presented in Eqs. (1)
and (2) (see Sec. 3).

As shown by the two sub-types of the abstract DEVS class in Fig. 5(a), DEVS
describes a DES as either an AtomicDEVS or CoupledDEVS. A DEVS model may
have zero or more input ports, iports, and/or zero or more output ports, oports; a
port is defined by a name, portid, and a type, portType, which may be a Class or
primitive DataType.

An AtomicDEVS defines state variables, stateVars and a finite set of phases
where a Phase is an abstraction of a unique combination of values of (or predicate
on) the state variables. Technically, the phases constitute disjointed subsets of the
state space. A phase is characterized by a timeAdvance. An AtomicDEVS may also
define sets deltaInt, deltaExt and deltaConf of internal, external and confluent phase
transitions, respectively. Each IntTransition and ConfTransition may be accompa-
nied by a bag, outputs, of events while every ExtTransition and ConfTransition is
triggered by a bag, intputs, of events. Additional information on phase transitions
are provided the OCL (Object Constraint Language) constraints in Fig. 5(b). The
constraints define some restrictions on exceptional cases in which each of the tran-
sitions may not occur. A CoupledDEVS defines a set, A subModels, of at least one
component(s) of the A container model. It also defines the sets eics, ics and eocs
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(a) DEVS metamodel

(b) DEVS transition and coupling constraints

Fig. 5. DEVS metamodel and static semantics.

1641003-16



2nd Reading

March 22, 2016 9:23 WSPC/262-IJMSSC/S1793-9623 1641003

HiLLS: A model-driven approach to systems engineering

of couplings between the components of the model. Figure 5(b) also provides addi-
tional information and restrictions on the three kinds of couplings in accordance to
the DEVS formalism.

5.2. Mapping of HiLLS concepts to DEVS

This subsection presents the mapping between concepts described in the HiLLS
and DEVS metamodels. The mapping rules have been specified with the ATLAS
Transformation Language (ATL).37 Figure 6(a) shows the mapping rules to obtain
an AtomicDEVS from a given HSystem with an empty hComponents. The elements
of AtomicDEVS as described in the DEVS metamodel are shown on the left-hand

(a) Mapping a HiLLS HSystem without components to DEVS Atomic Model

(b) HiLLS port → DEVS IPort (c) HiLLS port → DEVS OPort

(d) HiLLS declaration → DEVS variable (e) HiLLS configuration → DEVS phase

Fig. 6. Mapping rules of HiLLS concepts to Atomic DEVS concepts.
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H. O. Aliyu, O. Mäıga & M. K. Traoré

side of the rule with the corresponding HSystem elements on the right-hand side.
The “lazy rules” in Figs. 6(b) and 6(c) provide the rules mapping individual HiLLS
input and output ports to DEVS input and output ports with HiLLS port declara-
tion name and type mapping to DEVS port id and type, respectively. These “lazy”
rules are invoked from the AtomicDEVS and CoupledDEVS rules to obtain their
input and output ports. In Figs. 6(d) and 6(e), we show the mapping rules to obtain
DEVS state variables and phases from HiLLS state variables and configurations,
respectively.

Similarly, individual HiLLS’ InternalTransition, ExternalTransition and Conflu-
entTransition are mapped to DEVS’ DeltaInt, DeltaExt and DeltaConf respectively
by the rules in Fig. 7. It is important to state here that the imperative HiLLS com-
putations that accompanying the transitions cannot be explicitly accounted for in
this declarative mapping. A more complete Model-to-Text transformation technique
may be used to provide the rules to generate such codes for a target DEVS-based
implementation in a programming language.

In Fig. 8, we show the correspondences between an HSystem with nonempty
hComponents and CoupledDEVS concepts. While Fig. 8(a) provides the rules to
obtain the different sets, Figs. 8(b)–8(d) show the rules for obtaining individual
EIC, IC and EOC, respectively. The rules for obtaining individual input and output
ports have been presented previously in Figs. 6(b) and 6(c).

