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ABSTRACT

This paper presents a novel approach to modeling Dy-
namic Structure Systems (DSS) using the High Level
Language for System Specification (HiLLS), a graphico-
textual language that combines system-theoretic and
software engineering concepts from DEVS (Discrete
Events System Specifications) and Object-Z respectively
to form a unified language for specifying Discrete Events
Systems for multiple analysis methodologies.We take
benefit of the expressive and user-friendly notations of
HiLLS to alleviate the complexity of modeling dynamic-
structured systems and use Dynamic Structure DEVS
(DSDEVS) as one of its semantics domains to take ad-
vantage of the latter’s simulation protocol and its asso-
ciated tool(s). We provide as a case study, the modeling
of a Cash Deposit Machine of an automated teller ma-
chine to illustrate how HiLLS is used to model DSS and
its equivalent DSDEVS model for simulation.

INTRODUCTION

We present a simple approach to the Modeling and Sim-
ulation (M&S) of structural changes in complex Dis-
crete Events Systems (DES) using a graphical modeling
language. A DSS is a system whose structural prop-
erties, such as number of components and/or connec-
tions/interactions between them may change dynami-
cally at runtime. Examples of such systems exist in
communication networks where connections are dynam-
ically established and broken between nodes, automatic
switching systems where a component may be linked
to different peer components under different conditions,
etc.

In M&S, modeling structural changes in a system is
usually an herculean task as most modeling tools lack
the required constructs to easily express such prop-
erties. With DEVS (Zeigler et al. 2000) as starting
point, a number of formalisms have been defined to pro-
vide sound theoretical background for the simulation of
DSSs; notably among them are DSDEVS (Barros 1995),
dynDEVS (Uhrmacher 2001) and rhoDEVS (Uhrmacher
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et al. 2006). They however lack easy-to-use concrete
syntaxes for defining models independently from math-
ematical equations or program codes; we complement
these abstract formalisms with a user-friendly front end.
We propose a graphical modeling language, HiLLLS, that
supports the specification of a broad range of com-
plex systems including DSSs. HiLLS combines system-
theoretic and software engineering concepts from DEVS
and Object-Z (Smith 2000) respectively to define an
integrated vocabulary of systems constructs for anal-
yses within disparate semantic contexts. We will how-
ever limit our discussions about HiLLS in this paper to
the M&S of DSSs. This is achieved by adopting DS-
DEVS as a semantics domain for HiLLS. We prefer DS-
DEVS among its contemporaries for its safe and simple
approach to maintaining consistency between systems’
structure and behavior (Muzy and Zeigler 2014).

We present overviews of DEVS-based formalisms for
modeling DSSs in the next section, followed by the ab-
stract and concrete syntaxes of HILLS as well as its map-
ping to DSDEVS (for simulation semantic). Then we
illustrate the approach with a case study before present-
ing our conclusions and perspectives in the last section.

STATE OF THE ART

DSSs are characterized by operations that manipulate
the set of components, couplings, interfaces and behav-
ior of a system (Hu et al. 2005). We present overviews
of existing formalisms for modeling DSSs.

For a better understanding of this section, we assume
the reader has a basic understanding of the DEVS for-
malism; a brief introduction is however provided in the
appendix for interested reader.

DSDEVS is a variant of DEVS with capability for mod-
eling structural changes. It retains the specification of
atomic DEVS while introducing a ”network executive”
model into the coupled network specification to man-
age structural changes in the latter. The state variables
of network executive store the structural information
of the network so that there is a one-to-one correspon-
dence between the executive’s instantaneous states and
the network’s structure.

DSDEVS coupled network is described as:

DSDN = (x, M,) where x is the name of the network



executive and M, is the dynamics of network.
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X, and Y, are the input and output interfaces of the
system, S, is the set of states, s, is the initial state,
3* is the set of possible structures of the network, - :
Sy — ¥* is the function which associates a unique
network structure to each state of the executive. VX €
YT N sz € Sy i (sy) = (D, {M;}icp. {Li}iep, {Zi}icD)
dy 1 Qy X (X U @) — S, is the transition function

