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ABSTRACT 

The use of construction project features (CPFs) to predict the impact of risk on costs of 

building projects is severely limited by the necessity to gather a homogeneous sample 

of projects. This limitation of the use of CPFs for risk prediction is the problem 

addressed by the study. The study aimed to develop artificial neural networks for 

predicting the occurrence, type and degree of impact of risk on costs of building 

projects by using selected CPFs. Data on 69 building projects was collected through the 

use of questionnaires from Quantity Surveyors in Abuja who were purposively 

sampled. The study found that costs of building projects are impacted by eight risks, 

which include variation, scope and design changes; error/omission in design/estimates, 

and unforeseen economic, site and social conditions. Project consultants are responsible 

for 69% of risks occurrence, while 52% of the cost impacts of risks result from the 

actions of clients. ANN1, an MLP artificial neural network with 2:31:1:1 structure was 

developed to predict variance between initial and final contract values by using five of 

the eight risks in two groups of client and consultant risks. A validation MSE of 0.0026 

established ANN1’s superiority over a conventional MLR statistical model (Final cost 

variance = -4.834 + 1.056Consultant Risks + 1.058Client Risks) which had an MSE of 

10.22. ANN2, an 8:19:7 MLP network was developed to predict risk effect on building 

costs by using 8 CPFs including gross floor area and costs of building elements. ANN2 

used binarization to normalize data, with a resultant MSE of 0.2109, although lower 

MSE of 0.09 and higher specificity were obtained when risks were predicted one at a 

time. Optimum network settings for activation function, number of neurons and 

threshold were also derived for ANN2. The study concluded that using the derived 

network settings optimized network sensitivity, enabling ANN2 to correctly predict 9 

out of 10 occurrences of risk, with a minimal false alarm rate of 2 out of 10. This is 

considered very satisfactory because clients are more interested in the occurrence of 

risk, which usually results in more money being needed to achieve ongoing projects. It 

was recommended that the developed networks ANN1 and ANN2 could be applied in 

the estimation of cost variance and risk effect on building costs, early in the 

construction phase when designs have been finalized but construction is yet to 

commence. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background of the Study 

Construction risk has traditionally been perceived as the variance of cost or duration 

estimation, although, there has been a gradual shift in perception towards seeing it as 

a project attribute (Taroun, 2014). This might be in part because no single 

methodology satisfies risk assessment in all situations (Kokangül et al., 2017). As a 

project attribute, risk is mainly modelled as a multiplication of ‘Probability of 

occurrence’ and ‘Impact on the project’ (P – I). The P–I risk model dominates the 

literature on construction risk (Taroun, 2014), and has been subjected to a lot of 

criticism from researchers who have discussed potential improvements in it. 

Moreover, researchers have investigated different theories, tools and techniques for 

aiding risk assessment. In this wise, Laryea and Hughes (2008) identified a paradigm 

shift in risk assessment from “classicalism”; using Probability Theory (PT)-based and 

simulation tools, towards “conceptualism”; using analytical tools. However, maybe as 

a result of the complexity of the available tools, the paradigm shift did not result in a 

greater adoption of the analytical tools by professionals (Laryea and Hughes, 2008).  

 

When risks occur, changes to construction projects are observed. Such changes may 

be in terms of cost, time or quality performance (Larkin et al., 2012) of the project; 

theoretically however, all of these changes can be expressed in monetary values, such 

as additional costs due to poor quality e.g. rework, additional cost of extensions to 

planned completion times (Jha and Chockalingam, 2009). A variety of approaches 

have been employed in predicting the changes that occur in project costs. These 
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approaches range from classic statistical analysis techniques (Choudhury and Rajan, 

2003; Wang and Gibson Jr., 2010; Perrenoud et al., 2016), to fuzzy logic (e.g. 

Ibrahim, 2008; Jaśkowski et al., 2010), genetic algorithms (e.g. Rogalska et al., 2008) 

and neural networks (Amusan et al., 2013; Larkin, et al., 2012). 

 

Research attention in the construction industry has turned to neural networks as a 

means of predicting construction costs within ever-narrowing bounds of accuracy. In 

expert systems and traditional modelling methods, explicit knowledge is provided by 

rules which impose limitations on both the data that is required for modelling, and the 

accuracy of derived models. Neural networks avoid these limitations by generating 

their own rules through learning from examples (Gallant, 1993). Evidence from the 

research literature reveals that Odeyinka et al. (2012) neural model for predicting 

variability between contract sum and final account was based on five significant risk 

factors and exhibited a maximum absolute percentage error of 6.5%. Ahiaga-Dagbui 

and Smith (2012) also developed a neural network model that achieved a mean 

absolute percentage error (MAPE) of 3.67%.  

 

1.2 Statement of the Problem 

The prediction of the impact that risks will have on a project is usually required in 

order to facilitate accurate estimation of the future cost of a construction project. 

Risk prediction at the early stages of a project is a difficult task, because cost 

estimates have to be finalized before project designers and clients become aware of 

the risks posed by the many factors that influence the project’s cost. Risk prediction 

with artificial neural network uses estimates of the impact of risks encountered on 

projects to estimate the variance between initial and final contract values of 
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projects. The use of construction project features (CPFs) to directly predict project 

risk impact was not found in the literature. This might be because of the difficulty 

of collecting a homogenous sample of projects for development of a workable 

model. 

 

One of the most popular ways of assessing risk effect on the change in project costs 

derived the impact of risk factors through Likert-type scaled questionnaires (Larkin et 

al., 2012; Odeyinka et al., 2012). Gill and Johnson (2002) have however pointed out 

that questionnaire survey results may lack ecological validity, reflecting what people 

claim to be the case, rather than what is in actual reality the case. The adoption of risk 

registers may be a way out of this situation. Registers of the impact of risks are built 

up as the project progresses (Perrenoud et al, 2016), or from final accounts at practical 

completion of the project (Ibrahim, 2008).  

 

The prediction of risk impact through the use of CPFs holds tremendous promise 

because risk impact can be estimated from the very early stages of a project. At 

present, disparity of projects in terms of CPFs limits the use of CPFs for prediction of 

risk impact. Prediction only works where a homogenous sample of projects has been 

collected. The possibility of treating CPF data in ways that allow the use of 

hetorogenous samples to achieve accurate predictions was the research problem 

addressed in this study. This study combined the risk register approach with data 

binarization as a normalization technique in order to facilitate the use of construction 

project features (CPF) as predictors in an artificial neural network for estimating the 

impact of risk on final cost of building projects.  
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1.3 Aim and Objectives of the Study 

1.3.1 Aim 

The aim of the study is to develop an artificial neural network to predict the 

occurrence, type and degree of impact of risk on costs of building projects through the 

use of selected construction project features. 

 

1.3.2 Objectives of the study 

To achieve the above stated aim, the research has five objectives, which are: - 

1. To determine the risks that can be used to predict the effect of risks in the costs of 

building projects. 

2. To determine the Construction Project Features (CPFs) that can be used to predict 

the effect of risks in the costs of building projects. 

3. To determine the effect of risks in the costs of building projects.  

4. To develop an artificial neural network for the prediction of risk effect in costs of 

building projects. 

5. To carry out a performance analysis of artificial neural network developed for the 

prediction of risk effect in costs of building projects. 

 

1.4 Research Questions 

This study addressed the following research questions:  

1. What risks can be used to predict the effect of risks on final costs of building 

projects? 

2. What Construction Project Features (CPFs) can be used to predict the effect of 

risk on final costs of building projects? 

3. How can the effects of risks be determined in the final costs of building projects? 
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4. How can an artificial neural network be developed to predict the effects of risks 

in the final costs of building projects? 

5. How can artificial neural network be analysed in terms of its performance in the 

prediction of risk effect in the final costs of building projects? 

 

1.5 Justification for the Study 

Risk has been modelled as an estimation variance using the Probability–Impact (P–I) 

risk model for almost as long as risk awareness has existed; the (P–I) model enabled 

researchers to assess risk through its probability of occurrence and impact. As 

reported by Edwards and Bowen (1998), the (P–I) risk model lent itself initially to the 

use of statistical methods, then later on more complex analysis involving Monte-Carlo 

Simulation (MCS) during the 1970s. Some researchers (for example Charette, 1989; 

Williams, 1996; Ward, 1999) have criticized the P–I risk model and recommended 

potential improvements that could be made to it. Other researchers such as Kokangül 

et al. (2017) believe that there exists no risk assessment methodology that is 

convenient for all situations. Over time, researchers have discovered that risk 

prediction can only be carried out successfully for homogenous samples of projects. 

Wide disparities in the features of projects severely limit the ability to model the 

impact of risk on the costs of such projects.   

 

The core value of this study lies in its use of novel techniques to treat the data 

collected for the prediction of risk impact on costs of buildings. This study made use 

of project final account data because final accounts have the advantage of being 

regarded as the true representation of a project’s financial history for both practical 

and contractual purposes. Both the risk and CPF data were normalized through 
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binarization before being used to develop the ANN. It is the submission of this study 

that the process of binarization reduces the heterogeneity present in the data and that 

the binarized data functions as a homogeneous sample. This allows data containing 

wide disparities of project features to be used successfully in accurately predicting the 

impact of risk on building projects.  

 

The use of artificial neural networks as the prediction tool in this study was because of 

its robustness, ability to adapt to unknown data sets, and good learning capability 

(Ling and Liu, 2004; Jha and Chockalingam, 2009). There are other cost modelling 

techniques available which include Linear/Dynamic Programming, Regression 

Analysis, Simulation/Risk Analysis, and Expert Systems (ES). These cost modelling 

techniques have however been said to be unable to deal with problems such as: (i) 

Imprecision and uncertainty of data and variables affecting costs of construction 

projects; (ii) Unknown combined effects and inter-relationships of cost-influencing 

factors, and (iii) Complex and vagueness of input-output relationships which cannot 

fit nicely and successfully into a quantitative description.  

 

ANN effectively copes with the situations itemized above, as it is able to learn, 

generalize and represent general knowledge, through the extraction of information 

from existing data, a process known as inductive learning. The use of neural networks 

in construction management research goes back more than two decades.  Starting with 

Boussabaine’s (1996) review, artificial neural networks (ANN) techniques have been 

applied to cost estimation models of school buildings (Elhag and Boussabaine, 1998), 

influence of rework causes on project performance indicators (Palaneeswaran, et al. 

(2008), pre-project planning (Wang and Gibson Jr., 2010); prediction of actual project 
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cost and time (Abu Hammad et al., 2010) and risk factors impact on cost variability in 

design and build projects (Larkin et al., 2012). 

 

1.6 Scope of the Study 

This study was carried out in Abuja which is located within the Federal Capital 

Territory of Nigeria. The choice of Abuja was influenced by the assertion by the Real 

Estate Developer Association of Nigeria (REDAN) that majority of construction firms 

that have on-going building projects are located in Abuja. This means that Abuja is 

presently the focus of the nation in terms of building development. Another factor in 

the choice of Abuja as study area, apart from the fact that mass building construction 

is an established and ongoing feature of Abuja, was the discovery that 22% of 

quantity surveying consulting firms in Nigeria are located in Abuja (NIQS Members 

Diary, 2015). These firms represent potential sources of information for this study. 

 

The units of analysis of the study are building projects that were characterized by the 

following features: (i) the use of in-situ concrete as the material for structural 

framing of the buildings; and (ii) the number of floors in the buildings was between 1 

and 5 floors; (iii) the project were either new or refurbishment projects for the public 

sector that were commercial, institutional or residential in nature; relevant data was 

available for extraction from final accounts. The use of project closure documentation 

(final accounts) was justified in the light of the assertion by Adinyira, Botchway and 

Kwofie (2012) that assessment of success takes place at the completion stage of 

projects. The implication of this was that scope of application of the prediction 

models developed does not extend to civil and heavy engineering projects or private-

sector building projects. 
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Only projects that were completed within the 13-year period of 2003 - 2015 were 

considered. This timeframe was adopted to ensure that respondents are able to retrieve 

pertinent project information and that a large enough sample of projects can be 

collected for the development of artificial neural networks. Although the study 

accessed information on risks at project closure (after final account preparation), yet 

the action of the risks took place during the construction phase of projects, as 

observed by Goh and Abdul-Rahman (2013) that the construction phase of projects 

has the highest risk occurrence.  