(a) Mapping internal transitions (b) Mapping external transitions

(c) Mapping confluent transitions

Fig. 7. Mapping HiLLS configuration transitions to DEVS phase transitions.
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(a) Mapping of HiLLS HSystem to DEVS Coupled Model

(b) HiLLS InputCoupling to DEVS EIC (c) HiLLS InternalCoupling to DEVS EI

(d) HiLLS OutputCoupling to DEVS EOC

Fig. 8. Mapping rules of HiLLS concepts to Coupled DEVS concepts part.

6. Case Study: The Alternating Bit Protocol

The Alternating Bit Protocol (ABP)38 is a communication protocol to transmit
messages over unreliable communication channels and ensure they are delivered in
the correct orders in spite of disturbances in the channels. Figure 9 presents the
components of ABP and communications between them; it consists of a sender,
a receiver, a message transmission channel and an acknowledgement(ack) channel.
The basic principle of the protocol is that it maintains a control bit (0 or 1) that is
used as a tag to identify successive messages as they travel from sender to receiver.
Each channel is assumed to treat messages based on First In First Out (FIFO)
principle. The instantaneous reliability of a channel depends on its congestion levels
and the presence of disturbances from the environment. The time to send a message
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Fig. 9. Block diagram of the ABP.

or an ack to its destination depends on the channel’s condition. It may also be
duplicated or lost within the channel. The sender accepts a message from a device
and forwards it with a control bit (i.e., 0 or 1) via the message channel to the
receiver. It then enters a waiting session expecting an ack containing the control
bit of the last message sent. If ack is not received after a specified waiting period, it
resends the message with the same control bit on the assumption that the message
is lost in the channel. This process is repeated until the expected ack is received
when the next message in the buffer (if any) is sent with a control bit which is the
binary complement of that of the last message sent.

When a message arrives at the receiver, its (message’s) control bit is extracted
and sent in an ack via the ack channel to the sender while the message itself is
delivered to the appropriate destination device. In addition, the receiver keeps the
control bit of the last message received and compares it with those of subsequent
messages until a message with its binary complement arrives; any message that
arrives with the same control bit as the previous is assumed to be a duplicate;
hence, it is only acknowledged but not delivered.

The HiLLS model in Fig. 10 presents the hierarchical composition of the ABP’s
components as well as their I/O interfaces. ABProtocol has four components: sender
and receiver are instance of HSystems Sender and Receiver, respectively, while
msgChannel and ackChannel are instances of HSystem CommLine[T] with T as
Message and Integer, respectively. Each of sender and receiver has a complex
attribute, buffer, which is a queue of instances of HClass Message.

Figure 10 is a black box view of the specification, we present the internal details
of each component in the following subsections.

6.1. Receiver and message

The Receiver HSystem and Message HClass are as shown in Fig. 11. Message
declares two attributes, header and content to store the message’s control bit
and content, respectively. Five operations are also defined for manipulating and
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Fig. 10. HiLLS’ structural hierarchies of the ABP.

assessing the attributes. It is important to state here that every operation with a
defined type has an implicit output variable, out!, having same type as the oper-
ation. The out! variable serves a similar function as the return statement in Java
and C++.

Receiver has a variable buffer which is a queue of messages with maximum length
of 1 as depicted by the containment reference from Receiver to Message. It has a
second state variable, flag with domain {0,1} as prescribed by the constraints. The
global variable, indicator models the light indicator as an activity that manifests
the instantaneous states of the system to an observer in real time. Receiver has
an input port, msgIn of type Message and two output ports, ack and msgOut of
types Integer and Message, respectively. Messages are received in msgIn, acknowl-
edged through ack and delivered (without duplicates) to the target device through
msgOut.

The operations defined are as shown in the third compartment. setFlag extracts
the control bit of the message in the buffer and assigns it to the flag variable
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Fig. 11. Receiver HSystem.

checkHeader checks whether the control bit of the message in the buffer is equal to
the current value of flag or not.

Receiver’s behavior is modeled by the configuration transition diagram in the
fourth compartment. It has two configurations: waiting and receiving; recall from
Sec. 4.2 (Fig. 4) that a passive configuration is denoted by a four-compartment
rectangle with a vertical strip on its right edge and a transient configuration is
denoted by an oval shape. Configuration waiting is assumed when buffer == 〈〉;
otherwise (i.e. when buffer �= 〈〉), the receiving configuration is assumed. From the
specification, the initial configuration of any object of Receiver is waiting. Upon
assumption of each configuration, the activity function invokes the display opera-
tion which displays the specified color of light indicator. For example, the yellow
indicator is displayed during the waiting configuration.