Ay 1 8y — Y is the output function and

Ty Sy — Rt U {+o0} is the time advance function.
In DSDEVS, only single central network executive is
responsible for the management of structural changes
in the network. Any other component is not allowed
to modify the network structure or its own structure
and/or behavior. This prevents ambiguity when differ-
ent components require structural change. The single
executive also ensures structural and behavioral consis-
tencies.

dynDEVS (Uhrmacher 2001) and rho-DEVS (Uhrma-
cher et al. 2006, Muzy and Zeigler 2014) are other DSS
modeling approaches based on the DEVS formalism.
Unlike DSDEVS, these formalisms allow naturally dy-
namic behavior at atomic level and dynamic structure
at network level. In addition, rho-DEVS supports mod-
eling changes in components interfaces. (Muzy and Zei-
gler 2014) proposed a more general and decentralized
approach to modeling DSS in which each component
can change its own behavior and network structure.
While these formalisms provide the formal background
for M&S of DSS, model specification can be very labori-
ous because modeler must list all the possible structures
of the system as a part of the state space of the network
executive which can grow exponentially depending on
the number of components and dynamic couplings be-
tween them. Like DEVS itself, they don’t have concrete
syntaxes and logical semantics.

HiLLS proposes a simpler approach to modeling struc-
tural changes without need for a separate ”executive”
model or special transition functions to capture struc-
tural information: these information are inherent in
the system’s configuration and appropriate structural
changes occur naturally with state transitions. The abil-
ity to specify this aspect in a graphical language also
makes our approach easier to use and accessible to a
larger audience.

HiLLS

HiLLS evolves from the DEVS-Driven Modeling Lan-
guage (DDML) (Traoré 2009, Maiga et al. 2012, Ighoroje
et al. 2012), a graphical modeling language built on
DEVS to facilitate the use of the latter by domain ex-
perts via user-friendly graphical concrete syntax to de-
scribe system models. The goal of HiLLLS is to be able

to create multi-semantic models that can be used for
simulation, formal analysis and enactment.

HiLLS’ syntax combines system-theoretic and Software
Engineering concepts adopted from the DEVS and
Object-Z respectively. Our choices of system constructs
from Object-Z and DEVS are motivated by their uni-
versalities in their respective domains; while the former
claims suitability for modeling most kinds of state-based
systems for formal analysis, the later has been proven
to be a common denominator to most DES simulation
formalisms (Vangheluwe 2000). Another advantage of
the combination is that Object-Z provides constructs
such as predicates and expressions that are reused for
the refinement of abstract constructs such as states and
transitions functions adopted from DEVS. This feature
also aids the synthesis of executable program codes for
enactment.

In addition to the DEVS-based system-theoretic con-
cepts in HiLLS, the syntax also adds concepts to de-
scribe structural changes in DSSs. HiLLS’ approach to
modeling DSSs is unique in that it provides a simple and
graphical means of doing it; we demonstrate this wit a
case study in a later section.

Abstract Syntax

Figure 1 is an excerpt of the HiLLS’ abstract syntax.
In the bottom-right segment of the diagram (within the
dashed-box), a DES is described as an HSystem which
may be an atomic unit or composed of interacting com-
ponents (hcomponents). It may have input and/or out-
put ports (class Port) for interacting with its environ-
ment by means of exchanging messages called Fvents.
By its inheriting the class HClassifier, an HSystem may
have a StateSchema in which state variables are declared
with possible constraints, an AziomaticSchema that de-
fines global parameters, and Operations that manipulate
the system’s variables and parameters.

The behavior of an HSystem is described by a finite set
of configurations and transitions between them. A Con-
figuration is a cluster of all states satisfying a unique
system property defined on the state variables. The so-
journTime of a configuration is the duration for which
it may be assumed before a scheduled transition occurs.
A configuration is regarded as Passive, Transient or Fi-
nite if its sojournTime is positive infinity (4+00), zero
(0) or positive real number greater than zero(R™) re-
spectively. A Configuration Transition belongs to one of
three categories: an internal transition occurs at the
expiration of the sojournTime of the current configu-
ration, an external transition occurs whenever an input
is received before the end of the sojournTime while a
confluent transition occurs when the reception of an in-
put coincides with the expiration of the sojournTime.
A transition is accompanied by a sequence of computa-
tions that manipulate the state variables to satisfy the
property of the target configuration; it may also involve
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Figure 1: Abstract syntax of HiLLS

sending events to some output ports.