 

1.7 Assumptions of the Study 

Building projects are subjected to different types and levels of risk that are associated 

with their specific features such as location, height, and size. In this study it was 

assumed that heterogeneity in the characteristics of risk faced by projects that were 

sampled did not vitiate the ability of artificial neural networks to accurately predict 

the impact of risk on project costs based on the data binarization technique that was 

adopted. 

 

1.8 Limitations of the Study 

In order for the study to be practicable and the results to be valid and applicable, the 

following limitations have been identified: - 

1) There existed a lack of uniformity in the formats adopted for preparation and 

presentation of final accounts amongst the building projects that were 

sampled. This necessitated some form of adjustment of the content of some of 

the final accounts. A common format was obtained from the Nigeria Institute 
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of Quantity Surveyors (NIQS). All final accounts were then recast into the 

NIQS format. None of the data in the original final accounts was discarded; 

data was either re-assigned or combined under a different heading. This 

situation represented a limitation arising from the fact that the final accounts 

employed as sources of data were not prepared exclusively for the use of this 

study. Some additional work was necessary before the data in the final account 

could be conveniently compared.  

2) The CPFs employed in this study were purposively selected based on their 

relevance to the prediction of risk impact on building projects as perceived by 

the researcher. Purposive selection of CPFs might represent a limitation of the 

study; different results might be obtained where CPFs are selected based on 

other criteria.  

 

1.9 Operational Definition of Terms 

Artificial Neural Network (ANN): This is an information processing system that is 

inspired by biological neural networks of animals, in particular the brain. An ANN 

consists of a pattern of connections between neurons, which solve multi-attribute 

problems better than conventional methods by generating its own rules through 

learning from examples (Masters, 1993).  

 

Cost variability: This is the difference between the initial contract value (ICV) in the 

project bill of quantities (BOQs), and the final contract value (FCV) in the final 

account (FA) (Odeyinka et al., 2012). 
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Impact of risk: Impact of risk is the value of an increase or decrease in cost as 

inserted in a final account that is attributable to a specific risk(s). Impact of risk, 

consequence and severity are used interchangeably to describe the resultant effect of 

risk on project objectives, which some researchers have termed ‘risk cost’ (Franke, 

1987).  

 

Probability of risk occurrence: Probability of risk occurrence is a measure of how 

likely it is that a risk event will occur. Probability of risk occurrence is used 

interchangeably with likelihood of risk occurrence.  

 

Project characteristics: Project characteristics are variables that are used in defining 

a project. The variables are client type, the project type, tendering method, 

procurement method, type of contract, project location, project size, project cost (or 

value), project duration, and project complexity among others. The term ‘project 

characteristics’ is used interchangeably with ‘project specific factors’ (Doyle and 

Hughes, 2000).  

 

Project Performance: Project performance is considered as the productivity of a 

project. It is a comparison of inputs (set objectives or targets for cost, time, quality, 

dispute and safety) with outputs (actual achievements in terms of cost, time, quality, 

dispute and safety) (Pocock et al., 1996).  

 

Risk: Risk is an uncertain condition or set of circumstances that may occur within a 

project life cycle, the exact impact of which was neither foreseen in the project 

description nor in the contract. Such impact may be positive or negative, desirable or 
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undesirable, in terms of the planned objective(s) of the project (Project Management 

Institute (PMI), 2012).  
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CHAPTER TWO 

2.0    LITERATURE REVIEW 

 

2.1 Construction Costs 

The main concerns of the construction client are projects constructed within budget, 

on time, of the expected quality and with no surprises. Setting a budget at the pre-

contract stage of any construction project requires the estimation of the likely cost of 

the proposed works. Westney (1992) defined cost estimation as the determination of 

quantity and cost required to construct a facility. The developed estimate forms the 

basis of the contract sum for the project and normally it is not expected to be 

exceeded. Cost estimation can be carried out from the early strategic phase of a 

project to the construction phase; the approach selected usually depends on the level 

of accuracy required, how quickly the estimate is required, experience level of the 

estimator and the level of information available at the time of estimate (Ahiaga-

Dagbui and Smith 2012).  

 

Owing to the complexity of the construction industry and bespoke nature of every 

project undertaking, the overall project cost is determined by a number of key items, 

such as the structural, architectural, sanitary, electrical and air-conditioning systems. 

Olotuah (2002) posited that the supply and fixing of building materials accounts for 

about 60% of residential buildings costs; Gould and Joyce, (2000) on their own part 

estimated that 25% of total construction cost in multistorey reinforced concrete 

residential buildings is spent on the structural frame. To improve the cost certainty of 

projects, in traditional procurement, a contingency sum is included to cover 

unforeseen circumstances. However, despite this precaution, there are evidences in 
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construction management literature indicating that it is very difficult to find many 

projects where the initial contract sums are not exceeded at completion (Winch, 2010; 

Wolstenholme, 2009). Accurate estimation of the future cost of a construction project 

is a difficult task, because of the fact that it must be completed before the project 

designers and even the client are aware of many of the factors that influence the cost 

of the project (Adafin et al., 2016). 

 

The reliability of estimates of construction cost are important for a variety of reasons 

– to enhance the  budgeting process of organizations, to set loan or equity funding 

thresholds in the case of credit facilities or equity participation, for estimating project 

feasibility or viability in commercial terms. Ahiaga-Dagbui and Smith (2012) have 

identified the following as part of the complex web of cost influencing factors that 

make it extremely difficult to estimate the final cost of construction projects: type of 

project, material costs, likely design and scope changes, ground conditions, duration, 

size of project, type of client, and tendering method. Jennings (2012) noted that a high 

level of uncertainty surrounds most of these factors at the initial stages of the project; 

yet ignoring the risk they pose to the successful completion of the project is akin to an 

invitation to cost overruns, disputes, law suits and even project termination in extreme 

cases.  

 

2.2 Cost Performance of Construction Projects 

The success of a construction project undertaking is generally expressed in terms of 

price certainty, completion time certainty and satisfactory level of quality (Chan and 

Kumaraswamy, 2002). Aside from these three criteria which have been termed the 

iron triangle, client satisfaction and satisfaction of other stakeholders have been 
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proposed as workable frameworks for measuring project performance (Bryde and 

Robinson, 2005; Toor and Ogunlana, 2008). Notwithstanding all other criteria that 

have been adopted, cost performance on a construction project remains one of the 

main measures of the success of a construction project (Ogunsemi and Jagboro, 

2006). 

 

The construction client is mainly concerned with realizing a project constructed 

within budget, on time, to the expected level of quality and with no (usually 

unpleasant) surprises. These concerns are encapsulated in the contract drawn up for 

the project, of which bills of quantities (BOQ) form an important part. As an 

additional hedge against the unforeseen, a contingency sum is normally included to 

ensure the completion of the project within the budget. However, notwithstanding this 

precaution, on many projects the initial contract values are exceeded at completion 

(Adafin et al., 2016). The findings in Odeyinka et al. (2009) study suggests that the 

more complex the nature of a construction project, the more likely is the tendency of 

deviation between the contract sum and final account.  

 

Although a decline in the number of contracts based on BOQ has been observed in the 

UK and Australia over the past 20 years (Davis et al., 2009), there is little evidence to 

show that this trend applies in Nigeria as well. Within the Commonwealth the bill of 

quantities remains unsurpassed as a preferred model of contract cost documentation, 

(Cartlidge, 2013). While it has been established that the BOQ lacks precision in 

predicting building cost (Brewer, 1998), it has also been asserted that this is not 

totally due to inherent shortcomings of the BOQ. Rather events that occur between the 
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point at which the project was commenced and the point at which it was completed 

are to blame. These events have been termed pathogens (Love et al., 2009).  

 

Cost overruns are a major and recurring problem of construction industries globally; 

there is however a variation of the degree of the severity from country to country 

(Doloi, 2013). In Nigeria, additional costs of between 2.7% - 62.4% of the planned 

construction cost were incurred as cost overruns (Radujkovic, 1999). Similarly, more 

than 33% of sample projects in Kuwait required additional budgets to complete 

(Koushki et al., 2005). Asiedu and Alfen (2015) confirmed that payment defaults 

were a principal cause of cost overruns in Ghana.  

 

No two projects are totally alike; a project is after all, a temporary undertaking (PMI, 

2000). To aid comparison of projects, researchers have used some attributes or 

characteristics present in all projects. Such characteristics or attributes include client 

type, location, complexity, type of procurement adopted, number of floors, total or 

gross floor area and project value among others (Chan and Park, 2005). The 

interdependence of the factors affecting the performance of construction projects is 

established in literature, and is the reason why Ogunsemi (2002) suggested that for 

accuracy of predictive models, homogeneity of data is very important.  

 

Modeling of project cost performance has followed a mathematical/statistical 

approach from the earliest times. Hudson (1978) developed an expenditure-

forecasting model for hospital buildings in the UK that utilizes mathematical 

equations to forecast value S-curves. For the next decade and half researchers were 

preoccupied with this model (Sidwell and Rumball, 1982; Berny and Howe, 1983; 
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Skitmore, 1992; Skitmore 1993). To avoid the inaccuracies observed in previous 

efforts, Evans and Kaka (1998) based their work on historical data of 20 food retail 

building projects. They however failed to obtain an accurate standard S-curve even 

when projects were subjected to further more detailed sub-classification. Kenley and 

Wilson (1986) analyzed 72 commercial and industrial building projects in two groups 

of data and developed a value S-curve for each individual project and an average one 

for each of the two groups. They concluded that cost models for groups of projects 

represent both functional as well as conceptual error. Khosrowshahi (1991) developed 

a computerized model that simulated the periodic expenditure pattern of projects. 

Although its forecasting accuracy has yet to be documented, the model has been 

converted into a professional computer-based forecasting system (Khosrowshahi, 

2000).  

 

Computer-based artificial intelligence techniques have also been applied by 

researchers such as Lowe et al. (1993) (expert system), Boussabaine and Kaka (1998) 

(neural network), Boussabaine et al. (1999) (neural network), and Boussabaine and 

Elhag (1999) (fuzzy technique). None of the developed models dealt with the issue of 

risk impacting on cost of construction projects. 

 

2.3 Final Account Procedure for Building Projects 

Generally, under traditional method of procurement, payment from clients to 

contractors in respect of the construction works is a process that begins from the start 

of construction until the project is completed. Different types of payment can be 

identified, such as advance payment, progress payment and final payment, which 

represents the final cost of a construction project (Zakaria et al., 2012b). Zakaria et al. 
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(2013a) classified the procurement of construction projects into five stages: 

initiation/planning, design, tender, construction and final account/defect liability 

stage. After practical completion of the project, the preparation and settlement of the 

final account is the only outstanding task that is linked to the design/construction 

team, in most instances. Standard forms of contracts for construction projects usually 

contain provisions relating to a specified period of time within which the final account 

should be settled. 

 

Final accounts for construction projects are prepared in order to arrive at a definitive 

final cost of a project that has been completed by the contractor. Final accounts 

conventionally include all costs arising from additions, alterations, deductions 

resulting from project changes and other related payment as stated in the contract 

(Zakaria et al., 2013b). Although most standard forms of contract specify that final 

accounts should be prepared immediately after the projects are completed, and settled 

after defects liability periods have elapsed, Ho (2012) research showed that on the 

average, main contractors in Hong Kong experience up to 12 months delay in the 

settlement of final accounts for completed projects. 