Since waiting is a passive configuration, the system remains in this state until
a message m received at the input port msgIn triggers an external transition to
the receiving configuration. The computation accompanying the transition adds
the received message to buffer thereby satisfying the property of the target con-
figuration. The prime,´, decoration on buffer in the computation indicates its final
state after the transition. The receiving configuration is transient, hence, an inter-
nal transition occurs automatically; the first computation invokes the checkHeader
operation to determine whether the received message, m (i.e. the content of buffer),
has the same header as the current value of flag. Recall that the flag stores the
header bit of the last message received, so if checkHeader returns true, it means m
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is a duplicate of the previous one; thus, only acknowledgment is sent to sender by
taking the path described by the upper arrow to waiting configuration. If check-
Header returns false, then m in a new message; therefore, it is acknowledged and
delivered as described by the operations accompanying the lower path to the wait-
ing configuration. Note that delivery is achieved with the output on the msgOut
port i.e., msgOut!head(buffer).

6.2. Communication line (CommLine[T])

The communication channel is shown in Fig. 12. It is a generic HSystem with
parameter T denoting the type of message that may pass through it as indicated
by the types of the input and output ports and state variable buffer. Therefore, the
message and ack channels reuse this generic specification by substituting T with
the types Message and Integer, respectively (see Fig. 10).

CommLine has two state variables: buffer, a sequence of T and c level, an integer
with constraints as shown in the figure. c level holds the instantaneous coefficient
of the level of congestion in the channel; we assume that its value may be between
1 and 4 and is determined by the external factors of the channel’s environment, so
we do not give further details about how the values are obtained in this model for
simplicity.

CommLine starts in the initial configuration waiting; it remains in this config-
uration until an input, msg, is received on port input which triggers and external
transition to the sending configuration. The computation accompanying the transi-
tion invokes the receive operation with msg; the operation simply adds msg to the
channel’s buffer.

Fig. 12. Channel HSystem.
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Table 2. The pushForward operation of CommLine.

Congestion level Computations Results
(c level)

c level < 3
1. Output head of buffer

Successful delivery. No duplicate
2. Remove head of buffer

c level = 3 Output head of buffer Successful delivery with Duplicate message
c level > 3 Remove head of buffer No delivery. Duplicate message

The time to push a message (or ack) through a channel is not deterministic; it
depends on the level of congestion in the channel. therefore, the sojournTime of the
sending configuration is defined by the expression duration = 2∗delay(). The delay
operation returns a real value that is calculated based on the instantaneous level
of congestion and length of the buffer. At the expiration of the generated sojourn
time, an internal configuration transition occurs which invokes the pushForward
operation. Operation pushForward is explained in Table 2; depending on the level
of congestion, c level, the message at the head of the channel’s buffer is correctly
delivered (without duplicate) to its destination, lost or duplicated. After the execu-
tion of pushForward, a target configuration is chosen between waiting and sending
depending on whether buffer is empty or not. If an input is received just when
the sojourn time expires, an confluent transition occurs (see bottom of sending
configuration) which first adds the received message to the buffer before invoking
pushForward and the target configuration will be sending. If the input is received
before sojourn time expires, an external transition occurs as described on top of
the sending configuration.

6.3. Sender

Figure 13 presents the HiLLS specification of the ABP’s sender. We believe that
the explanations provided previously for Reveriver and CommLine is sufficient to
help the reader understand substantial part of the Sender specification. Thus, we
provide details on only those features that are not yet encountered in the previous
specifications.

The configuration active is a composite configuration with two sub-
configurations: sending and waiting. The property, buffer �= 〈〉 of active depicts
the predicate that is common to all its sub-configurations. Therefore, the complete
predicate properties of sending is buffer �= 〈〉 ∧ head(buffer).getHeader() �= flag

while that of waiting is buffer �= 〈〉∧head(buffer ).getHeader() = flag. The sojourn
time specification, duration = η, of active depicts that its actual sojourn time at
any instant is that of its active sub-configuration. It is important to note that a
composite configuration is nothing more than a logical clustering of configurations
with some common properties.
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Fig. 13. Sender HSystem.