Coupling describes the relations between the ports of
the components of a system. Systems influence on one
another exchanging events (i.e., messages, impulse, etc.)
through their input and output ports. Therefore, a cou-
pling is a property that establishes a relation between
a source port (sender) and a target port (receiver) for
the exchange of events.

In DSSs (e.g. automatic switching systems), certain
couplings are characteristics of some states of the sys-
tem, hence coupling and decoupling of components oc-
cur during state transitions. Specifications of structural
changes follow a similar fashion in HiLLS; a couplings is
a kind of property that defines a configuration. There-
fore, the couplings associated with the configurations of
an HSystem naturally define the instantaneous relation-
ships between its components; this is in fact similar to
the real-time behavior of such systems. InputCoupling,
InternalCoupling and OutputCoupling, have the same
definitions as DEVS’ FIC, IC and FOC respectively.

In addition to the amenability of Object-Z to formal
analysis, the level of functional refinement provided by
the segment of the meta-model outside the dashed-box
helps to precisely and completely model systems’ behav-
ior in a generic form that can be refined to executable
program code for the enactment of systems. These
concepts are reused for the refinement of the system-
theoretic concepts through their associations with them;
examples are the associations between the following
pairs of components: (Property, Predicate), (Port, Dec-
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Figure 2: Concrete syntax of HiLLS

laration) and (Event, Expression).
Concrete Syntax

The concrete notations to express HiLLS’ concepts are
described in Figure 2(a-h). HClass (a) is denoted by a
box with three compartments similar to the UML class
symbol. The first compartment contains the HClass’
name and parameters if any. The second compartment
houses the state and axiomatic schema if any. We adopt
the notations of the state schema and axiomatic schema
as used in Object-Z. The third and last compartment
houses the definitions of the class’ operations if any. An
operation is similar to the state schema but with addi-
tional information indicated on its top side. The top
bears the name attribute of the operation, the list of
parameter declarations (if any) and the type of the op-
eration. Similarly, an empty type bracket denotes an
operation that does not produce any output. Associ-
ations such as inherited class, composition, and class
reference use the corresponding notations in as used in
the UML class diagram notations.

The HSystem (b) notation extends that of HClass; it
has four compartments with the first three serving sim-
ilar functions as in HClass while the fourth contains the
transition diagram that describes the system’s behavior.
The input and output interfaces are denoted by windows
attached to the left and right sides respectively of the
second compartment. In each rectangular window, a
port is denoted by a small arrowhead labelled with the
port declaration.

The notation for a finite configuration (d)is a box with
five compartments for label, properties, sojournTime,



activities, and sub-configurations respectively from top
to bottom. Passive configuration (c) is similar to a finite
configuration except that the compartment for sojourn-
Time is not represented; a vertical stripe is attached to
its right side as an indication of its infinite sojournTime.
Transient configuration (e) is denoted by a circle with
three compartments for its label, properties and activi-
ties if any. Its shape depicts its zero sojournTime.
Configuration transitions are represented by arrow-
ended lines(g) emanating from source to target configu-
rations with associated computations as textual labels. A
conditional statement in the path of a transition may
initiate a choice between one of two targets. In such
cases, the condition is enclosed within a diamond (h).
To disambiguate the flow of the computations, the tran-
sition arrow flows into the left corner of the diamond and
flows out from the circle attached to the right corner if
the condition is true; otherwise, it flows out from either
the top or bottom corner.

Semantic Mapping of HiLLS to DSDEVS

HiLLS has a family of semantics domains, each element
providing a context for system analysis; however the
focus of this paper is limited to DSDEVS as a seman-
tics domain for the simulation of DSS. By generating an
equivalent DSDEVS model from a HiLLLS specification,
we take benefit of the simulation protocol of the former
and its associate tools. Due to space limitations, a de-
tailed formal specification of the semantic mapping can-
not be given in this paper but the description provided
in this section will help the reader follow subsequent
sections.

DEVS, being a mathematical formalism solely for sys-
tem specification has no specific constructs for repre-
senting objects. Since the formalism also does not pre-
scribe any concrete syntax, the user may take advantage
of the freedom to represent an object as a mathemati-
cal structure with its essential attributes and operations
constituting the elements of the structure. HiLLS’ oper-
ations are also specified as mathematical functions that
may be called from the DEVS-specific functions such as
the transition and output functions.