 

Final accounts are important in many ways; at times, a final account could refer to the 

calculation and agreement of the final construction cost between the employers and 

contractors (Ashworth and Hogg, 2002). The historical importance of the final 

account can be seen from the assertion that the final account amount includes all 

additions, alterations and deductions resulting from changes made to the project 

(Baloi and Price, 2003). Another facet of its importance was expressed by Baccarini 

(1999) and Khang and Moe (2008), that the final settlement of financial obligations 
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effected through a final account implies that the project is satisfactory to all key 

stakeholders (including contractors), an indication that the project has been 

successfully procured. 

 

2.3.1 Variations in the final account 

Giwa (1988) stated that standard forms of contracts for construction projects always 

contain provisions under which changes can be effected to the contract sum of a 

construction project. The adjustment of the initial or adjusted contract sum to obtain 

the final account sum is usually effected through computation of the net costs 

involved in variations to the works, re-measurement of provisional quantities, 

adjustment of provisional and prime cost sums, fluctuation, and claims as a result of 

errors in contract document and loss and expense. 

  

The Standard Form of Building Contract in Nigeria (SFBCN) formally defined 

variation as the modification of design or quantity of work as shown upon the contract 

drawings and described by or referred to in the contact bills. Variations include 

addition, omission or substitution of any part of the works. Only the Architect is 

empowered to issue variation orders, even though the client, designers, contractors 

and statutory authorities could also be sources of variations. Under clause 11.2 of the 

1990 Edition of the SFBCN, variations may arise under: 

a. circumstances that could not have been reasonably foreseen before signing 

the contract. 

b. additional requirement by the employer. 

c. compliance with new government orders or legislation. 

d. correction of errors or omission in the contract drawings and contract bills. 



19 
 

e. non-availability of materials and goods specified in the contract. 

f. substitution of materials, goods and workmanship specified in the contract. 

 

Under normal circumstances, the major factors that cause variations were identified 

by Agbo (1993) to include inadequate brief, design inconclusiveness, inadequate pre-

contact planning, indiscipline on the part of consultants, non-availability of materials 

labour specified for the work, unforeseen conditions and discrepancy between two or 

more contract documents and client’s intentions.  

 

2.3.2 Re-Measurement of provisional quantities 

Provisional quantities are essentially educated guesses of the amount of work that will 

be required to construct a building or facility. Actual quantities of work obtained on 

the site might deviate substantially from the quantities in the contract bill, a situation 

which necessitates adjustment of the original contract sum to reflect the reality of the 

site works. Olabopo (1991) defined provisional quantities as measured items in the 

contract bill whose exact quantity cannot be ascertained at the time of preparing the 

bill. Re-measurement of substructure works generates about 58 percent of the overall 

increases according to Giwa (1988); concrete work accounts for 22 percent while 

external works contributes 15 percent. 

 

2.3.3 Adjustment of provisional and prime cost sums 

The Building and Engineering Standard Method of Measurement 3 defined Prime cost 

sums as a sum provided for works or services to be executed by a nominated sub-

contractor, a statutory authority or public undertaking or for materials or goods to be 

obtained from a nominated supplier. It is usual for the actual costs of the items for 
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which prime cost sums were allowed in contract bills to be much higher than the 

provisional sums. This is because at the time of preparing the contract bills, the parties 

to execute the works covered by provisional sums have neither been specified, nor 

have quotations been received in respect of such works.  

 

Ogunsemi (2002) posited that provisional sums represent a high degree of imprecision 

in the pricing of construction works. The higher the proportion of provisional sums 

inserted into contract bills, the less precise and realistic the initial contract sum will be 

with respect to the final cost of the project.  

 

2.3.4 Adjustment for inflation 

Onyechi (1990) described increases in contract sum attributable to inflation (called 

fluctuations) as usual occurrences in non-fixed price contracts. Fluctuations arise 

because there is usually an appreciable length of time between the submission of 

tender by contractors, and actual purchase of construction resources consequent upon 

award of contract by clients. Prices of construction resources change from time to 

time. Giwa (1988) reported that fluctuation is one of the most misunderstood sections 

of the conditions of contract. Fluctuation has not only led to increases in the final cost 

of construction, it often leads to complete abandonment of projects.  

 

2.3.5 Adjustment for claims 

Contractual claims have been defined as additional cost or time that a contractor is 

entitled to, based on the support of specific clauses of the conditions of contract (Alli 

1998). Ofoma (1990) listed seven basic requirements that a genuine claim must meet, 

which included compliance with all the detailed requirements of the contract, how and 
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why the causal event or instruction leading to the loss being claimed occurred, and an 

evaluation of the direct reasonable loss or expense that can be claimed. 

 

Clause 24 of the SFBCN deals with loss and expense caused by disturbance of regular 

progress of work, which results into claims and identified the situations that can 

generate claims.  Such situations include delayed transmission of drawings/details 

from designers to the contractor, failure of clients to pay as at when due, and 

compensation to landowners, the absence of which might interfere with the works 

proceeding according to plan. Ogunsemi (2002) posited that the causes of loss and 

expense are matters for which the client is responsible in the sense that they are either 

his or his Architect’s acts of omission. Some of them included improperly timed 

changes to the work, incorrect information, failure to provide information on time, 

and postponement of work. 

 

2.4 Risk and Uncertainty in Construction 

The construction process moves from initiation/conception to practical 

completion/final account stages, a progression characterized by increase in the 

complexity and number of uncertainties that can influence the project negatively 

(Boateng et al., 2015). It has been asserted that construction can be structurally 

impacted by a large number of risks (Ball, 2014). The risks that can potentially affect 

a project are many and varied, almost limitless; as changes occur in technologies, 

methodologies and lifestyles, so also are changes likely to occur in the specific risks 

experienced on construction projects. 
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Almost all projects are carried out in open conditions that are exposed to uncertain 

and to some extent unpredictable weather (Mentis, 2015). The large number of 

stakeholders on every construction project also exposes the client to delays on the part 

of subcontractors and suppliers (Eizakshiri et al., 2015; Diab and Nassar, 2012). With 

the rise of citizen awareness about Corporate Social Responsibility (CSR), social 

unrest or community resistance also ranks as a risk factor for construction projects 

(Jordhus-Lier, 2015). Research has also documented the fact that construction is one 

of the most regulated spheres of human activity (Mbachu, 2012); in many cases this 

constitutes undue influence from governments/legislative authorities (Kennedy, 

2015). One of the most well known risks that construction projects always have to 

contend with has to do with the suitability of ground and subsurface conditions on 

project sites (Adam et al., 2014; Boateng et al., 2012).  

 

The New Rules of Measurement 1 of the Royal Institution of Chartered Surveyors 

(RICS) in the UK specified that an elemental cost plan must have a contingency 

provision that provides for some or all of the risks associated with design 

development, construction, employer driven changes, and other employer restrictive 

concerns (RICS NRM 1, 2012). Design development risks are defined to include 

changes in estimating data, planning restrictions, legal requirements, covenants, 

environmental concerns, pressure groups, statutory requirements, procurement 

methodology, and delays in tendering.  

 

Risks that manifest during the construction stage were referred to as Construction 

risks, a phrase which covers site conditions, ground conditions, existing services, and 

delays by statutory undertakers. The impact of employers/clients on the type, scope 
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and number of risks faced by construction projects was highlighted in the following 

risks that were defined as Employer risks. These include changes in brief, changes in 

scope of work, changes in quality of work, and changes in time; other risks are early 

handover, postponement, acceleration, funds availability, and liquidated damages 

(Adafin et al., 2013). 

 

Zhao et al. (2014) noted that a typical construction project may involve several forms 

of risks such as contractual, financial, operational, political and technical risks. The 

unique temporary ‘one-off’ nature of construction as well as the fact that the many 

stakeholders of any project usually have a varied and sometimes conflicting 

understanding of risks, might also constitute sources of risks. Bala et al. (2014) 

opined that traditional cost estimating methods have failed to cope with the problems 

of uncertainties and accuracy. Lowe et al. (2006) and Cheng et al. (2009) have 

therefore stressed the need to develop more accurate and robust construction cost 

forecast techniques. 

 

2.4.1 Definitions of some risk and uncertainty terms 

Definitions of risk by some researchers in the past tended to focus on the negative 

impacts alone (Mason, 1973; Moavenzadeh and Rossow, 1976). According to 

Wideman (1986) project risk “is the chance of certain occurrences adversely affecting 

project objectives’’. Carter et al. (1994) viewed risk as the presence of potential or 

actual constraints which could cause failure of a project. In a similar vein, Fong 

(1987) defined the impact of risk as the likelihood of a specific unwanted event and its 

unwanted consequences. To reconcile this negative view of risk with definition 

offered by the PMI and APM, Winch (2010) opined that risk is only used to refer to 



24 
 

the probability of a detrimental effect, while reward signifies the probability of 

occurrence of a beneficial event. However, when risk occurrence and detrimental 

impacts are minimized, the benefit of positive impacts, whether passive or active, will 

be realized.  

 

Risk in construction is an abstract concept; it is very difficult to define and almost 

impossible to measure with any precision. Risk is defined by the UK based 

Association for Project Management (APM) (2006) as “an uncertain event or set of 

circumstances that, should it occur, will have an effect on the achievement of one or 

more project objectives.” The US based Project Management Institute (PMI) (2008) 

definition of risk is “an uncertain event or condition that, if it occurs will have either a 

positive or negative effect on one or more of the project’s objectives”.  

 

Odeyinka et al. (2006), regarded risk as a variable in the process of construction, the 

occurrence of which results in uncertainty in the final cost, duration and quality of the 

project. Risk is used interchangeably with uncertainty in some cases (Baloi and Price, 

2003), however Smith (1999) considered that uncertainty should be separated from 

risk because the two terms are distinctly different. He defines uncertainty as a state of 

having limited knowledge which makes it impossible to describe an existing situation 

or a future outcome. According to Odeyinka (2000) risk is measured by an objective 

probability while uncertainty is measured by a subjective probability.  

 

The nomenclature used to describe risk and uncertainty is wide and varied. Some 

terms are used loosely and interchangeably. Generally however, ‘Project risk’ is an 

uncertain event that, if it occurs, affects the achievement of the project’s objectives 
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positively or negatively (Hillson, 2009). Past research has defined ‘risk event’ as the 

time (in relation to the project timeline) in which a risk occurs (Yoon et al., 2015). 

Although Project Management Institute (2010) specified when and how often risk 

management tasks should be performed, there is little information about when certain 

risks occur (Zou et al., 2007). Perrenoud et al., (2016) defined ‘risk encounter’ as the 

percentage of the project time that has elapsed at the time a risk is identified and 

communicated to all project stakeholders. ‘Risk distribution’ was defined as the 

frequency and timing of risk encounters during the construction phase. They found 

that 70% of the risk encounters documented by them occurred before the original 

completion date.  

 

2.4.2 Some perspectives of risk and uncertainty in construction 

It is possible to identify four schools of thought on the relationship between risk and 

probability (Winch, 2010). These are: (i) the Objectivist school – future events are 

predicted from known data about risk sources, using the science of statistics, with 

varying degrees of accuracy; (ii) the Logical school – studies the probability of a 

failure event in closed engineered systems, using the scientific properties on which the 

design is based; (iii) the Subjectivist school - the risk as it is perceived by an 

individual: the degree of belief held by the decision maker in the probability of an 

event is used to predict risk in future projects and (iv) the Behavioural school - 

focuses on the actual behaviour of a decision maker under conditions of uncertainty.  

 

Within the objectivist school four compartments of ‘risk space’ can be identified 

based on where the occurrence of any event falls between the two extremes of certain 

and impossible. The four compartments are: (i) known knowns – a risk source has 
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been identified and a probability can be assigned to the occurrence of a risk event; (ii) 

known unknowns  - a risk source has been identified but a probability cannot be 

assigned to the occurrence of a risk event; (iii) unknown knowns - the risk source and 

the associated probabilities are known to someone who is keeping the information 

private; and finally (iv) unknown unknowns - a risk source has not been identified and 

therefore the risk event is not known, (Winch, 2010). 