6.4. ABProtocol

The ABProtocol is described in Fig. 14. It defines an input and an output port each
of type Message. The state variables are described by the hcomponent references
sender, receiver, ackChannel and msgChannel as shown in Fig. 10. The predicate
part of the state schema defines the invariants for permanently coupled ports. The
couplings are realized by invoking the connect() operation during the initialization
of the starting configuration. The first coupling specification, sender · msgIn =

Fig. 14. ABProtocol HSystem.
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self ·input, is an external coupling that connects an input port, input, of ABProtocol
(as source) to an input port, msgIn of component sender (as target). Similarly,
couplings sender · ack = ackChannel · output, msgChannel · input = sender ·
msgOut, receiver · msgIn = msgChannel · output and a ckChannel · input =
receiver · ack are all internal couplings between peer components of ABProtocol.
Only one passive configuration, working, is specified which does not change. This
implies that the composed model does not add any extra behavior to that which is
defined by the interactions between its components. The case is, however, slightly
different in dynamic structured system where the modeler can specify multiple
configurations with different coupling relations as their properties. The dynamic
structure feature is not discussed further in this paper, we refer the reader to Ref. 14
for more details on modeling dynamic structure systems with HiLLS.

6.5. Mathematical specification of the Message HClass

The subsequent subsections of this section present the DEVS models derived from
the HiLLS specification of the ABP presented in the last subsection. Since the
models have a lot of artifacts in common, we think it would be sufficient to show
the derivation of an atomic DEVS and a coupled DEVS.

DEVS does not provide an explicit syntax for specifying objects mathematically.
For the sake of clarity, we represent Message as a mathematical object in the form:

Message = 〈V, F 〉
with V and F as sets of variables and operations, respectively. Therefore, from the
specification of Message in Fig. 11, we derive V and F as:

V = {(header, Z), (content, Z) |header ∈ {0, 1}} and
F = {getHeader, setHeader, getContent, setContent}.
getHeader : Message → Z returns the header/control bit of a message,
setHeader : Z → Message sets the header/control bit of a message,
getContent : Message → Z returns the content of a message and
setContent : Z → Message sets the content of a message.

6.6. Derived DEVS Model from receiver

The Receiver in Fig. 11 has no hcomponent, hence it maps to an Atomic DEVS.

RceiverDEV S = 〈X, Y, S, δint, δext, δconf , λ, ta〉.
X = {(msgIn, Message)}, Y = {(ack, {0, 1}), (msgOut, Message)},
S = {((buffer, seq Message), (flag, {0, 1}), (phase, {waiting, sending})) | phase =
waiting ⇔ buffer = 〈〉, phase = sending ⇔ buffer �= 〈〉}.

The state variables flag and buffer form a subset of S in DEVS and the com-
plement is provided by the variable phase whose domain is the set of configuration
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names specified in the system’s behavior (see Fig. 11). The collection of the prop-
erties of each configuration (i.e., as specified in HiLLS) translates to the predicate
part of S i.e., phase = waiting ⇔ buffer = 〈〉 implies that phase waiting is active if
and only if predicate buffer = 〈〉 is true. Similarly, phase = sending ⇔ buffer �= 〈〉
implies that phase sending is active if and only if predicate buffer �= 〈〉 is true.

6.6.1. Internal transition function

The internal transition function δint : S → S is:

δint(sending, buffer , f lag) =

{
(waiting, tail(buffer), f lag) if θ1 = flag,

(waiting, tail(buffer), θ1) if θ1 �= flag,

where θ1 = head(buffer) · getHeader().
Starting from a state in which phase = sending, the internal transition has a

target in which phase = waiting but the final value of variable flag depends on
the condition and if condition θ1 = flag. If the condition is satisfied, the value of
flag is same as before the transition (i.e., unchanged), otherwise, the final value
is flag′ = θ1. This piecewise equation is derived from the two paths from sending
to waiting configuration in Fig. 11 by extracting all computations along the path
except those meant for sending output events to some ports.