An HSystem maps to Atomic or Coupled DSDEVS mod-
els if its hComponents is empty or not respectively. In
the case that it maps to a Coupled DSDEVS, the set
HSystem.hComponnents.target maps to the set of its
components. HiLLS’ ports map to the set of correspond-
ing input and output ports of the equivalent DSDEVS
model. If an HSystem maps to an Atomic DSDEVS,
each configuration, ¢, translates to a subset of the state
set S of the latter while the sojourn time, f., of ¢ trans-
lates to the time advance function, ta(s), of the states
in this set .

Internal, External and Confluent transitions in HiLLS
are extracted to build DSDEVS §;,,¢, 0czt and deon ¢ func-
tions respectively. The output computations accompa-

nying internal and confluent transitions in HiLLS are
used to build the A function in the DSDEVS model. In
the case that an HSystem maps to a coupled DSDEVS,
the configurations and transitions of the former map to
the states and state transitions of the network executive
of the latter.

CASE STUDY: THE CASH DEPOSIT MA-
CHINE

The Cash Deposit Machine (CDM) allows a customer
to deposit a bundle of currency notes into an account.
It comprises six components that collaborate to process
the currency bills. It first checks the genuineness of the
bills by testing for some security properties, unrecog-
nised bills are returned to the customer user while ac-
cepted bills are temporarily held in the machine to re-
quest a confirmation of the transaction from the user. If
confirmed, the bills are permanently stored in the ma-
chine while the transaction runs to completion. Other-
wise, the bills are returned while the transaction is being
cancelled. The following are the components and their
respective roles in processing the bills.

1. Bundle Accepter (BA) receives a bundle of bills
(max. 50 per transaction),releases them into the
BC one a time for validation and notifies the con-
troller after sending the last bill. It also receives
returned bills from the REJ and presents them in
a bundle to the customer in the event of unrecog-
nised bills and/or cancellation of transaction. It is
guarded by a shutter that opens only when bills are
taken from or returned to the user.

2. Bill checker(BC) receives a bill at a time from the
BA to test its genuineness. Accepted and rejected
bills are passed on to the ES and REJ respectively.

3. Escrow(ES) is a temporary storage for valid bills
(max. 50) until the transaction is confirmed or can-
celled. If confirmed, the bills are sent to the CAS;
Otherwise, they are released into the REJ. ES has
only one output slot that may be linked to either
the REJ or the CAS depending on the situation.

4. Reject box(REJ) stacks rejected or cancelled bills
and returns them in a bundle to the BA for on-
ward delivery to the customer upon receiving the
appropriate control instruction.

5. Cassette (CAS) is a permanent storage for de-
posited bills.

6. Control Board (CON) is a micro-electronic board
that coordinates the activities by sending instruc-
tion signals to other components.

Note: This case study has a static set of components
but the couplings between certain components vary dy-
namically. The ES has one output port that may be



specimen

140} ) ES
12401} oL:FBill
)

i3::FBill 02:{0,1} 11: PBill

i:8ill oLBill

i2:{0,1} 02:0,1}

i1:40,1)
12:40,1)
50,1}

i4:(0,1)

—

Figure 3: Hierarchical composition of the CDM model

coupled to CAS or REJ depending on whether the user
confirms or cancels the transaction.

HiLLS Model of the Case Study

The HiLLs model in Figure 3 shows the hierarchical
compositions between the CDM and its autonomous
components that interact with one another by exchang-
ing bills and low voltage signals. Due to space limita-
tion, we will present the detailed specification of one
of the components, REJ and that of the CDM to show
how dynamic couplings between some components are
specified.

Bill Model

Since it has no autonomic behavior, the bank note (Bill)
is modelled as an HClass as shown in Figure 4. It has
four parameters d, t, 1 and w representing the denomi-
nation, thickness, length and width respectively of the
bank note. The state schema declares the state variables
and constraints that define the features of the bill.

REJ Model

The REJ model is shown in Figure 4, The input interface
has two ports i and 2 for receiving bills and digital
signals respectively. Similarly, the output interface has
two ports 0ol and 02 for sending bundles of bills and
digital signals respectively.

