
A FRAMEWORK FOR DISCRETE EVENTS SYSTEMS ENACTMENT

Hamzat Olanrewaju Aliyu

1,3
Oumar Maïga

2,3
 Mamadou Kaba Traoré

3

1
School of Info. and Comm. Tech.

Federal University of Technology

Minna, Nigeria

hamzat.aliyu@futminna.edu.ng

2
Université des Sciences,

des Techniques et des Technologies

Bamako, Mali

maigabababa78@yahoo.fr

3
LIMOS CNRS UMR 6158
Université Blaise Pascal

 Clermont-Ferrand, France

traore@isima.fr

KEYWORDS

Enactment, Discrete Events System, System Analysis,

Prototyping, Design Patterns

ABSTRACT

This paper proposes a framework to guide the synthesis of

program codes from Discrete Event Systems (DES) models

for the enactment of the systems. Enactment in this context

is the execution of a system's specification for real time

verification of the specified properties and/or building a

software solution for the system. Though it has been used

extensively within the last decades to automate workflows

and business processes, enactment is less pronounced

mainstream computational system analysis domain. We

believe that enactment of DES models can complement the

more exploited methodologies like simulation and formal

methods in model-based systems analysis. We propose a

framework that provides a template for code synthesis from

DEVS(Discrete Events System Specification)-based models

and an execution protocol based on Object-Oriented

Observer design pattern for the real time interpretation of

system's properties. We provide a simple case study to

illustrate the use of the framework.

INTRODUCTION

Simulation and testing have been used extensively within the

last decades in the study, development and improvement of

complex systems. Simulation and Formal Methods of

various categories are most pronounced in this domain for

studying dynamic and static system properties respectively.

While simulation techniques are mostly scenario-based

investigations of properties using time approximations

through the advancement of execution time-at discrete steps-

to the times of occurrences of events of interest, most formal

methods deal with the static proof of the satisfaction or

otherwise of certain quality and reliability properties (e.g.,

completeness, safety, deadlock freedom) throughout the

entire life cycle of the system represented by the

specification. It is a general belief that no single analysis

methodology is sufficient to study all aspects of a system,

hence multiple techniques are used to get complementary

insights of the system.

Another system analysis (cum implementation) methodology

which is more pronounced in business process management

(BPM) (Van Der Aalst et al. 2003, Jeston and Nelis 2014) is

enactment. In the field of BPM, enactment may be simply

described as the execution of process definitions created by a

workflow (Kouvas et al. 2010) where a workflow is

described as the complete or partial automation of business

processes during which a set of procedure rules is used to

pass information and work lists from one participant to

another for necessary actions (Ottensooser and Fekete 2007).

A more general software engineering description of

enactment provided in (Dowson and Fernström 1994) is the

execution or interpretation of software process definitions.

According to the authors, an enactment mechanism may also

interact with the environment (e.g., human-in-the-loop,

software and hardware devices) to provide supports that are

consistent with the process definitions; this property,

interaction with external actors, is in fact another feature that

differentiates enactment from mainstream simulation

mechanisms in addition to the execution of system's

functionalities in real time. Finally, in service engineering

and Human-Computer Interaction, it can be inferred from

(Holmlid and Evenson 2007) that enactment is used to

describe the playing out of the functionalities represented by

a prototype where a prototype is described as an object that

represents the functionality but not the appearance of a

finished artifact which can be used as a proof that a certain

theory or concept or technology works or otherwise

(Holmquist 2005).

To be able to verify a system's behavior in real time, there is

need for an operational model of the system; an operational

model in this context is one that can be executed in a suitable

software environment (Bruno and Agarwal 1995). Analysis

of traces generated from such executions can give further

insights into the system's behavior as well as point out

certain inconsistencies, missing requirements, verification of

timing correctness in real-time systems etc. Using

appropriate model-driven software engineering techniques,

such executable programs to enact systems' properties can be

synthesized from models created in some modeling

environments. But before then, we must address questions

such as "what should be the structure of the so-called

operational program? What is the operational semantics of

the chosen structure? ...". We try to address some of the

possible questions with the framework proposed in this

paper.

Wepropose an Object-Oriented framework that facilitates the

synthesis (and specification) of operational (executable)

representation of DES models for the enactment of such

systems. In order to be general enough to accommodate a

large category of DESs, our description of DES is guided by

DEVS (Zeigler et al. 2000), a mathematical formalism that

provide a sound basis for hierarchical description of DESs

based on system-theoretic. Our choice of DEVS for

generality is informed by the fact that it is considered to

provide a common platform for describing most kinds of

DESs and even approximated models for some kinds of

non-discrete event systems (Vangheluwe 2000).