 

2.4.3 Historical development of risk modelling 

It is debatable whether risk was studied as a branch of academic endeavour before the 

1960s, (Edwards and Bowen, 1998). It was apparent however that Hertz (1964) is 

credited with being the first to use the term “risk analysis”, while working on 

computer-generated probability distributions of rates of return for investment projects 

(Baker et al., 1999). Risk assessment during the two decades from 1960 to 1980 was 

carried using the Probability-Impact (P–I) risk model; Probability Theory (PT) and 

Monte Carlo Simulation (MCS) were thus the main analytical tools available at that 

time.  

 

The next two decades (from 1980 to 2000) witnessed a flurry of research into 

construction risk modelling and assessment, which was theoretically driven by PT, 

Fuzzy Sets Theory (FST) and Analytical Hierarchy Process (AHP). Within this period 

Franke (1987) recommended the assessment of risk impact using financial measures 

such as “risk cost” as a common measure of all risks within the P–I risk model. This 

brought to limelight the thinking that risk has impact on specific project objectives. 

Williams (1995) found that risk assessment research focused almost entirely on cost 

and duration related risks, to the detriment of quality related risks.  
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The last two decades (from the year 2000 to the present time – 2017) have come to be 

associated with a major shift in how risk is perceived. From being viewed as a 

variance in the estimating process, risk was now considered to be a project attribute, 

rather like physical project characteristics such as height, size and shape. Risk was 

still modelled as a multiplication of Probability of occurrence and Impact upon 

occurrence, and to all appearances, the dominance of the P–I risk model was 

established in the literature (Taroun, 2014).  

 

However there have been a considerable number of recommendations for 

improvement of the P–I risk model. Chronologically, these recommendations include 

the proposal by Charette (1989) to add ‘predictability’ as a third dimension to the P–I 

risk model. A decade and half later Jannadi and Almishari (2003) suggested adding 

‘extent of exposure’ to risk as a third dimension to the P–I model. Cervone (2006) 

advocated ‘discrimination’ to cater for the interdependencies between risks in the P–I 

model. The notion that some risks are more manageable than others was advanced by 

Aven et al. (2007) and supported by Dikmen et al. (2007), who considered risk 

manageability in terms of its influence on the overall project risk level.  

 

‘Risk controllability’ was defined by Cagno et al. (2007) as a ratio between the 

expected risk impacts before and after applying specific mitigation actions.  The work 

by Zeng et al. (2007) considered that the environment in which projects are carried 

out influences the level of severity and interdependencies between risks. They 

proposed incorporating the factor index (FI) as a third dimension in the P–I risk 

model. The effect of project environment on risk impact was incorporated into project 
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risk analysis process by Zhang (2007); project vulnerability was also the focus of the 

argument by Vidal and Marle (2012) that project risks analysis could be enhanced by 

focusing on the weaknesses of project organizations. Han et al. (2008) proposed ‘risk 

significance’ as a third dimension to the P–I model in order to capture the unique 

nature of risks as estimated through the intuition of risk analysts.  

 

2.5 Risk Factors affecting Construction Cost Performance 

Studies on risk factors in construction projects have occupied researchers for at least 

the last three decades in different parts of the world. In Nigeria, price fluctuation, 

financing and payment of completed work, additional work, design changes, 

inaccurate estimates, imported materials and plant items among others were identified 

by Mansfield et al. (1994) as significant factors impacting on project cost. Other 

researchers in the same area found that financial, design and construction risks have 

significant impact on cost of construction projects in Nigeria (Odeyinka, et al., 2006; 

Dada and Jagboro, 2007).  

 

A summary of the most important risk factors discovered by different researchers is 

provided in Table 2.1a and Table 2.1b. This summary was built up by taking the top 

five most important risks as ranked by each researcher. Only research that was carried 

within the last ten years (2006 – 2015) was considered, to enhance comparability of 

the risk rankings.  

 

 

 

 

 



29 
 

Table 2.1a: Summary of risks in literature (Risk1 – 40) 

S/Nr Year Risks Location Sources 

1 2006 Change in the design by the Architect Australia Omoregie and Radford 

(2006); Zou et al. 

(2006) 
2 Delay due to excessive approval procedures Australia 

3 High performance/quality expectations Australia 

4 Inadequate program scheduling Australia 

5 Changes in site conditions Nigeria 

6 Cash flow difficulties Nigeria 

7 Delay due to excessive approval procedures Nigeria 

8 Inflation Nigeria 

9 Poor contract management Nigeria 

10 2008 Client’s Cash flow difficulties Nigeria Aibinu (2008) 

11 Contractor’s cash-flow problems Nigeria 

12 Incomplete drawings Nigeria 

13 Equipment breakdown/ maintenance Nigeria 

14 Nominated suppliers cash flow problems Nigeria 

15 2010 Acts of God Nigeria Windapo and Martins 

(2010) 16 Cash flow difficulties Nigeria 

17 Consultant competence Nigeria 

18 Contractor competence Nigeria 

19 Social issues/area boys, original land owners Nigeria 

20 2011 Unforeseeable design development risks at tender China Chan et al. (2011); 

Chileshe and 

Yirenkyi-Fianko 

(2011) 

21 Cash flow difficulties Ghana 

22 Inflation Ghana 

23 Poor financial market Ghana 

24 Quality and performance control Ghana 

25 Change in scope of work Hong Kong 

26 Error/omission in design/estimates Hong Kong 

27 Exchange rate variations Hong Kong 

28 2012 Cash flow difficulties Malaysia Karim et al. (2012); 

Odeyinka et al. (2012)  29 Equipment breakdown/ maintenance Malaysia 

30 Late deliveries / shortage of material Malaysia 

31 Poor quality of workmanship Malaysia 

32 Change in design / variations by the client UK 

33 Change in scope of work UK 

34 Change in the design by the Architect UK 

35 Changes in site conditions UK 

36 2013 Change in design / variations by the client UK Odeyinka et al. (2013) 

37 Change in the design by the Architect UK 

38 Inclement weather UK 

39 Labour shortage UK 

40 Production target slippage UK 

Source: Researcher’s summary. 
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Table 2.1b: Summary of risks in literature (Risks 41 - 70) 

S/Nr Year Risks Location Sources 

41 2014 Absence of professional project pre-planning studies  Saudi Arabia Taylan et al. (2014); 

Perera, et al. (2014); 

Tran and Molenaar 

(2014) 

42 Cash flow difficulties Saudi Arabia 

43 Delay due to excessive approval procedures Saudi Arabia 

44 Delays (lack of coordination between participants) Saudi Arabia 

45 Inadequate program scheduling Saudi Arabia 

46 Cash flow difficulties Sri Lanka 

47 Contractor’s cash-flow problems Sri Lanka 

48 Delays in shifting utility lines by authorities Sri Lanka 

49 Design errors made by designers Sri Lanka 

50 Labour shortage Sri Lanka 

51 Change in scope of work USA 

52 Construction risk USA 

53 Level of design and contract risk USA 

54 Third-party and complexity risk USA 

55 Utility and right-of-way (ROW) risk USA 

56 2015 Changes in site conditions Saudi Arabia Albogamy and 

Dawood (2015) 57 Client’s lack of experience in construction Saudi Arabia 

58 Design errors made by designers Saudi Arabia 

59 Difficulties in obtaining work permits  Saudi Arabia 

60 Land acquisition Saudi Arabia 

61 2016 Host government–related risk China Liu, et al. (2016); 

Perrenoud, et al. 

(2016) 
62 Inflation China 

63 Legal risk China 

64 Macroeconomic risk China 

65 Social risk China 

66 Change in scope of work USA 

67 Client codes/permits USA 

68 Contractor/subcontractor/supplier issues USA 

69 Error/omission in design USA 

70 Unforeseen unknown conditions USA 

Source: Researcher’s summary 

 

In the UAE, inflation/sudden changes in price, changes in design required by owners, 

owners' improper intervention during construction, and owners' delayed payment to 

contractors among others were identified as significant risk factors (El-Sayegh, 2008). 

In the case of Malaysia, financial, time, design and technical, physical, contractual, 
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political and regulation, personnel and safety risks were found to be cost-significant 

factors by Goh and Abdul-Rahman, (2013). Toor and Ogunlana (2008) in 

investigating factors causing delay in Thailand, revealed problems related to client, 

designers, project management/consultants and contractors as significant delay 

factors.  

 

Similar trends have been found in Jordan, Hong Kong and Saudi Arabia that varying 

combinations of client-related, contractor-related and consultant-related factors 

contribute significantly to delay in construction projects in these countries (Odeh and 

Battaineh, 2002; Wang et al., 2003; Al-Karashi and Skitmore, 2009). In the Kuwaiti 

construction industry the delay-significant risk factors identified included financial 

failure, delayed payment on contract, labour, material and equipment availability, 

defective design, coordination with subcontractors, productivity of labour and 

equipment, contractor competency, actual quantities of work, quality of work and 

third party delay, (Kartam and Kartam, 2001).  

 

2.5.1 Characteristics of risks in construction projects 

Most of the time risk is assessed based on certain characteristics that can be identified 

and associated with the risk. Although a consistent method for characterizing risk has 

yet to be established (Chapman and Ward, 2007), the following characteristics of risk 

were considered in this study: (i) the magnitude of the impact on the total project cost, 

(ii) the source of the risk and (iii) the nature of the risk. Items (ii) and (iii) together 

make up the risk category.  
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The source is the agitator or the party responsible for creating the project risk; for 

example, the source may be the client, architects and engineers, contractors, 

subcontractors, suppliers, or government agencies (Zou et al., 2007; Perry and Hayes, 

1985). Risk sources are generally agreed to be tied to project stakeholders. The nature 

of the risk is most often defined by pigeon-holing the risk into one of the following 

categories: financial, strategic, operational, project, or hazardous (AIRMIC and IRM, 

2002; Chapman, 2001; Shen et al., 2001). Broadly, these categories are aligned with 

project objectives such as cost, quality, time, and health and safety. Specific examples 

that can be found in most construction projects include tight project schedules, design 

variations, inadequate site information, inaccurate cost estimates, unavailability of 

managers and skilled laborers, and government interference (Zou et al., 2007).  

 

The magnitude of the impact that risks will have on project objectives is another 

useful characteristic of risk which was used by Flanagan and Norman (1993) where 

they grouped risk impacts to measure the magnitude of the effect on project costs and 

project schedule. Financial business theories (such as Portfolio theory and capital 

market theory) define total risk as being comprised of systematic risk and 

unsystematic risk (Fischer and Jordan, 1995). In project management terminology, 

risk is divided into internal risk and external risk, which is not really different from 

the earlier categorization (Tah et al., 1993).  

 

Systematic or external risks affect all organizations and are prevalent in the external 

environment of a project and are relatively uncontrollable. These external risks are 

those due to inflation, currency exchange rate fluctuations, technology change, major 

client induced changes, politics, and major accidents or disasters. Unsystematic or 
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internal risks are relatively more controllable, are organization specific and relate to 

the management of internal resources within a firm. Internal risks can further be 

grouped under local and global risks (Tah et al., 1993). Local risks affect individual 

work packages of a project, resulting from uncertainties in labour, plant, materials and 

subcontractor resources. Global risks affect the entire project, and mainly have to do 

with performance, contractual, location, and financial aspects of a project, (Laryea et 

al., 2007). 

 

2.5.2 Risk assessment 

Risk assessment and risk analysis are two interchangeable terms that both refer to risk 

quantification, which might be qualitative or quantitative, (Edwards and Bowen, 

1998; the Project Management Body of Knowledge (PMBOK Guide) PMI, 2004). 

Qualitative methods of risk assessment employ graduated semantic scales to describe 

the probability of risk occurrence and the impact such occurrence would have on 

project objectives (Mootanah, 1997). The quantitative assessment of risk requires 

empirical data about similar events in the past, (Dawson, 1997).  