State Variables and Constants: REJ declares variables
interrupt of type positive integer,current of type Bill
and stack which is a list of Bills. By default, every
instance of HSystem declares an implicit variable, du-
ration of type positive real number (with possibility of
positive infinity) to hold the instantaneous values of the
sojourn times of active configurations. The axiomatic
schema in the second compartment defines two con-
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Figure 4: Reject box and Bill models

stants: limits and period representing the component’s
capacity and time taken to exchange bills respectively
as specified in the system’s synopsis. Note that limit is
used as the upper limit of the cardinality of the state
variable stack (see the composition relation ’stack’ from
REJ to Bill indicating the maximum number of bills
that may be stacked in the REJ at any instant and for
any transaction. The Init operation initializes the global
constants with the parameters provided at instantiation.
Operations: The third compartment defines three oper-
ations; getStackLenght, getPeriod and load. In HiLLS,
any operation with type different from void has an in-
trinsic variable, out, of the same type as the operation’s
type; this variable must be assigned the computed value
of the output of the operation. It serves the same pur-
pose as return in Java.

Configurations The fourth and last compartment con-
tains the specification of REJ’s behavior described by
configurations and transitions. The state space is parti-
tioned into four configurations waiting, loading, offload-
ing and reporting with their respective properties indi-
cated in their second compartments. As stated previ-
ously, the computed sojourn time for each configuration
is assigned to the implicit variable duration. loading
and offloading, being finite configurations, have their so-
journ times explicitly defined in the third compartments
while waiting and reporting have implicit sojourn times
of positive infinity 400 and 0 respectively.
Configuration Transitions: With waiting as the initial
configuration, there are seven (7) transitions as shown
in the diagram. The triggers of external and confluent
transitions are represented by the port and event names
at the source end; e.g., an external transition from wait-
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Figure 5: CDM model

ing — loading is triggered by [iI?z](i.e., when input x
is received on port il). Output events that may accom-
pany internal and confluent transitions are represented
as assignment of values to appropriate port variables in
the transition computations. for example, during the
transitions offloading — reporting and reporting —
waiting, ol!stack and 02!0 are outputs on ports ol and
02 respectively.

CDM Model

We have seen in Figure 3 that the CDM has six compo-
nents: ba, bc, es, rej, cas and con which are instances
of BA,BC,ES,REJ, CAS and CON respectively. Fig-
ure 5 shows the internal details of CDM’s specification.
In addition to the six components, CDM declares two
state variables, transaction and shutter that keep tracks
of the presence of an active transaction and the status
of the shutter respectively. The shutter is the open-
ing through which bills are presented to or taken from
the machine. delay is a parameter of the CDM that
describes the maximum period for which the shutter re-
mains opened when accepting bills from the user. The
second line of predicates in the state schema specifies
the invariants for static couplings between certain com-
ponents of the system. These invariants are realized by
the initialization of corresponding port variables in the
connect operation. For example; a coupling specifica-
tion A.port, = B.ports implies that port s of system B
influences port r of system A. In addition to initializ-
ing the system’s parameter,delay, the Init operation of

CDM also invokes the Init of each of its components.

In addition to the explicit and implicit specifications
of sojourn times for configurations demonstrated in the
REJ specification, the CDM presents two special func-
tions, 17 and m, to specify the sojourn times in some
specific cases. 7 is used in cases where a configuration
has some sub-configurations where its own sojourn time
cannot be precisely specified. Hence, the function indi-
cates that the sojourn time at any instant is equal to
that of its active sub-configuration at that time. For
example, the sojourn time of processing at any instant
is equal to that of whichever is active among validation,
confirmation and escrow-dispense. 7 on the other hand
is used when all sub-configurations under the same par-
ent have identical sojourn time; the sojourn time may
be specified once on the parent configuration while all
its children inherit this property from it. For instance,
configurations completing and cancelling have identical
sojourn times which is specified once on escrow-dispense
from which all its sub-configurations inherit the prop-
erty. Configuration transitions of the CDM can be read
just the same way those of REJ were presented previ-
ously.