The challenge here, however, is that the operational

semantics of DEVS is a simulation protocol while what we

require is a semantic to drive the execution of the specified

behavioral processes. In this paper, we explore the mapping

of DEVS concepts onto the Object-Oriented "Observer

design pattern" (Gamma et al. 1994) to provide an execution

semantics. We have chosen the observer design pattern to

take benefit of its natural dialect for enacting the reactive

systems and its ease of implementation in most general

purpose programming languages. Of course it has some

limitations that put its absolute suitability in question. We

show in a later section, the measures we have taken to

palliate some of these deficiencies (at least those that could

have significant effects on the objective of the work).

We present overviews of DEVS formalism and relevant

software engineering design patterns in the next section to

set the scene for the reader to follow subsequent sections;

then we compare and contrast the framework's intent and

methodology with those of some related work and finally,

Afterwards, we present the essential elements of the

framework followed by a case study to show its usability. we

conclude the paper with discussions and perspectives.

BACKGROUND

Discrete Events System Specification (DEVS)

DEVS (Zeigler et al. 2000) is a system-theoretic

mathematical formalism for specifying DESs as abstract

mathematical objects for simulation.

Basically, DEVS defines two abstraction levels for DESs -

atomic and coupled DEVS. An atomic DEVS has a time

base; state, input and output sets; and functions that define

successive states and outputs events. A coupled DEVS on

the other hand is an hierarchical composition of two or more

atomic and/or coupled DEVS as components while

specifying couplings between their input/output ports to

enable their interactions.

Traditionally, DEVS exists in two major forms: classic

DEVS (CDEVS) (Zeigler, 1976) and parallel DEVS

(PDEVS) (Chow and Zeigler 1994, Chow, 1996), the main

difference being that the latter supports concurrent state

transition events within components of a coupled DEVS

while the former does not. In this paper, we present PDEVS.

Atomic DEVS (AM), which is defined as:

𝐴𝑀 = < 𝑋, 𝑌, 𝑆, 𝛿𝑖𝑛𝑡 , 𝛿𝑒𝑥𝑡 , 𝛿𝑐𝑜𝑛𝑓 , 𝜆, 𝑡𝑎 > (1)

𝑋 = 𝑝, 𝑣 , 𝑝 ∈ 𝐼𝑃𝑜𝑟𝑡 ∧ 𝑣 ∈ 𝑑𝑜𝑚(𝑝) (2)

𝑌 = 𝑞, 𝑣 , 𝑞 ∈ 𝑂𝑃𝑜𝑟𝑡 ∧ 𝑣 ∈ 𝑑𝑜𝑚(𝑞) (3)

X and Y are the sets of input and output events respectively.

IPort and OPort are the sets of input ports and output ports

respectively. S is the set of states and at any given moment, a

DEVS model is in a state s∈ S.

𝑡𝑎: 𝑆 → ℝ0,∞
+

; 𝜆: 𝑆 → 𝑌𝑏 ; 𝛿𝑖𝑛𝑡 : 𝑆 → 𝑆;

𝛿𝑒𝑥𝑡 : 𝑄 × 𝑋𝑏 → 𝑆and 𝛿𝑐𝑜𝑛𝑓 : 𝑆 × 𝑋𝑏 → 𝑆.

𝑄 = {(𝑠, 𝑒)|𝑠 ∈ 𝑆, 𝑒 ∈ [0, 𝑡𝑎(𝑠)]}

The time advance function, ta, maps each state to a duration

after which an internal state transition, 𝛿𝑖𝑛𝑡 is automatically

fired. The external transition function, 𝛿𝑒𝑥𝑡 where Q is called

the set of total states and e is the elapsed time since the last

state transition, defines the system's response to an input

event when the time advance of the current state has not

expired. If the input event coincides with the expiration of

the time advanced, the confluent transition function, 𝛿𝑐𝑜𝑛𝑓 is

invoked instead. The function 𝜆 defines the outputs that may

accompany internal and/or confluent state transitions.