6.6.2. External transition function

The external transition function δext : S × R
+ × Xb → S is:

δext((waiting, buffer , f lag), e, m ∈ Message) = (sending, buffer â〈m〉, f lag).

From a state in which phase = waiting an input event m ∈ Message on port msgIn

will trigger an external state transition into a state in which phase = sending. This
equation is derived from Fig. 11 from the external transition waiting ��� sending;
the input event m in δext is obtained from the trigger [msgIn?m] in Fig. 11 while
the domain (Message) of m is obtained from the type of port msgIn in [msgIn?m].

6.6.3. Confluent transition function

δconf : S × Xb → S.

No confluent configuration is specified in Fig. 11, hence ∀s ∈ S, δconf(s) = φ.

6.6.4. Output function

The output function λ : S → Y b:

λ(sending, buffer , f lag)=

{
{(ack, f lag), (msgOut, head(buffer))} if θ1 =flag,

{(ack, f lag)} if θ1 �=flag,

where θ1 = head(buffer) · getHeader().
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The output function is derived by traversing the internal and confluent con-
figuration transitions in the HiLLS specification to extract their associated out-
put expressions (if any). In this example, only the internal transition sending �→
waiting (Fig. 11) may specify some output events. This transition specifies two
alternative paths depending on whether condition “θ1 = flag” is satisfied or not;
the corresponding output operations are derived in the λ function. There are two
output expressions, ack! = flag and msgOut! = head(buffer) which translate into
(ack, f lag) and (msgOut, head(buffer)), respectively.

6.6.5. Time advance function

ta : S → R+ ∪ +∞
∀buffer ∈ seqMessage ∧ flag ∈ {0, 1} : ta(waiting, buffer , f lag) = +∞ and
ta(sending, buffer , f lag) = 0. The time advance function is derived by mapping
the label of each configuration to its sojourn time. The two configurations defined
in Fig. 11 have pre-defined sojourn times denoted by their concrete representation
as explained previously in Sec. 4.2; the passive configuration waiting has a pre-
defined sojourn time of positive infinity while the transient configuration sending
has a pre-defined sojourn time of zero.

6.7. Derived DEVS model from ABProtocol

ABProtocol (Fig. 14) translates to a Coupled DEVS model because its set of hcom-
ponents is not empty.

ABProtocolDEV S = 〈X, Y, D, {Md}d∈D, EIC, IC, EOC〉.

6.7.1. Ports and sub-models

X = {(input, Message)},
Y = {(output, Message)} and
D = {sender, msgChannel, ackChannel, receiver}.
X and Y are derived from the input and output interfaces respectively of Fig. 14. Set
D is built from Fig. 10 by extracting the names of all hComponent references having
ABPRotocol as source while {Md}d∈D is the set of DEVS equivalents of the targets
of such references. We have provided the DEVS equivalent of the HSystem refer-
enced by receiver ∈ D i.e., ReceiverDEV S . Therefore, Mreceiver = ReceiverDEV S .
Similarly, if the detailed specifications of other HSystems in Fig. 10 were given,
then we would have Msender = SenderDEV S , MackChannel = CommLine[Z]DEV S

and MmsgChannel = CommLine[Message]DEV S .

6.7.2. Coupling relations

We presented an overview of DEVS’ meta coupling relations in Sec. 3.1. From
Fig. 14, the DEVS coupling relations can be derived from the coupling predicates
specified in the connect() operation as follows: The RHS of a coupling predicate
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translates to the influencer system and port of the DEVS coupling expression while
the LHS translate to the influenced system and port. For example, considering the
first coupling predicate sender · msgIn = self · input; LHS = sender · msgIn

and RHS = self · input, the system reference of the LHS belongs to the group
d ∈ D. The system reference of the RHS is self (i.e., ABProtocol itself) and its
port reference is also an input port; therefore, this coupling predicate translates to
an element of EIC as shown below. The remaining five coupling predicates can be
translated in the same manner to derive the elements of sets EIC, EOC and IC as:
EIC = {((self, input), (sender, msgIn))},
EOC = {((receiver, msgOut), (self, output))} and
IC = {((sender, msgIn), (msgChannel, input)), ((msgChannel, output),
(receiver, msgIn)), ((receiver, ack), (ackChannel, input)), ((ackChannel, output),
(sender, ack))}.