DSDEVS Equivalent Model of the CDM

We present in this sub-section, the DSDEVS model of
the CDM derived from the HiLLS specification.
DSDNepm = (x.My) where x = CMD and
My, = (X5, Sy 80,3, Yos Vs %5 0y Ay, Ty)



Xy = {(i1,{0,1}), (i, {0, 1}), (i3, PBill) }
Y, = {(o1,PBill), (02,{0,1})}

= {(
Sy = {(transaction, Z"), (shutter, String), (conf, CONF)}

where: CONF = {idle, accepting, returning, validating,
con firmation, completing, cancelling}

S(0,x) = (transaction = 0, shutter = "closed”,conf =
idle)

Xr = {Mconf}confe conNF with

Mconf = <Dconfa {Mi}iEDcc,nf; {Ii}iEDcnnf7 {Zi}’iEDconf>
Note that out of the three state variables, the system’s
structure depends of on the value of conf. i.e.,

*
¥ = {Midlea Maccepting7 Mreturninga Mvalidatinga Mcancelling7

Mcompletingv Mconfirmation}

Let D, = {M.name}yecomps where Comps =
{ba, be, es, rej, cas, con}

V]\40071f € E*71)(;071)” =D, A {Mi}iED
Vs, € va V(Sx) = Meons

Let slcpy = {}, sl = {rej}, slpe = {ba},sl.s =
{bc,con}, sIye; = {con}, sleon = {ba,rej,es}, sleqs =
{}.

Recall that Mco,¢ is the structure of the system for
the actual value of the conf variable; due to space
constraint, we present the details of Mcompieting and
others can be obtained in similar manner.

= Comps

conf

Mcompleting = <Dcompletinga Compscompleting; Icompleting;
Zcompleting> where:
Icompleting = {SICDIM U {ba}asjbcasjcas U {65}751557
slay U{CDM}, sle; U{bc}, slcon U{CDM}}
Zco’mpleting,C’DM:Y;)a_> YCDM; Zcompleting,ba: XCD]V[ X
Y;‘ej — Xba; Zcompleting,bc: }/ba — Xbc;
Zcompleting,es: Yoe—Xes; Zcompleting,'rej :}/bcxycon_lxrej;
Zcompleting,cas: )/es — Xcas; Zcompleting,con: XCDM X
Yrej X YE)a X Yes — Xcon
Transition function: 4, : Q, x (X, U¢) — S, with
3, ((0, closed, idle),e,i) = (1,opened,accepting),ve >
0.
This transition corresponds to the external transi-
tion between the idle configuration and the accepting
configurations when an event is received on port ;.
This transition creates also a new input coupling be-
tween the input port i3 of CDM and the input port
i1 of its component ba. The coupling creation is
part of the changes specified in the set of different
possible structures. 4, ((1, opened, accepting),e,i) =
(1, closed, validation), Vi € {0,1}, e > 0. This transition
takes into account the two transitions (the external one
and the confluent one) from the accepting configuration
to validation configuration. This transition specifies a
new internal coupling between the output port oy of the
bc and the input port i; of the reject box rej.
The external transition from confirmation when an in-
put is received on port i, is described as a piece-
wise function:  6,((1, closed, con firmation),e,i) =
(1, closed, completing) if i =1;
(1, closed, cancelling) if i = 0;
The target of the transition is completing or cancelling if

the input received on port iy is 1 or 0 respectively. The
transition is accompanied by the establishment of cou-
plings between the port o2 of es (i.e.,es.02 ) and cas.iq
or rej.iy if the value of the received input is 1 or 0 re-
spectively.

The internal transition from the completing con-
figuration to the idle configuration is represented
as: 0y ((1, closed, completing),0, ) = (0, closed, idle).
Other transitions can be mapped in similar manner.

Time advance function: 7, : S, — R U {400}
Vsg € Sy, Ty(5z) = duration(conf) i.e.,
+oo  if conf € {idle,confirmation}
tha if conf = validating
Tx(sw) = 9 fes

trej if conf = returning

if conf € {cancelling, completing}

delay if conf = accepting
tpe = ba.get Period() * (ba.getStackLength() + 1)
tes = es.getPeriod() x (es.getStackLength() + 1)
tre; = rej.getSpeed() + ba.getSpeed()
delay is a parameter of the CDM.