Coupled DEVS, CM which is defined as:

𝐶𝑀 = < 𝑋, 𝑌, 𝐷, 𝑀𝑑 𝑑∈𝐷 , 𝐸𝐼𝐶, 𝐸𝑂𝐶, 𝐼𝐶 >

𝐸𝐼𝐶 =
 𝑀, 𝑖𝑝𝑀 , 𝑑, 𝑖𝑝𝑑 |

𝑖𝑝𝑀 ∈ 𝐼𝑃𝑜𝑟𝑡𝑠𝑀,𝑖𝑝𝑑 ∈ 𝐼𝑃𝑜𝑟𝑡𝑠𝑑

𝐸𝑂𝐶 =
 𝑑, 𝑜𝑝𝑑 , 𝑀, 𝑜𝑝𝑀 |

𝑜𝑝𝑀 ∈ 𝑂𝑃𝑜𝑟𝑡𝑠𝑀, 𝑜𝑝𝑑 ∈ 𝑂𝑃𝑜𝑟𝑡𝑠𝑑

𝐼𝐶 =
 𝑎, 𝑜𝑝𝑎 , 𝑏, 𝑖𝑝𝑏 |

∈ 𝑂𝑃𝑜𝑟𝑡𝑠𝑎 , 𝑖𝑝𝑏𝑜𝑝𝑎 ∈ 𝐼𝑃𝑜𝑟𝑡𝑠𝑏

X and Y are as defined in (2) and (3)respectively. 𝐷 is the set

of component names with the specification of component

𝑑 ∈ 𝐷 represented by 𝑀𝑑 . EIC is the external input coupling

relation, EOC is the external output coupling relation and IC

is the internal coupling relation. The reader may consult

(Zeigler et al. 2000) for further details about DEVS

formalism and its operational semantics.

Object-Oriented Design Patterns

Design patterns in Object-Oriented modeling are

documented solutions to some general problems that can be

reused to build new models. In this subsection, we present

the overviews of two design patterns from (Gamma et al.

1994) that are re-used in later sections to define the

metamodel of our enactment framework.

Observer Design Pattern

It is a behavioral pattern for establishing relationships

between objects at runtime such that changes in the state of

an object (referred to as subject) trigger some actions in

another (the observer). It is defined by the Gang of Four

(Gamma et al. 1994) as a pattern that "define a one-to-many

dependency between objects so that when one object changes

state, all its dependents are notified and updated

automatically."

Figure 1 shows an overview of the observer pattern. The

basic idea is that the Subject maintains a list of references to

some independent objects called the Observers. Whenever

there is a change of state in the subject, all its observers must

be notified by the invocation of the update method of each of

them. Each observer (i.e., ConcreteObserver) must

implement its update method to implement the

corresponding actions to be taken whenever this happens.

This pattern is widely used in Graphical User Interface

(GUI) programming and it provides the underlying principle

for the Model-View-Controller (MVC) architecture (Krasner

and Pope 1988) so that all views are automatically updated

whenever there is a change of state in the model.

Command Design Pattern

The command design pattern is shown in Figure 2. A

command in this context means a method call. The pattern

provides a methodology to encapsulate a command in an

object and issue it (the command) in such a way that the

requested operation and the requesting object do not have to

know each other.

Figure 1: Observer Design Pattern

Figure 2: Command Design Pattern

From Figure 2, Client is the requesting object while the

method action() of Receiver is the requested operation.

Client creates the request command and delegates its

execution to the Invoker which manages a queue of

command threads. The invoker identifies the receiver of the

request carried by each command in its queue and then

executes the command. When its execute() method is

invoked, the command delivers its request by invoking the

appropriate action() method. This pattern provides a

methodology for asynchronous (i.e., non-blocking) method

call, sharing of a method call among multiple objects, saving

method calls in a queue so that they are executed when the

necessary conditions have been satisfied, etc. It has also been

used to decouple clients from server methods in

Asynchronous Remote Method Invocation (ARMI) (e.g.,

Raje et al. 1997)