7. Discussions

We have classified existing DEVS-based visual modeling languages and tools, in
Sec. 2, into three categories: UML-based, SysML-based and DSL-based. A common
motivation of the UML-based and SysML-based categories is the possibility to
advertise DEVS using modeling notations that are already established and accepted
by a large community of users. In contrast, the DSL-based category is motivated by
the flexibility offered by the chance of defining notations that are considered more
“original” for DEVS concepts that may not be sufficiently described by the universal
languages or the purposes for which they were created. In this context, HiLLS
finds its place between the two extremes where existing concepts and notations
are adopted (and augmented) where possible and new ones are introduced where
necessary.

We compared, in Table 1 (see Sec. 2), how languages in the three categories
model states and their time advances in atomic DEVS, their supports for reuse of
component models in building hierarchical coupled DEVS models, and support for
modeling complex input/output port and event types. Table 3 highlights some key
features of HiLLS with regards to these four questions in comparison with related
work; it also compares the kinds of model-based analysis methodologies to which
models are amenable and the possibility of mapping the models to implementation
tools in multiple programming platforms. The rest of this section is devoted to more
detailed discussions of the points highlighted in the table.

7.1. Support for reuse of specifications in coupled models

HiLLS adopts the Software Engineering concept of composition between UML
classes to model hComponent relationships between a coupled HSystem and its
components. This allows to define only one specification for duplicate components
in a coupled system or the referencing of a specification to model components in
different coupled systems that is, an object of the HSystem is created as many
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Table 3. Comparison of HiLLS with other DEVS-based visual modeling languages.

Formalisms Model Time State Complex Target solutions Target
reuse advance specification port type platform

Sim FA Enact

eUDEVS × fixed enumerateda × � × × generic
SysML-based � fixed enumerateda × � × � generic
CD++ × fixed enumerateda × � × × C++
DEVS Diagram × fixed structuredb × � × × generic
DDML × fixed structuredb × � × × custom
MS4 Me � fixed structuredb � � × × Java
HiLLS � dynamic structuredb � � � � generic

Note: Sim �→ Simulation, FA �→ Formal Analysis, Enact �→ Enactment.
aFinite set of arbitrary state identifiers called phases.
bState variables and a finite set of phases; a phase is a set of states that satisfy some conditions.

times as the modeler wants. This feature is typified in Fig. 10 with two references
msgChannel and ackChannel to the CommLine to create the message channel and
acknowledgment channel respectively of the ABProtocol. Both msgChannel and
ackChannel have the same structure and behavior as specified in CommLine; the
only difference is the types of messages being transmitted and this is specified by
the passing the types Message and Z to the generic parameters of the former and
latter, respectively.

A similar approach is adopted by formalisms in the SysML-based category where
systems are described by Block diagrams and composition relationships are modeled
by composition references between components with the sub-models as the targets.
We, however, propose a different approach to describe the coupling between ports
in a coupled system. While the SysML-based languages use a separate IBD solely
for coupling specifications, we specify as part of the properties of the configurations.

MS4 Me also supports model reuse through the creation of multiple instances
of an entity in an SES decomposition of a system. This is achieved by embedding
an ‘underscore’ in the instance name with the entity’s name at the right of the
underscore. For example, in the example presented previously where msgChannel
and ackChannel were created from CommLine, the instances would be described in
MS4 Me’s SES as msgChannel CommLine and ackChannel CommLine; the under-
scores in the names indicate that each of them is an instance of an existing entity
CommLine. Another strength of the SES that is worthy of note here is that it
allows for the specification of a family of hierarchical models rather than a single
composition. It offers the concept of decomposition that breaks a complex sys-
tem into simpler hierarchical modules called components that are coupled together
through the specification of message flows between their I/O ports. The special-
ization feature allows for the specification of multiple kinds of certain components
so that the modeler can explore different combinations of alternatives offered by
the specialization through a process called pruning. These vital features are, how-
ever, available only in the textual scripting interface usually reserved for use by
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the modeling expert; maybe it would also be beneficial to incorporate the features
into the graphical modeling interface provided for the domain experts. We think
the UML composition references adopted for this reuse purpose in HiLLS and the
SysML-based formalisms is a well-known concept and does not require much efforts
to learn or understand even by a novice.