 

The qualitative method of assessing risks based on the probability of occurrence and 

impact employs the use of simple semantic scales such: as high, medium, low. This is 

much like the graduated responses in questionnaires developed by Likert and has been 

used by researchers such Carbone and Tippett (2004), El-Sayegh (2008) among 

others. Inconsistent use of scales terminology might reduce the value of the method, 

(Carbone and Tippett, 2004). Although qualitative risk assessment is inherently 

subjective in nature, since what is assessed and how it is assessed depends entirely on 

the assessor (Dawson, 1997), it finds wide application within fuzzy logic theory. 
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There are also some qualitative methods of risk assessment that form the basis for 

quantitative methods, such as risk probability and impact assessment, 

probability/impact risk rating matrix, risk categorization and risk urgency assessment, 

(PMI, 2004; Shah, 2004). 

 

Under quantitative methods of risk assessment, the use of empirical data about past 

similar events obtained from either participants or observers helps to overcome the 

shortcomings of the qualitative method of risk assessment. Quantitative risk analysis 

methods include sensitivity analysis, probabilistic analysis, decision trees and Monte 

Carlo simulation, event and fault trees, fuzzy logic, system dynamics, expected value 

tables among others (Dikmen et al., 2007). 

 

To obtain the benefit of both methods of assessing risk, Shah (2004) recommended 

the use of a combination of qualitative and quantitative risk assessment in identifying 

the risks associated with the control of the project cost, time, and resources. An 

example of this recommendation in action can be seen in Dada and Jagboro (2007) 

simple model for evaluating the impact of risk on project cost overrun, using as inputs 

both qualitative and quantitative data. This was applied in this study as well; risk 

assessment was assessed both qualitatively (through expert knowledge, participant 

experience and intuitive judgment) and quantitatively (using increases/decreases in 

project cost attributable to particular risks) for sampled completed building projects.  

 

2.6 Features of Building Projects Employed in Cost Prediction 

An overview of previous studies suggests that a large number of project features may 

be used to predict the variance observed in final costs of building projects. Such 
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features have been termed ‘construction project features’ (CPF). A detailed review of 

previous studies has been carried out by Gunner and Skitmore (1999); they identified 

these features as including: building function, type of contract, conditions of contract, 

contract sum, price intensity, contract period, number of bidders, good/bad years, 

procurement basis, project sector (public, private or joint), number of priced items and 

number of drawings. According to Aibinu et al. (2011) previous studies suggest that 

there are a large number of variables that may substantially influence the accuracy of 

estimates of building project costs. 

 

2.6.1 Construction project features employed as inputs in cost prediction 

Identification of the features of construction projects that had been employed in recent 

research for the prediction of the costs of the projects began with the identification of 

studies located within the construction industry and which employed artificial neural 

network (ANN) as the prediction tool. Forty of such studies were found and reduced 

to thirteen when those studies that did not specifically address the forecasting of costs 

using ANN were discarded. It was found that only one feature, gross floor area, was 

employed in 4 studies. The number of stories and the type of project were employed 

as input in 3 studies each.  

 

.In their work, Elhag and Boussabaine (1998) extracted data on 30 school projects 

from the Building Cost Information Service (BCIS) database. The data covered 14 

CPFs and represented the complete range of project-related cost variables in the BCIS 

database. These CPFs included Type of project, Type of contract, Market conditions, 

Number of tenderers, Site slope, Start conditions, Ground conditions, Excavation 
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conditions, Site access, Work space in site, Number of stories, Gross floor area, 

Duration, and Lowest tender price. 

 

Aibinu et al. (2011) worked on prediction of estimate bias of projects; their work 

employed 9 CPFs, which included Gross Floor Area (GFA), Principal structural 

material, Procurement route, Type of work, Location, Sector, Estimating method, 

Number of storey, Estimated Sum. Arafa and Alqedra (2011) attempted to predict 

early-stage structural costs of building projects using 7 CPFs. These were Area of 

ground floor, area of typical floor, number of stories, nr of columns, type of 

foundation, number of elevators, numberr of rooms. Ahiaga-Dagbui and Smith (2012) 

also employed 9 CPFs for modeling the total cost of projects. The data included 

Project Frequency, Tendering Strategy, Need for Project, Ground Condition, Project 

Type, Duration, Location, Soil Type, Site Access. In dealing with categorical 

variables such as type of Project and need for project, one-of-N coding system was 

employed, resulting in multiple sub-variables being generated from a single initial 

CPF. 

 

Kim et al. (2013) researched the costs of school buildings; their data consisted of 11 

CPFs that included the following: Year, Budget, School Levels, Land Acquisition, 

Class Number, Building Area, Gross Floor Area, Storey, Basement Floor, and Floor 

Height. The structural cost of buildings in the Phillipines was the focus of the study 

by Roxas and Ongpeng (2014). Their study utilized six variables namely: number of 

storeys, number of basements, floor area, volume of concrete, area of formworks, and 

weight of reinforcing steel. 
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2.6.2 Construction project features derived as outputs in cost prediction 

The literature on building cost forecasting was also analyzed in order to characterize 

the different types of output adopted for the neural networks that were developed in 

the studies. It was found and presented in Table 2.2 that studies focusing on building 

cost forecasting employed four main types of outputs. These were (i) the variability 

between initial and final contract values, (ii) initial contract values, (iii) structural 

costs of buildings and (iv) final contract values. Variability between initial and final 

contract values was the prediction outcome in 5 studies, while 3 studies each adopted 

initial contract values and structural costs of buildings as the network targets 

respectively. 

 

Table 2.2:  ANN outputs for cost prediction in literature 

S/n Authors 
Location 

of study 
FCV-ICV ICV 

Structural 

cost 
FCV 

1 
Elhag and Boussabaine 

(1998) 
UK 

 
x 

  

2 
Palaneeswaran et al. 

(2008) 

Hong 

Kong 
x 

   

3 Wang and Gibson (2010) USA x 
   

4 Aibinu et al. (2011) Malaysia x 
   

5 Arafa and Alqedra (2011) Palestine 
  

x 
 

6 
Ahiaga-Dagbui and 

Smith (2012) 
Scotland 

 
x 

  

7 Odeyinka et al. (2012)  UK x 
   

8 
Ahiaga-Dagbui and 

Smith (2013) 
UK 

   
x 

9 Gulcicek et al. (2013) Turkey 
  

x 
 

10 Amusan et al. (2013) Nigeria 
   

x 

11 Kim et al. (2013) Korea 
 

x 
  

12 Odeyinka et al. (2013) UK x 
   

13 
Roxas and Ongpeng 

(2014) 
Phillipines 

  
x 

 

Source: Researcher’s summary 

Note: FCV = Final Contract Value; ICV = Initial Contract Value. 

 

Two very important findings from the review of literature included the discovery that 

the use of costs of building elements as predictors in the forecasting of changes in 
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costs of building projects was not found to be widespread in the literature. No attempt 

to predict risk impact on the costs of building projects through the use of construction 

project features as inputs to neural network was found in the literature. 

 

2.7 Use of Artificial Neural Networks (ANN) in Construction  

Construction project costs have been modelled successfully with the aid of techniques 

such as (i) Linear/Dynamic Programming, (ii) Regression Analysis, (iii) 

Simulation/Risk Analysis, and (iv) Expert Systems (ES). These techniques have been 

in use for decades, and can be said to have been performing tolerably well. However, 

the complexities of modern construction coupled with financial pressures on the 

construction industry have necessitated a revisiting of the levels of accuracy required 

from existing cost modelling techniques (Bala et al., 2014). Researchers have stressed 

the need to develop more accurate and robust construction cost forecast techniques 

(Cheng et al., 2009). Partially in response to these calls, artificial neural network 

(ANN), which is an inductive machine learning methodology, has been applied to 

construction management research since the early 1990s.  

 

The wide-ranging interest generated by the application of ANN techniques to 

construction is due in part to the drawbacks associated with the use of the cost 

modelling techniques mentioned earlier. These are said to be unable to effectively 

handle situations involving (a) imprecise and uncertain data; (b) unknown effects of 

combining variables; (c) unknown inter-relationships of cost-influencing factors; (d) 

complex and vague input-output relationships. Artificial neural networks are able to 

learn, generalize and represent general knowledge through the extraction of 
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information from existing data, even where knowledge about rules and relationships 

are not available (Hecht-Nielson, 1990).  

 

The use of mathematical formulae to perform cost modelling in construction was 

popularized by Bromilow (1969) with the use of parameters for forecasting time 

performance of construction projects, which represented groundbreaking work at that 

time. This well-known model was developed using the contract cost and time 

variability of 329 projects constructed within the preceding half decade. Several 

researchers have attempted to adapt this model to projects within their own localities, 

with varying degrees of success, (Kaka and Price, 1991; Kumaraswamy and Chan, 

1995; Chan, 2001; Yousef and Baccarini, 2001; Choudhury and Rajan, 2003; 

Ogunsemi and Jagboro, 2006; Hoffman et al., 2007).  

 

The search for an adaptable tool for predicting cost variability has thus continued with 

Boussabaine (1996) review of artificial neural networks (ANN) techniques that are 

applicable in construction management, specifically in predicting project cash flow, 

costs and risk analysis. The use of new techniques gained ground with Elhag and 

Boussabaine (1998) work on development of models for cost estimation of school 

buildings using artificial neural networks. In Palaneeswaran et al. (2008), ANN was 

also applied to the influence of rework causes on the various project performance 

indicators such as cost overrun, time overrun, and contractual claims.  

 

The quest for cost variability prediction has not been limited to the western world 

alone. Abu Hammad et al. (2010) attempted to predict the actual project cost and time 

in Jordan with acceptable accuracy using the following independent variables: project 
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type; project size; contract scope; time interval and homogeneity of region of study. In 

Palestine Arafa and Alqedra (2011) constructed, trained and tested an ANN model 

that estimated building structural system cost at early (pre-design) stage. ElSawy et al. 

(2011) developed a neural network model that assessed site overhead costs for 

building projects in Egypt.  

 

In what represents a paradigm shift in construction cost overrun thinking, Odeyinka et 

al. (2012) applied ANN to model risk impacts on the variability between contract sum 

and final account. Using 5 risk factors on a sample of nineteen projects and a back-

propagation neural network, they predicted the deviation of the final account sum 

from the initial contract sum to within 2 - 6.5 % (mean absolute percentage deviation). 

This highpoint in research thinking that views variability of cost and time on 

construction projects as being due to the impact of risk factors over the construction 

phase of projects was sustained with the work of Larkin et al. (2012), which extended 

knowledge on how risk factors impact on the variability between the contract sum and 

final account on design and build projects. Ahiaga-Dagbui and Smith (2012) 

advocated the use of Artificial Neural Networks (ANN) as a data mining technique for 

developing cost forecast models of construction projects; they tested their technique 

on water projects in the UK where the final cost was predicted using several physical, 

organizational and contractual characteristics of the projects.  

 

The ANN technique has also been applied to cost variability in civil engineering; Lin 

et al. (2012) established a model based on Taiwan practices for the prediction of price 

tenders on roadway construction. In Nigeria, Amusan et al. (2013) carried out an 

exploratory study of cost modeling of reinforced office building projects. Abiola and 
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Kupolati (2014) used Artificial Neural Network to explore the relationship between 

Present Serviceability Rating (PSR) and Present Serviceability Index (PSI) for 

highways in South-Eastern Nigeria.  

 

Table 2.3a and Table 2.3b presented a compilation of the different ways in which the 

ANN methodology has been applied. It was possible to observe that the number of 

studies that utilized ANN had increased over time. The diverse ways in which ANN 

has been used becomes apparent, as well as the wide variation in sample sizes of the 

different studies; this demonstrated the incredibly versatile nature of ANN. A brief 

examination of the results of the artificial neural networks developed in some of the 

works in Table 2.3a and Table 2.3b was undertaken. Wang and Gibson Jr (2010) in 

the USA utilized ANN and regression to investigate the relationship between level of 

pre-project planning carried out and the subsequent performance of projects. Although 

the exact architecture of the ANN model was not provided, the findings proved the 

superiority of the ANN model over that of the simple linear regression model.  