RELATED WORK

PROTOB (Baldassari et al. 1989; Baldassari and Bruno

1991) is a system development environment that integrates

tools, for modeling, prototyping and implementation of

distributed systems using an operational software life cycle

paradigm. In PROTOB, systems are described with PROT

nets, an Object-Oriented formalism that combines high-level

features of timed Petri nets, and workflows to model event-

driven distributed systems. PROT nets describes a system as

consisting of interacting autonomous objects called "actors"

where each actor is an instance of a class. The behaviour of a

class is described in a Petri nets dialect as consisting of

places (describing the states) and transitions through which

places are connected with arcs. An active place has a queue

of message-carrying tokens that are moved from places to

places through transitions. Some places are designated for

Input/output operations to allow actors to interact with one

another. Message passing between actors is achieved by

moving tokens between their I/O interfaces. According to the

authors, operational program codes can be generated from

PROT nets specifications for general purpose languages

though it is not clear what the structures of such codes look

like. The similarity between PROTOB approach and the

enactment framework presented in this paper is that the

system description in both cases are based on some well

defined formalisms - Petri nets in PROTOB and DEVS in

our framework. Interestingly, the approach proposed in this

paper can arguably accommodate a broader category of

DESs based on the fact that the underlying formalism,

DEVS, has been proven to provide a common denominator

for most DES formalisms including Petri nets (Vangheluwe

2000).

Another interesting work that is related to that presented here

is the one discussed in (Hu and Zeigler 2004). It proposed an

approach of Model Continuity to Support Software

Development for Distributed Robotic Systems based on

Modeling-Simulation-Execution methodology (Hu and

Zeigler 2002). As defined by the authors, Model continuity

refers to the ability to use the same model of a system

throughout its design phases, provides an effective way to

manage this development complexity and maintain

consistency of the software. Model continuity is ensured by

using the same model in modeling, simulation and execution

phases. Real-Time DEVS and Dynamic Structure concepts

are used in modeling phase in order to support the modeling

of the robots sensors and actuators as activities and dynamic

reconfiguration of robots. In the simulation phase, different

DEVS simulator implementations (supporting different

communications schemes from point to-point socket

communication to advanced middleware such as CORBA)

are used for the incremental verification of the model. The

real-time execution is achieved by mapping the robot

specifications into a real hardware execution environment

controlled by DEVS real-time execution engine. It is,

however, not clear what is the methodology used in building

the said execution engine. The main similarity with this work

and that presented in this paper is that the system description

is based on DEVS-based systems in both cases. It is however

different from ours in that the enactment engine proposed in

the work resides in hardware for enactment of robot systems

while ours is a software enactment on any suitable system.

ENACTMENT FRAMEWORK FOR DES

The methodology we propose is to express DEVS-based

concepts using the dialect of the observer design pattern for

the purpose of enactment. We do this by registering system

ports as observers of other ports that may influence them.

However, we acknowledge the fact that the notification

process in the observer pattern poses some undesired effects

during the exchange of messages between ports; the

processes of the system sending the message will be blocked

until the receiving system finishes treating the message

received. The effect is even more complicated when there is

a cascade of notifications.

This is due to the synchronous calls to the update methods of

the observers. We have tried to address this problem by

using the command pattern to decouple the subject from its

observer during notifications.

Figure 3 shows our attempt to introduce an asynchronous

message passing between the subject and its observers to

make it more suitable for enacting systems' behaviors in real

time. Compared to the command pattern presented in Figure

2, Subject, Observer, Notifier, Notification and

ConcreteNotification are equivalent to Client, Receiver,

Invoker, Command and ConcreteCommand respectively.

Therefore, the subject will delegate the notifications of

observers to Notifier and continue its activities. Since the

subject does not expect any return value from these method

calls, it is easy to just use the "fire and forget" approach.

Notifier has a pool of threads to which the requests are

assigned on arrival, hence it does not have to always create

threads thereby minimizing the overhead that may be

incurred due to thread creation.

Figure 3: Observer Pattern with Asynchronous Notification

Meta Model of the Framework

We present the metamodel of the enactment framework in

the segment of Figure 4 that is enclosed within a dashed box.

Using the observer pattern with asynchronous notification, a

DES is described as the AbstractSystem which implements

the Observer interface while its generic input and output

ports can observe and be observed by other objects. A

system has a clock that monitors the time advance of the

current state; the clock inherits the Subject class so that it

can notify the system at appropriate instants.

All methods in the AtomicSystem and CoupledSystem classes

are abstract; therefore the concrete atomic and coupled

system classes using the framework must implement them to

provide the specific elements of the system being modeled.

The update method of the AbstractSystem class has the

implementation of the enactment protocol (to be provided in

the next sub-section) which calls the user-defined functions

when they are needed. The doInternalTransition,

doExternalTransition and doConfluentTransition allow the

user to describe the internal, external and confluent transition

functions respectively. setCurrentStatus method is used to

define the system's states based on the instantaneous values

of the state variables to be defined by the user in the concrete

class. Similarly, mapTimeAdvance and mapOutputEvents

methods must be implemented to provide the time advance

and output functions respectively. Method mapActivities can

be used to define the activities to be enacted for each state

during execution. An activity is a set of operations that do

not lead to change in state variables, reception of inputs and

output events.