7.2. Time advance specification

To our knowledge, in existing DEVS-based visual modeling languages, time advance
is usually modeled as a constant real value associated with the state/phase. We
think it would be reasonable to be able to define expressions in terms of some
state variables for on-the-run generation of accurate time advance in some complex
systems. For instance, let us consider the CommLine model (see Fig. 12) in the ABP
example presented in the previous section; it would be difficult to specify a definite
value of time advance for the sending configuration at modeling time because the
time to transmit a message depends on the congestion level of the medium which
varies with the number of messages in the channel and some other environmental
variables. HiLLS allows the modeler to define an expression in terms of system’s
variables and parameters that may be executed to generate the sojourn time of a
configuration during the execution of the simulation; hence, we were able to define
the sojourn time of the configuration as duration= 2∗delay() where delay() is a call
to an operation that generates the instantaneous value of the time to transmit a
message from a source to destination through the medium.

7.3. Support for structured state specification

By structured state specification, we mean the description of a system’s states in
terms of the instantaneous values of state variables as against the enumeration
of identifiers that do not explicitly depend on values of other variables as used
in many DEVS-based formalisms. HiLLS supports the structured description of
the states of complex systems through the concept of configuration, a high-level
abstraction of a unique partition of the state space that defines a predicate (on
state variables), activities and sojourn time (time advance) expressions that are
fulfilled by all states in the partition. Other formalisms that provides means of
structured state specification are DEVS Diagram, DDML and MS4 Me. An extra
advantage offered by HiLLS in this regards is that the declaration of state variables
and specification of configurations are done using concepts of schema and predicate
adopted from Object-Z (see HiLLS’ metamodel in Sec. 4) which naturally provides
amenability to rigorous logical evaluation of the partitioning of the state space for
consistency and mutual exclusiveness.

7.4. Support for complex attributes and port and event types

The capability to describe an object as an HClass is supported in the HiLLS’
abstract and concrete syntax. In addition to primitive data structures, a modeler
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can use the HiLLS’ HClass to accurately describe complex attributes and input
objects. This is also exemplified in the ABP example (Figs. 10–14) where the com-
ponents have complex variables such as buffer which is a sequence of messages and
I/O ports of type Message. We used the HiLLS’ HClass to model the Message
object with its attributes and operations to manipulate and access them. This fea-
ture is rarely supported in DEVS-based visual modeling languages, hence, most
tools resort to programming languages to complete this part.

7.5. Target solutions

We stated in the beginning of this paper that HiLLS is a multi-semantics formalism
with amenability to computational analysis using simulation, FM and enactment.
Therefore, HiLLS seeks to make a unique contribution to model-driven system
analysis in that models can be subjected to rigorous logical analysis to identify
and resolve subtle logical issues in the specification before proceeding to simula-
tion and/or enactment. This would help in the accreditation of models as well as
boost user’s confidence in the simulation and enactment traces. Another important
advantage of making one model amenable to formal reasoning in multiple analysis
contexts is that it will foster multi-disciplinary collaborations and tool integration
using appropriate model-driven technologies.

7.6. Target implementation platform

Some of the DEVS-based formalisms discussed in this paper are strictly targeted
at simulators and solvers built in specific programming platform. for instance, MS4
Me is specifically targeted at Java; in fact, the modeler must be conversant with
the language as Java codes in tagged blocks must be embedded in the enhanced
FDDEVS and SES specifications to implement the logics of transition and output
functions and other miscellaneous functions in the model. Similarly, CD++ requires
the modeler to have some programming skills in C++ in order to embed logic
codes within the model to complete the C++ code generated from the model.
DDML gives the modeler the flexibility to choose the target programming platform
and then embed logic codes in the chosen language within the model for code
synthesis.