 

Tu and Huang (2013) ANN model also outperformed a regression analysis model, 

although the exact architecture of the ANN model was not provided. Their results 

showed that the ANN model had maximum absolute error of 16.7% as against 48.1% 

for the regression model. Turning to the prediction of construction costs, Kim et al. 

(2013) worked in Korea with three estimating techniques. Their findings revealed that 

Mean Absolute Error Rates (MAERs) were 5.68, 5.27 and 7.48 for the Regression, 

Neural Network and Support Vector Machine models respectively. As in the two 

previous studies examined, the exact architecture of the ANN model was not 

provided. 
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Table 2.3a: Artificial neural networks in construction literature (Nos 1 – 19) 

S/n Year Research aim Study 

Area 

Analysis 

Unit/Sample 

Examples of data Authors 

1 1997 Forecast exchange rate of 

currencies 

USA exchange 

rate / 321 

Euro rate on US dollar 

deposits. 

El Shazly and  El 

Shazly (1997) 

2 1998 Model school building 

costs. 

UK Projects / 30 Market conditions; Lowest 

tender price (£); 

Elhag and Boussabaine 

(1998) 

3 2008 Influence of rework on 

cost/time and claims. 

Hong 

Kong 

 / 112 87 rework parameters; 18 

data sets 

Palaneeswaran et al. 

(2008) 

4 2009 Model quality performance 

of projects. 

India Projects / 91  Jha and Chockalingam 

(2009) 

5 Predict hourly cooling 

load. 

China Building  / 

154 

Relative humidity and solar 

radiation intensity. 

Li et al. (2009)  

6 Predict heating loads of 

buildings. 

Turkey Building   / 3 Building transparency ratio 

(%), orientation ( 
o
). 

Ekici and Aksoy (2009) 

7 2010 Model preproject planning 

and project performance 

USA Projects / 

140 

Project Definition Rating 

Index; cost growth 

Wang and Gibson Jr 

(2010) 

8 Predict rate of return of 

time deposit (mudharabah) 

Indonesia exchange 

rate / 108 

exchange rate USD to 

Indonesian Rupiah; 

Anwar et al. (2010) 

9 2011 Predict winning teams at 

next stage games. 

Taiwan Matches / 64 Goals For (GF), Shots (S), 

Comer Kicks (CK) 

Huang and Chang 

(2010)  

10 Predict accuracy of 

pretender cost forecasts. 

Malaysia Projects / 

100 

Gross Floor Area; Principal 

Material; 

Aibinu et al. (2011) 

11 Model  structural cost at 

early (pre-design) stage 

Palestine buildings / 

71 

nr of cols, gross floor area, 

typical floor area 

Arafa and Alqedra 

(2011) 

12 Model site overhead costs 

for building projects 

Egypt Projects / 52 Size; Duration; Type; Extra-

man Power. 

ElSawy et al. (2011) 

13 Model project time 

contingency. 

Egypt Projects / 54 No. of change orders; delay 

in  payment 

Yahia et al. (2011) 

14 Predict project schedule 

performance  

India  Project manager’s 

competence; 

Jha and Chockalingam 

(2011)  

15 Model cooling load of a 

building. 

Hong 

Kong 

 physical properties; 

occupants behavior 

Kwok et al. (2011) 

16 Forecast short time 

building energy. 

China buildings / 2 temperature, solar radiation, 

humidity ratio 

Li et al. (2011) 

17 

 

Predict price of crude oil.  USA Price /barrel  

/ 1252 

Seasonal Demand; events 

impact factor (WEIF); 

Khashman and Nwulu 

(2011) 

18 2012 Cost forecast models of 

construction projects. 

Scotland Projects / 98 cost; procurement/client 

type,  fluctuation 

Ahiaga-Dagbui and 

Smith (2012) 

19 

 

Model risk impacts on final 

account variability. 

UK Projects / 19 Risk probability; Risk 

impact; Final account 

Odeyinka et al. (2012)  

 Source: Author (2017). 
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Table 2.3b: Artificial neural networks in construction literature (Nos 20 – 38) 

S/n Year Research aim Study 

Area 

Analysis 

Unit/Sample 

Examples of data Authors 

20 2013 Improve construction cost 

estimation accuracy 

UK Projects / 

1600 

Delivery Partners; Target 

cost; Duration.; 

Ahiaga-Dagbui and 

Smith (2013) 

21 Model cost of building 

loadbearing system  

Turkey Projects / 

384 

 soil types; importance 

factor; number of stories; 

Gulcicek et al.  (2013) 

22 Model reinforced office 

building project costs 

Nigeria Buildings / 

100 

Initial and final cost of  

sampled projects 

Amusan et al. (2013) 

23 Predict future Operating 

and Maintenance costs. 

Taiwan Buildings / 

65 

Building age; Nr of units; 

Common facility area. 

Tu and Huang. (2013) 

24 Comparative modelling of 

building cost 

Korea Projects / 

217 

Budget; Gross Floor Area; 

Storey; Basement. 

Kim et al. (2013) 

25 Model project time 

performance 

Vietnam Projects / 75 project factors and risks; 

client; contract selection 

Le-Hoai et al. (2013)  

26 Model variability between 

forecast and out-turn cost 

UK Projects / 55 Risk probability/impact; 

forecast/actual cost flow 

Odeyinka et al.  (2013) 

27 Model recyclable concrete 

and reinforcement volume 

Serbia Buildings / 

110 

building complexity; gross 

area; height 

Mučenski et al. (2013) 

28 Model operation 

/maintenance costs 

UK Buildings / 

20 

decoration; Roof repair; 

cleaning; Insurance 

Alqahtani and Whyte 

(2013) 

29 Predict compressive 

strength of CDW concrete. 

Brazil datasets / 

1178 

Water/Cement Ratio; 

Cement Content; Age 

Adriana et al. (2013) 

30 2014 Model structural cost of 

buildings 

Philippines Projects / 30 nr of storeys, floor area, 

concrete volume 

Roxas and Ongpeng 

(2014) 

31 Model road quality 

parameters relationship 

Nigeria Road / 247 pavement condition, 

Roughness; 

Abiola and Kupolati  

(2014)  

32 Predict rate of accidents  Nigeria Years / 12.5 persons killed/injured; 

vehicles/day; road length 

Ogwueleka et al. 

(2014) 

33 Model project costs in 

construction disputes 

India  Tender price; Inflation; ADR 

Cost 

Asra Fatima et al. 

(2014) 

34 2015 Model expected level of 

project selection success. 

Italy Projects / 

150 

Project schedule/plan; 

Personnel;  

Costantino et al. (2015) 

35 Model project variation 

claims performance. 

India Variation 

claims / 204 

Contract condition; owner 

ordered variation; 

Chaphalkar et al. 

(2015) 

36 Predict impact of expected 

claims. 

Egypt Projects / 32 project type, duration, cost, 

contract type,  

Ossama et al. (2015) 

37  India Projects / 2 Preliminaries; Site 

Clearance; Earthwork; 

Gopal and Shiva (2015) 

38 Model severity of 

occupational injuries. 

Iran Accidents / 

980 

Age; training; Working 

experience; PPE;  

Mohammadfam et al. 

(2015) 

 Source: Author (2017). 
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Odeyinka et al. (2013) model of the significant risk factors that impact on the 

variability between baseline forecast and out-turn cost flow developed an 11-11-11-6 

back propagation architecture ANN model.  The relative mean absolute deviation 

(RMAD) was found to be 0.166 at 100% completion, while the standard deviation of 

Y (SDY) ranged between 0.69 and 12.04. The results compared favourably with 

earlier researches which had SDYs of 3.1% - 11.5% (Kenley and Wilson, 1986; Kaka 

and Price, 1993). In the application of ANN to modelling of road quality, Abiola and 

Kupolati (2014) study obtained R
2
 values of 0.335 and 0.901 for regression and ANN 

respectively; the ANN Model had a 4-18-1 architecture. 

 

2.7.1 Basic architecture of artificial neural networks 

ANN modeling is usually chosen because of its robustness, ability to adapt to 

unknown data sets, and good learning capability (Ling and Liu, 2004; Jha and 

Chockalingam, 2009). An ANN is an information processing system that is essentially 

a mathematical model made up of a number of simple elements called neurons 

(nodes); signals move between neurons through connection links that possess varying 

weights. The transfer of the signal by each neuron involves an activation function that 

determines what the output will be.  A model of an artificial neuron as proposed by 

McCulloch and Pitts is shown in Figure 2.1 (Zurada, 1992).  

.  

Figure 2.1: McCulloch–Pitts model of a neuron 

Source: Zurada (1992) 
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A neuron compares the computed weighted sum of its n input signals Xj = 1, 2, . . . , n 

with certain preset thresholds. An output of 1 is generated if the threshold is exceeded, 

otherwise the output is simply 0 (Zurada, 1992). The activation functions that 

determine the comparison thresholds include linear, sigmoid, and Gaussian functions; 

the sigmoid is however the most commonly used function (Jain et al., 1996).  

Mathematically, the sum of the weighted input of a neuron j is expressed as follows: 

 

While the neuron’s output, y which is a function of its weighted input is expressed as 

follows: 

 

Feed forward neural network architecture consists of an input layer, output layer and 

hidden layers if required. The network is fed input data through the input layer; the 

numbers of neurons (nodes) which make up the input layer are representative of the 

independent variables from which the dependent variable will be determined. Where 

hidden layers are used, the number of nodes embedded in the hidden layer is usually 

decided by trial and error. Hidden nodes receive input values; calculate the input 

values’ weighted sum and then, based on the transfer function selected, squeezes the 

values into a limited range (Edwards, 2007). The squeezed values then serve as input 

to the output nodes where the same process is again repeated. Figure 2.2 presented a 

simplistic model of an ANN. 

……………… Equation 2.1 

……………… Equation 2.2 
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Figure 2.2: A simple artificial neural network structure 

Source: Elhag and Boussabaine (1998) 

 

The descriptions of the sigmoid and linear transfer functions used in MATLAB 

software are given in Table 2.3. 

Table 2.4: Description of transfer functions 

 
Source: Jha and Chockalingam (2009) 

  

A neural network is trained to minimize output error by adjusting network weights 

and biases. This it does by using one of several learning algorithms. The back 

propagation learning algorithm with feed forward network architecture is considered 

most suited for predictions (Jain et al., 1996). Inputs are sent forward to hidden and 

output nodes while errors are propagated backwards through the network. Using the 

back propagation algorithm, a network is trained with an input and its corresponding 

output to a point where a function and an input becomes associated with a specific 

output. Where properly trained, back propagation networks usually give reasonably 
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accurate responses when presented with new inputs. The training of the network 

through adjustment of weights is usually a trial by error process, since no single 

algorithm suits all applications.  

 

A neural network model can be trained and tested using either the hold-out method or 

a re-sampling method called random sub-sampling (Edwards, 2007). The hold-out 

method splits the data sets into two groups. The design (training set) is usually two-

thirds of the sample, while the testing and validation set makes up the balance of one-

third, and is used for the estimating the true performance of the model on data not yet 

known to the network. The random sub-sampling method performs multiple random 

train and test experiments on training and testing samples. 

 

Neural networks are trained continuously until the mean squared error (MSE) is 

acceptable, and then validation is carried out. Once the mean absolute percentage 

deviation (MAPD) is found to be within acceptable limits, the prediction model is 

considered as validated. During validation predicted values derived from the models 

are compared with actual values obtained from sampling.  Some of the performance 

measures used to validate prediction models are presented in Table 2.4.  