Coupling between any two ports in the in the CoupledSystem

is realized by adding the target port to the list of observers of

the source port.

Enactment Protocol

A transition in the state of an AtomicSystem can be triggered

by a timed event (an automatic notification from the clock

when the time advance of the current state has elapsed), an

input event (a notification from an input port upon receipt of

a new value) or both. By default, an AtomicSystem is a

registered observer of its clock and all its input ports, so this

allows for automatic notifications from both sides. In any

case, an event is an object that encapsulates a

message(value) and information about the nature of its

source, whether a port or clock. When the system receives

notifications, all events received are stored in the event bag

(eventBag) of the system. Then the system's reaction will

depend on the content of the bag.

If the event bag contains a time event, then it sends outputs

(if any) to the appropriate output port(s) and then check if

there are also input events in the bag. If a port event is found,

then the doConfluentTransition method is invoked,

otherwise doInternalTransition method is invoked. If the

event bag contains only input events, then

doExternalTransition method is invoked.

Implementation

We have implemented the framework's metamodel and

enactment protocol in Java. To use the framework, we can

simply create classes inheriting from the AtomicSystem and

CoupledSystem classes of the framework to get the skeletons

the appropriate system unit. The user only needs to specify

the properties that are peculiar to the system under study

while the enactment mechanism is driven by the framework.

Based on this implementation, we present a simple case

study in the next section to illustrate its use.

Figure 4: Metamodel of Enactment Framework

CASE STUDY

We present a small example of a traffic light control system

to illustrate the extension of the enactment framework for

real time execution of DES. The system consists of two

components, control and display. The four states of the

control, their durations and the corresponding light color to

be on the display unit are summarized in Table 1. The

control unit has only one output port which is connected to

the only input port of the display unit as described in Figure

5. Whenever, there is a change in the state (internal

transition) of the control unit, it sends an output which is

received by the display unit to show the appropriate light

color to the road user.

Table 1: Specification of Traffic Light System

Control

states

Duration of control

state (units)

Display

color

ready 3 yellow

moving 10 Green

braking 3 Yellow

stopping 5 Red

Figure 5: Traffic Light System

The specification of the system is presented in Figures 6-9.

The control unit is shown in Figure 6. It is an atomic unit, so

it has to extend the framework's AtomicSystem class which

provides the required system-specific methods to be

completed as indicated by the methods with @override

annotation in Figure 6. The single output port is created

using the addOutputPort method provided by the

framework.

The display unit is presented in Figure 7. It is also an atomic

unit and maintains only one state with approximately infinite

time advance as indicates by the Long.MAX_VALUE in the

computeLifeSpanFunction. So, it will never receive a time

event since the time advance will never expire. Therefore,

Figure 6: The Control Unit of Traffic Light System

only external transition is possible. Whenever, it receives an

input event (which is an instruction from the control unit), it

changes the color of light displayed to the new color

received.

Figure 7: Display Unit of the Traffic Light System

Figure 8 shows the coupled system that has the control and

display units as components. Being a coupled system, it

extends the CompositeSystem class of the framework which

provides the required methods to be completed. It basically

creates and registers its components and establish any

coupling(s) between them. In this case, there is only one

coupling between the components as shown.

Figure 9 shows an excerpt from the result of the enactment

of the specification. The first column of the result shows the

wall clock time, the second column shows the identity of the

component in context and the third column shows the event

being reported. Note that each component has its clock that

monitors its activities based on the ticks of the wall clock.

Figure 8: Coupled Traffic Light System

With a starting state of "READY", the "CONTROL" received

a time event at "15:31:37", sent an output as specified in the

model and did an internal transition to assume the

"MOVING" state. The output sent by "CONTROL" was

received by the "DISPLAY" at the same time which

concurrently changed its display color (activity) accordingly.

Recall that the lifespan of the "MOVING" state is 10

milliseconds as specified in Figure 6, therefore, the next

input event arrived at "15:31:47" and subsequent lines of the

result segment can be read similarly.