A common argument in support of the need for embedding program codes within
model specifications is that it offers the flexibility of completely describing com-
plex algorithms. To pave the way for a more complete model engineering with
DEVS, HiLLS captures the complexity of algorithms by combining first-order logic
(Z schemas) and flowchart concepts (elements of the concrete syntax) to describe
the dynamics of systems. Therefore, algorithms are described in a generic format —
independent of any programming platform — so that program codes can be gener-
ated for any Object-Oriented programming language. The bases for refinement of
Z specifications to program codes via intermediate pseudo-codes have been demon-
strated by the authors of Refs. 39–41.
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8. Conclusions

We have presented HiLLS, a graphical formalism for DESs. it combines concepts
from System Theory and Software Engineering to provide an expressive syntax to
model systems for exhaustive computational analysis through simulation, logical
analysis and enactment. This paper is the first of the series to present HiLLS’
suitability in the different domains of computational analysis; the present paper
presents HiLLS in the simulation perspective. We presented the abstract and con-
crete syntax and its semantics in DEVS. Therefore, in this context, HiLLS is con-
sidered as a visual modeling language for DEVS with additional support for logical
analysis and enactment to boost the simulationist’s confidence in the simulation
results.

We have shown that HiLLS is well positioned for model engineering with
DEVS by comparing some of its features with the state-of-the-art in visual lan-
guages for DEVS. Notably, it supports the specification of structured states of
complex systems, expressions for on-the-run generation of time advances that can-
not be accurately determined at modeling time, model reuse, modeling of complex
attributes and input/output port types, and suitability for integration with simu-
lators built in multiple programming platforms. Some of these features are often
supported only at programming level in most visual languages based on DEVS.
A case study was provided in the paper to showcase system modeling with the
language.

For further research, the construction of an editor for HiLLS is in progress; when
it is completed, we expect to be able to automatically generate simulation codes
for different DEVS-based simulation, FM and enactment tools. Our ambition is
that, by making HiLLS a highly expressive, communicable and usable language for
DESs in general, we can actually make the language the pivot to integrate disparate
methodologies for model-based systems engineering such as simulation, logical anal-
ysis and enactment within one framework through MDE. One of the motivations
for such integration of analysis techniques is that we can derive maximum utili-
ties — exhaustive model analysis — from the efforts in building models. Moreover,
we expect that the discussion of the state-of-the-art of visual languages for DEVS
discussed in this paper will stimulate some research interests into providing more
convenient means of model engineering with DEVS by harnessing modern Software
Engineering techniques.
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31. Hollmann D. A., Cristiá M., Frydman C., CML-DEVS: A specification language for
DEVS conceptual models, Simulat. Model. Pract. Theor. 57:100–117, 2015.

32. Efftinge S., Völter M., oAW xText: A framework for textual DSLs, Workshop on
Modeling Symp. at Eclipse Summit, p. 118, 2006.

33. Schülz S., Ewing T. C., Rozenblit J. W., Discrete event system specification (DEVS)
and statemate statecharts equivalence for embedded systems modeling, Proc. Seventh
IEEE Int. Conf. Workshop on Engineering of Computer Based Systems, pp. 308–316,
2000.

34. Chow A. C. H., Zeigler B. P., Parallel DEVS: A parallel, hierarchical, modular, mod-
eling formalism, Proc. 26th Conf. Winter Simulation, pp. 716–722, 1994.

35. Smith G, The Object-Z specification language, in Hinchey M. (ed.), Advances in
Formal Methods, Vol. 1, Springer USA, 2000.

36. Spivey J. M., Understanding Z: A Specification Language and its Formal Semantics,
Cambridge University Press, 1988.

37. Jouault F., Allilaire F., Bézivin J., Kurtev I., Valduriez P., ATL: A QVT-like trans-
formation language, Companion to the 21st ACM SIGPLAN Symp. Object-Oriented
Programming Systems, Languages, and Applications, pp. 719–720, 2006.

38. Bartlett K. A., Scantlebury R. A., Wilkinson P. T., A note on reliable full-duplex
transmission over half-duplex links, Commun. ACM 12(5):260–261, 1969.

39. Spivey J. M., An introduction to Z and formal specifications, Softw. Eng. J. 4(1):40–
50, 1989.

40. Woodcock J., Davies J., Using Z: Specification, Refinement, and Proof, Prentice-Hall,
Inc, Upper Saddle River, NJ, USA, 1996.

41. Cavalcanti A., Woodcock J., ZRCa refinement calculus for Z, Formal Aspects Comput.
10(3):267–289, 1998.

1641003-35