Table 2.5: Performance measures for model validation 

 
Source: Jha and Chockalingam (2009) 
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2.7.2 Performance analysis of tools for cost variability prediction 

There are a wide variety of methodologies that can be utilized in performance analysis 

and prediction. To begin with, the modelling approach selected depends on a number 

of factors; this usually includes the type and quantity of available data, what use the 

developed model would be put to, and the quality of the predictive performance 

required (StatSoft Inc, 2011). Some of the available modelling techniques include 

case-based reasoning, principal component analysis, regression, decision trees, 

machine learning, genetic algorithm, fuzzy logic, as well as artificial neural networks. 

 

Regression is used to model the distribution of a variable, which is dependent upon 

variations in the distribution of one or more predictor variables (also known as 

independent variables). Simple regression analysis is also known as the least squares 

regression, where the best fitting line is chosen under the criteria that the sum of the 

squares of the residuals is minimized. The application of “fuzzy techniques” has been 

gaining popularity to the research area of construction management over the past 

decade. Fuzzy techniques refer to all fuzzy concepts, which include fuzzy set and 

logic; hybrid fuzzy techniques are those that combine fuzzy set and/or logic with other 

techniques, such as neural network, evidential reasoning, expert system and clustering 

(Lin et al., 2012). 

  

ANN models are based on a number of simple elements called neurons (nodes); which 

are linked by connections that possess varying weights. The transfer of the signal by 

each neuron involves an activation function that determines what the output will be.  

ANN is usually robust, adapts to unknown data sets easily, and has good learning 

capability (Jha and Chockalingam, 2009). Based on a review of relevant literature 
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where the different analytical tools and techniques were applied and the results 

obtained in such research works, Table 2.6 was drawn up.  

 

Table 2.6: Performance Analysis Table for prediction tools 

S/Nr Criteria ANN FL GA R 
Tentative 

Choice 
References 

1 Prediction accuracy Good Fair Poor Fair ANN Tu and Huang (2013); Hornik et al. (1989); 

Czarnigowska and Sobotka (2013);  

2 Learning ability Good Poor Good None ANN/GA Aibinu et al. (2011); Flood and Kartam 

(1994); Francesco et al. (2015); Bansal et al. 
(1993);  

3 Tolerance of non-

completeness of data 

Good Poor Good Poor ANN/GA Emsley et al. (2002); Flood and Kartam 

(1994); Chua et al. (1997);  

4 Data structure detection 

capability 

Good Fair Good Poor ANN/GA Aibinu et al. (2011); Anderson and McNeill 

(1992); Dvir et al. (2006); Arafa and 

Alqedra (2011) 

5 Speed Fair Fair Good Fair GA  

6 Non-linear capability Good Fair Good Poor ANN/GA Arafa and Alqedra (2011); Cho et al. (2013);  

7 Multi-attribute problem 

handling capability 

Good Fair Good Poor ANN/GA Masters (1993); Deng and Yeh (2010);  

8 Freedom from 

assumptions (functional 

form, probability 

distribution and 

smoothness) 

Good Poor Good Poor ANN/GA Camargo et al. (2003); Adeli (2001);  

9 Applicability / 

Customizability 

Good Fair Good Poor ANN/GA Francesco et al. (2015); Czarnigowska and 
Sobotka (2013); 

10 Tendency for over-fitting Low - High - ANN  

 Number of 

characteristics that 

favour use of tool 

9 0 8 0   

Source: Author (2017) 
Notes: ANN= Artificial Neural Networks; FL= Fuzzy Logic; GA= Genetic Algorithms;  

R= Regression 

 

In the Table 2.6, ten (10) key characteristics of four prediction and modelling tools 

were examined. The results presented in the table revealed that two characteristics 

make ANN preferable above other tools, while genetic algorithms (GA) have a single 

characteristic that gives them an edge over other tools. In the case of the rest 7 
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characteristics, the choice would lie equally between ANN and GA. With ANN 

featuring favourably in 9 out of 10 characteristics, it was easy to see why the use of 

ANN decided upon in this study. 

 

2.8 Theoretical Frameworks of Risk Impact on Construction Cost 

This study was built on the theoretical models of risk assessment and modelling. The 

method employed in assessing and modelling of risk depends to a large extent on the 

way the risk is perceived. Thus Odeyinka et al. (2012) remarked in their study on risk 

impact on cost variability, that there are many theories regarding risk perception and 

risk measurement. To Elseth and Hamann (1999), risk is the probability of failure in 

the cost, schedule or technical performance of a system as well as the consequences of 

such failure. Gamez (2009) also shared this view of risk assessment as a function of 

probability of occurrence and the consequence.  

 

Some researchers have tended to view risk assessment as a controversial issue (Baloi 

and Price, 2003), which by tradition focused on the assessment of risk quantitatively 

(Tah and Carr, 2001). This approach has persisted despite the difficulties encountered 

in deriving appropriate data. Quantitative risk assessment comes with the problem of 

ensuring the objectivity of probabilities and frequencies; the fact that projects in the 

construction industry are very often one-off enterprises is the main source of the 

problem (Flanagan and Norman, 1993). Researchers have circumvented this problem 

by relying on subjective probabilities (Winch 2003) or adding an approximate sum of 

money as a contingency allowance (Kangari and Riggs, 1989). Current research 

paradigms allow for subjectivity in data because adequate historic data can usually be 

obtained in linguistic but not numeric form (Al-Bahar and Crandall, 1990). This 
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means that individual knowledge, experience, intuitive judgement and rules of thumb 

all serve as sources of data for risk assessment and should be collected in a structured 

manner so as to facilitate risk assessment (Dikmen et al., 2007).  

 

A very narrow boundary exists between risk assessment and risk modelling, as can be 

observed in Figure 2.3. Risk is conventionally assessed through assessing its 

probability of occurrence and impact; for this reason the Probability–Impact (P–I) risk 

model has become the dominant risk model in literature. The P–I risk model has been 

criticized by some researchers who discussed the possibility of improving it. There 

however appears to be a wide gap between the theory and practice of risk modelling 

and assessment (Laryea and Hughes, 2008). The consequence of risk eventually 

manifests as a difference (which may be negative or positive) between the planned 

costs and the actual costs of construction projects. 

 

When the cognitive model of Winch (2010), which subdivided risks and uncertainties 

on construction projects into four ‘risk spaces’ is applied to the effect of risks on 

building costs, it becomes apparent that although it is known that differences do occur 

between planned costs and actual costs, yet the magnitude of the difference usually 

remains unknown before the completion of the project. Thus the final costs of 

construction projects fall into the ‘known unknown’ risk space. The Project 

Management Institute (2012) concurs with this view and even goes further to provide 

descriptive aids to assist in measuring the degree of risk. 
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Figure 2.3: Historical summary of some key developments in risk assessment and 

modelling 

Source: Researcher’s summary 

 

2.8.1 Theoretical works in the assessment of risks 

Risk assessment has over time been enveloped in such complexity that it has always 

drawn huge research attention which has been reflected in the different approaches 

that have been adopted for assessing project risks. Research into the assessment of 
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risks in construction has proceeded from purely quantitative statistical methods based 

on Probability Theory (PT) to mixed qualitative-quantitative techniques such as Fuzzy 

Set Theory (FST). From that point, progress has been made with the introduction of 

Analytical Hierarchical Process (AHP) in dealing with the ever increasing complexity 

in risk assessment due to the growing complexity in construction projects (Tah and 

Carr, 2000).  

 

The initial reliance on PT for dealing with cost and schedule risks perceived risk as 

being simply an estimation variance, which can be assessed if objective probabilities 

and frequencies of the occurrence of the risks are known. The switch to FST showed 

that many researchers now believed that subjectivity in the form of human factors, 

intuition, professional experience and personal judgement were essential inputs in the 

risk assessment process. Currently, AHP appears to be the effective tool of choice for 

researchers to systematically handle the complexities in assessing construction risk by 

allocating importance weightings. At present, researchers are focused on attempting to 

represent the interdependencies between project risks to reflect the complexity of the 

project environment (Ackermann et al., 2007; Lazzerini and Mkrtchyan, 2011; Nieto-

Morote and Ruz-Vila, 2011). In explaining the profusion of tools and techniques for 

risk assessment, Laryea and Hughes (2008) referred to the use of PT-based and 

simulation tools as “classicalism”, while the use of analytical tools such as AHP was 

termed “conceptualism”. Classicalism perceived risk as an estimation variance; 

conceptualism on the other hand regarded risk as a project attribute.  

 

Researchers have identified two forms of risk; subjective risk is the probability of risk 

occurrence/impact of occurrence while objective risk is the extent of risk 
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occurrence/the impact of occurrence, (Adams, 2006). Although the extent of risk 

occurrence is viewed as an objective estimate of risk, yet data on it still relies on 

linguistic rather than numeric approaches. This introduces the risk that perceptions 

regarding extent of risk occurrence might vary if project stakeholders are interviewed 

at different points in time. In contrast, the financial consequence of risk (the ‘risk 

cost’ first put forward by Franke (1987)) is documented in final accounts; hence this 

risk measure remains the same under varying conditions and at different points in 

time. If the financial consequence of risk were substituted for the extent / impact of 

risk, a relatively more stable measure of risk is obtained.  

 

2.8.2 Theoretical works in the modelling of risks 

Evidence from the literature showed that construction risk has been traditionally 

modelled as the variance of cost or duration estimation, using the P–I risk model that 

multiplies probability of occurrence with impact. In the present times however, newer 

tools and techniques have allowed researchers to model risk as a project attribute; 

however most researchers still base such tools and techniques on the P–I risk model. 

Thus it is evident that the P–I risk model still dominates the theory of risk modelling. 

Across the space of three decades however, researchers have put forward a lot of 

proposals for improving the existing dominant risk model. Taroun (2014) has very 

comprehensively summarized these improvement proposals. 

 

The highlights of the suggested improvements to the P-I risk model includes Charette 

(1989) proposal that the ‘predictability of risk’ be added as a third dimension to the P–

I risk model. This was followed by Jannadi and Almishari (2003) who suggested that 

instead of predictability, the extent of exposure to risk should be used as a third 
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dimension to the P–I model. Attention was drawn to the role of the interdependencies 

between risks in the modelling of construction risk by Cervone (2006), who 

recommended that risks should be discriminated through reducing their independent 

scores generated by the P–I model. Still on the interdependence of risks, Aven et al. 

(2007) posited that some risks are more manageable than others; Dikmen et al. (2007) 

concurred by suggesting risk manageability as a mitigating factor for the overall 

project risk level. Zeng et al. (2007) also supported the notion that risks are 

interdependent, but by incorporating the factor index (I = influence of the surrounding 

environment and the interdependencies between the identified risks) as a third 

dimension in the P–I risk model. The project environment was also the focus of Zhang 

(2007), who incorporated project vulnerability as a measure of the mediating effect of 

project environment on risk impact. Risk analysts rely on their intuition to rank risks 

in terms of what applies to a project and what does not. This observation influenced 

Han et al. (2008) in adding ‘risk significance’ as a third dimension to the P–I model; 

this was to account for the subjectivity inherent in human assessment of risks as 

significant or not. The work by Zhang (2007) was adopted by Vidal and Marle (2012) 

in their assessment of project risks management systems.  

 

2.9 Conceptual Framework for Assessing Risk Effect on Building Costs 

The conceptual model for the study which showed how the effect of risk on project 

cost performance can be evaluated from changes to the initial contract values of 

projects was presented in Figure 2.4. The conceptual framework subscribed to 

Odeyinka et al. (2013) postulation of risk as the underlying reason why changes 

occur in the costs of construction projects between the start and completion of such 

projects.  



56 
 

Construction projects have been said to comprise five general stages: 

initiation/planning, design, tender, construction and final account/defect liability 

stage, each of which has influence on the project success. Some researchers believe 

that the importance of the final account stage in achieving successful closure of 

construction projects has always been neglected in construction management 

literature (Zakaria et al., 2012a; Zakaria et al., 2012b). This perception was 

partially remedied in this study. The conceptual framework was predicated on the 

belief that the financial changes documented in final accounts represented a stable 

and appropriate measure of the consequences of risk. This position taken by the 

study was not an isolated one; the association of final account values with specific 

risks was undertaken in line with the risk register methodology adopted in studies 

such as those of Perrenoud et al. (2016) and Ibrahim (2008). 