CONCLUSIONS

We have presented an Object-Oriented framework for the

enactment of DESs. The framework provides a template to

guide the synthesis/writing of program codes from DEVS-

based models and the protocol for real time enactment of

system's behavior. The main idea is to be able to generate or

specify an operational model in form of software systems to

verify and validate the real time behavior of system models

Figure 9: Enactment Traces of the Traffic Light System

using wall clock time as reference. i.e., the scheduling and

execution of events are done based on the physical time.

We used the Object-Oriented Observer design pattern to

express DEVS-based system constructs by mapping the

system's structural and behavioral properties to the structure

and semantics respectively of the observer pattern. The

subject-observer relations are used to establish couplings

between ports of the components of a system while the

notification mechanisms are used to trigger state transitions.

We provided a Java implementation of the framework and a

case study to illustrate its use to specify and enact discrete

events systems.

In future research, we intend to provide a standard format for

the traces of the execution so that it can be amenable to

further rigorous analysis. We also intend to integrate the

framework with compatible model-based development

environments to extend the kinds of analysis they provide.

With appropriate applications of model-driven technologies,

we can synthesize enactment codes based on the template

provided from any suitable DEVS-based model.

REFERENCES

Baldassari, M. and Bruno, G. 1991. PROTOB: An object oriented

methodology for developing discrete event dynamic systems.

In High-Level Petri Nets (pp. 624-648). Springer Berlin

Heidelberg.

Baldassari, M., Bruno, G., Russi, V. and Zompi, R. 1989. PROTOB

a hierarchical object-oriented CASE tool for distributed

systems. In ESEC'89 (pp. 424-445). Springer Berlin

Heidelberg.

Bruno, G. and Agarwal, R. 1995. Validating software requirements

using operational models. In Objective Software Quality (pp.

78-93). Springer Berlin Heidelberg.

Chow, A. C. H., and Zeigler, B. P. 1994. Parallel DEVS: a parallel,

hierarchical, modular, modeling formalism. In Proceedings of

the 26th conference on Winter simulation (pp. 716-722).

Society for Computer Simulation International.

Dowson, M. and Fernström, C. 1994. Towards requirements for

enactment mechanisms. In Software Process Technology (pp.

90-106). Springer Berlin Heidelberg.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. 1994. Design

patterns: elements of reusable object-oriented software.

Pearson Education.

Holmlid, S. and Evenson, S. 2007. Prototyping and enacting

services: Lessons learned from human-centered methods.

In Proceedings from the 10th Quality in Services conference,

QUIS (Vol. 10).

Holmquist, L. E. 2005. Prototyping: Generating ideas or cargo cult

designs?.Interactions, 12(2), 48-54.

Hu, X. and Zeigler, B. P. 2002. An integrated modeling and

simulation methodology for intelligent systems design and

testing. ARIZONA UNIV TUCSON.

Hu, X. and Zeigler, B. P. 2004. Model continuity to support

software development for distributed robotic systems: A team

formation example. Journal of Intelligent and Robotic

Systems, 39(1), 71-87.

Jeston, J. and Nelis, J. 2014. Business process management.

Routledge.

Kouvas, G., Grefen, P., and Juan, A. 2010. Business Process

Enactment. In Dynamic Business Process Formation for Instant

Virtual Enterprises (pp. 113-132). Springer London.

Krasner, G. E. and Pope, S. T. 1988. A description of the model-

view-controller user interface paradigm in the smalltalk-80

system. Journal of object oriented programming, 1(3), 26-49.

Ottensooser, A. and Fekete, A. 2007. An Enactment-Engine Based

on Use-Cases. Business Process Management, 230-245.

Raje, R. R., Williams, J. I. and Boyles, M. 1997. Asynchronous

remote method invocation (ARMI) mechanism for

Java. Concurrency - Practice and Experience, 9(11), 1207-

1211.

Van Der Aalst, W. M., Ter Hofstede, A. H. and Weske, M. 2003.

Business process management: A survey. In Business process

management (pp. 1-12). Springer Berlin Heidelberg.

Vangheluwe, H. L. 2000. DEVS as a common denominator for

multi-formalism hybrid systems modelling. In Computer-Aided

Control System Design, 2000. (pp. 129-134). IEEE.

Zeigler, B. P. 1976. Theory of modelling and simulation. Wiley.

Zeigler, B. P., Praehofer, H. and Kim, T. G. 2000. Theory of

modeling and simulation: integrating discrete event and

continuous complex dynamic systems. Academic press.