The output function: A, : S, =Y,
Vir € {0,1}, shut € {opened, closed} :
Ay (tr, shut, returning) = 0

Ay (tr, shut, completing) =1

Ay (tr, shut, cancelling) = rej.getStack()

CONCLUSIONS AND PERSPECTIVES

We have presented a new approach to modeling DSSs
with HiLLS. The advantage of the proposed approach
is the possibility of simple and communicable graphical
notations to describe structural changes in complex sys-
tems which are usually expressed either as mathematical
equations or program codes by existing solutions.

HiLLS models are amenable to analyses by simulation,
formal methods and enactment but our discussions in
this paper were limited to the provision of simulation
semantics for DSSs using the DSDEVS as the semantics
domain. This way, we take benefits of the ease and
simplicity of HiLLS for specification and the simulation
protocols for DSSs defined by DSDEVS and possibly, its
associated tool called DELTA Environment (Barros and
Mendes 1997).

We presented a case study to illustrate how HiLLLLS’ con-
cepts and notations are used to achieve the graphical
modeling of DSSs. It is however important to state here
that our approach is limited to what is possible with
DSDEVS as far as structural changes is concerned; for
example, structural changes in the input and output in-
terfaces are not supported. We are currently working
on a HiLLS editor that will allow for the specification of
complex DESs and subsequent generation of simulation
codes based on existing tools.



APPENDIX

Discrete Fvents System Specification (DEVS)

DEVS (Zeigler et al. 2000) is a system-theoretic mathe-
matical formalism for specifying DESs as abstract math-
ematical objects for simulation. It supports the speci-
fication of a full range of DESs as other formalisms for
systems in this category have been proven to have equiv-
alent DEVS representations (Vangheluwe 2000).
Basically, DEVS defines two abstraction levels for DESs
- atomic and coupled DEVS. An atomic DEVS has a
time base; state, input and output sets; and functions
that define successive states and outputs events. A cou-
pled DEVS on the other hand is an hierarchical compo-
sition of two or more atomic and/or coupled DEVS as
components with couplings between their input/output
ports to enable their interactions.

Atomic DEVS, AM, is defined as:

AM = (XY, S, 0int; Oext, Oconys, A, ta) where:

X ={(p,v)|p € IPorts ANv € dom(p)},

Y = {(q,v)|q € OPorts ANv € dom(q)},

S: Abstract state set , dint: S — S,

Set: Q X Xb — SwithQ ={(s,e)ls € SA0O<e<
ta(s)},

Sconf: S x XP — S, A: S — Y and ta: S—)RS:OO
X and Y are the sets of input and output events respec-
tively with I Ports as set of input ports and OPorts as
set of output ports. An event, v, in this context is a
value generated in form of a message that triggers an
action by its recipient. S is the set of states; at any
given moment, the system is in a state s € S. The time
advance function, ta, maps each state to a specified du-
ration after which a scheduled internal state transition,
dint, is automatically fired. The external transition func-
tion, d..¢, specifies the system’s response to the input
event(s) before the expiration of the ta of current state;
Q is called the set of total states and e is the elapsed
time since the last state transition. If the input event
coincides with the expiration of the ta), then conflu-
ent transition function, d.ons is invoked instead. The
subscript b of X}, denotes a bag of input events. The
function A defines the outputs that may accompany in-
ternal and/or confluent state transitions. Similarly, the
subscript b of Y} denotes a bag of output events.

The Coupled DEVS, C'M is defined as:

CM =(X,Y,D,{Ma}acp, EIC, EOC, IC) where:
EIC = {((CM,ipcu), (d,ipa))|ipcm € IPortsca A
ipq € TPortsq}tacp,

EOC = {((d,opq), (CM,opc))|opem € OPortsen N
opq € OPortsq}aep,

IC = {((a,0pa), (bips))lopa € OPortsy A ipy, €
IPortsy} with a,b € D

X and Y are as defined for atomic DEVS and D is
the set of names of components of CM such that My
is the DEVS specification referred to by d for all d €
D. An FEIC, External Input Coupling, is a connection
between an input port of C'M and an input port of one

of its components, an FOC, External Output Coupling,
is a connection between an output port of CM and an
output port of one of its components and an IC, Internal
Coupling, is a connection between the output port of a
component of CM and an input port of another peer
component. More details on DEVS and its simulation
protocols can be found in Zeigler et al. (2000).
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