 

The framework has been designed to avoid the two shortcomings of previous 

efforts at predicting risk effect on costs, which were (i) reliance on semantic scales 

to derive risk impact, and (ii) minimal or zero use of established sources of project 

historical data. For this reason, final accounts of building projects formed the major 

source of data for testing the framework. The derivation of risk impact was 

undertaken with the use of the risk register methodology; it reduced subjectivity in 

risk inpact estimation by requiring the use of a construction professional only to 

associate costs in the final accounts with risks whose action resulted in the cost. 

 

2.9.1 Conceptualizing the effect of risks on costs of building projects 

Right from the moment a project is started, changes begin to be observed in the 

values of the quantities of work, which were considered as provisional as at the 
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time of commencement. Firm bids are obtained from subcontractors and suppliers 

that in many cases differ markedly from the monetary allowances that were made 

for goods and services to be purchased from subcontractors and suppliers. In 

addition, as the work progresses, the client or design team have cause to vary the 

scope of the works either by addition of new works, subtraction of some parts of 

the works planned to be done, or substitution of some part of the works with a 

different type of work.  

 

Odeyinka et al. (2012) opined that the effect of risk manifests in the costs incurred 

on a construction project through differences in the project’s planned cost at the 

pre-construction stage and out-turn cost at completion. This they blamed on risk 

factors eventuating during the in-progress phase of construction. In his own 

contribution, Love (2011) postulated that cost overruns were due to pathogens that 

reside latently within a system such as a construction project. They are activated by 

‘active failures’, which are unsafe acts committed by people within the system. For 

example, the relatively common practice of commencing work using tentative 

information might be the source of active failures, such as non-provision of proper 

cost details for work sections. This then leads to an increased risk of cost changes 

for works included in the ‘provisional sums’ section of final accounts. 

 

At project commencement, it is expected that the final contract value (FCV) that 

will be revealed in the final account (FA) will be lower than or at the most equal to 

the planned cost of the project that was encapsulated in the initial contract value 

(ICV). This expectation is based on the adequacy of the contingency allowances 

built into the ICV. Mathematically, this can be expressed as: 
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FA ≤ ICV     …………………….. Eq 2.3 

However, from the literature on cost performance of construction projects, the actual 

observation is better expressed by Equation 2.4 

 FA ≠ ICV     …………………….. Eq 2.4 

Relying on the perspectives of Perrenoud et al. (2016), Odeyinka et al. (2013), 

Odeyinka et al. (2012) and Ibrahim (2008), equation 2.4 could be re-written as 

FA = ICV + RC     …………………….. Eq 2.5 

where RC is the effect of risk on the project manifested in observed changes 

in the project costs. 

The magnitude of the deviation of Final Accounts from Initial Contract Values 

served as the dependent variable. It must be remarked that equation 2.5 would also 

be valid for a situation where savings had been made in the project expenditure; in 

such a case, RC would be negative and would depress the value of FA. In a small 

minority of projects, deriving from the professed inevitability of risk (Latham, 

1994), RC would be equal to zero.  

 

The frequency and timing of the changes that are observed in the project costs are 

important and can be measured (Perrenoud et al., 2016). This is because of the 

cumulative effect of risk; on a project several incidences are recorded and each has 

a small cost value, relative to the ICV of the project. However, when these 

individual incidences are aggregated cumulatively, the overall effect on cost of the 

project might be substantial. To identify the various costs that were incurred as a 

consequence of specific risks, 8 different risks were classified into three groups 

(client, consultant and unforeseen) in this study. 
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Using the risk register approach, costs were associated with specific risks (and thus 

specific risk groups) through interaction with project quantity surveyors (PQS). The 

result of this was expressed in equations 2.6 and 2.7: 

 RC1 = (C11 * f11) + (C12* f12) … + (C1n * f1n)  ……. Eq 2.6 

RC2 = (C21 * f21) + (C22* f22) … + (C2n * f2n)  ……. Eq 2.7 

where RC1 was the aggregate cost effect of the client risk group and RC2 

referred to the aggregate cost effect of the consultant risk group; C1 and C2 

were the individual cost increases due to Client and Consultant risks 

respectively; f1 and f2 were the frequencies of the cost increases due to 

Client and Consultant risks respectively. 

The outcome of the data collection phase of the study would provide the values of 

RC, C and f as well as the value of n in equations 2.6 and 2.7.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Conceptual framework for assessing risk effect on project costs 
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ANN1: 1st approach used ANN to predict cost variance from effect of risks on project costs. 

ANN2: 2nd approach used ANN to predict risk effect on project costs from selected construction project 
features 
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2.9.2 Conceptualizing the development of artificial neural network for 

prediction of risk effect in costs of building projects 

Two separate approaches were employed in the deployment of ANN as tool of 

choice for prediction of risk effect on costs as required by Objective 4 of the study. 

Details of these two approaches were provided in the following sub-sections.  

 

2.9.2.1 Prediction of cost variance using risk effect on project costs 

The conceptual framework encompassed the modelling of the deviation between 

initial contract values and final accounts, which was indicated on the conceptual 

framework by a bold red arrow. This was achieved through the application of 

artificial neural network and multiple regression analysis (MRA) for purposes of 

comparison. The choice of the tool employed for modelling was informed by the 

nature of the data to be modelled as well as the need to derive a model having 

optimal performance in terms of accuracy and generalizability. At the end of the 

analysis with MRA, a linear equation would be obtained in the usual regression 

form of y = a + bx. As stated by Kumar and Phrommathed (2005), the two main 

types of variables (independent and dependent variables) can be identified in the 

conceptual framework. The expected actual form of the predictive model that 

would be developed was: 

(FA-ICV) = a + (b1 * RC1) + (b2 * RC2)   …… Eq 2.8 

  

where b1 and b2 are the regression coefficients and a is a constant indicating 

the slope of the regression line. 

   

2.9.2.2  Prediction of effect of risk on project costs using CPFs  

Prediction of the effect of risk in the costs of the project was also captured in the 
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conceptual framework of the study. The prediction of risk effect was carried out 

through the use of artificial neural network with CPFs as network inputs (indicated 

by the bold yellow arrow in Figure 2.4. It needs to be stated here that in the entire 

review of literature on the use of ANN in cost forecasting and prediction of risk 

effect in construction costs, no evidence was found that risk effect has ever been 

predicted through the agency of ANN with CPFs as network inputs. The closest to 

ANN2 that was found in literature were two studies where risk effect on costs was 

applied in the prediction of final cost variance (Odeyinka et al., 2012; Odeyinka et 

al., 2013).  

 

The main differences between the two approaches applied include the adoption of 

risk grouping in ANN1, while in ANN2 the normalization of data was carried 

entirely through reduction to binary scale. The use of binarization enabled the 

application of engineering tools such as receiver operating characteristic (ROC) 

charts, 2 x 2 contingency tables and derived performance metrics to the network 

developed through Methodology 2, in order to caliberate its performance. This was 

in line with the requirements of Objective 5. 

 

2.10 Outcome of the Review of Related Literature 

The review of literature carried out in this study has revealed that the modeling of 

project cost performance has followed a mathematical/statistical approach from the 

earliest times; computer-based artificial intelligence techniques have also been 

applied, although prior to 2012 none of the developed models have dealt with the 

impact of risk on project costs. Risk has been defined in the literature as “an 

uncertain event or condition that, if it occurs will have either a positive or negative 
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effect on one or more of the project’s objectives”. A typical construction project 

may involve several forms of risks such as contractual, financial, operational, 

political and technical risks. Researchers have opined that traditional cost 

estimating methods have failed to cope with the problems of uncertainties and 

accuracy, and have stressed the need to develop more accurate and robust 

construction cost forecast techniques.  

 

The significant factors impacting on project cost in Nigeria that have been 

identified include price fluctuation, financing and payment of completed work, 

additional work, design changes, inaccurate estimates, imported materials and plant 

items; some other researchers found that financial, design and construction risks 

have significant impact on cost of construction projects in Nigeria. However it was 

also found from the literature review that a consistent, industry-wide method for 

characterizing construction risks does not exist. Risks have been assessed 

qualitatively through their probability of occurrence and impact using simple 

semantic scales such: as high, medium, low. There are also quantitative methods of 

assessing risk that use empirical data about past similar events obtained from either 

participants or observers. Experts however recommended that both qualitative and 

quantitative risk assessment methods should be combined in identifying the risks 

associated with the control of the project cost, time, and resources.  

 

An artificial neural network (ANN) is an information processing system that is 

essentially a mathematical model made up of a number of simple elements called 

neurons (nodes); signals move between neurons through connection links that 

possess varying weights. The transfer of the signal by each neuron involves an 
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activation function that determines what the output will be. ANN modeling is 

usually chosen because of its robustness, ability to adapt to unknown data sets, and 

good learning capability. Drawing on the reviewed literature, the evaluation of 

effect of risk on project cost performance from changes to the initial contract values 

of projects was encapsulated in the conceptual model for the study. The framework 

attempted to avoid the two shortcomings of previous efforts at predicting risk effect 

on costs, which were (i) reliance on semantic scales to derive risk impact, and (ii) 

minimal or zero use of established sources of project historical data. For this 

reason, the derivation of risk impact was undertaken with the use of the risk register 

methodology that had been adopted in some previous studies.   
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CHAPTER THREE 

3.0    RESEARCH METHODOLOGY 

 

3.1 Research Design 

This study utilized two different approaches (ANN1 and ANN2) in applying ANN in 

the prediction of risk effect in final costs of building projects, as detailed under the 

conceptual framework of the study in Chapter Two. Both ANN prediction approaches 

utilized the same data collection procedures, and only differed in the way data was 

prepared and analyzed. This difference has been reflected in Section 3.3, which dealt 

with Analysis of Data on an objective-by-objective basis.  

 

Construction research is often as a matter of necessity based on empiricism where 

conclusions are drawn on the basis of observed facts (Kenley, 2003); this is because a 

lot of what is being researched into in the construction industry is not underpinned by 

theories that have been tested and proved. This study adopted a positivist 

epistemological approach, through the extensive use of project historical records. This 

is based on the argument by Osei-Hwedie (2011) that in positivism, scientific 

knowledge is proven through the accrual of verified facts. Applying a positivist 

empirical approach represents an alignment with approaches applied in previous 

researches on risk effect on costs in building projects.   

 

A combination of two research approaches (qualitative and quantitative) was 

employed sequentially in the study. Onwuegbuzie and Johnson (2006) describe 

sequential Mixed Method as a contextual overlaying strategy, where qualitative 

approaches are used to collect contextual information for facilitating the interpretation 
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of quantitative data or reconciling findings. It has been argued that a characteristic of 

truly mixed method studies involves integration of the qualitative and quantitative 

findings at some stage of the research process, be that during data collection, analysis 

or at the interpretative stage of the research (Kroll and Neri, 2009 cited in Ostlund et 

al., 2011). Yin (2003) observed that processes that employ quantitative approach are 

typically well structured and formalized; by contrast qualitative approaches are more 

flexible and suited to in-depth exploration.  

 

Mixed method research designs are pursued largely based on the premise that they 

exploit the advantages of quantitative and qualitative methods, while neutralising the 

“costs” or “risks” associated with each method (Grafton et al., 2011). Creswell (2009) 

describes the Mixed Method approach as one where the researcher may first explore 

generally in a qualitative manner to learn about which variables to study, and then 

study those variables with a large sample of individuals quantitatively. However, in 

studying the effect of risk on project costs, the use of only one approach will be 

limiting, as risks abound in large numbers and variety in the construction industry. It 

may be helpful if contextual knowledge of types and features of risks possessed by 

cost management professionals is assessed qualitatively before the effect of the risks 

is measured quantititatively.  

 

Some of the advantages of the Mixed Method approach are that the techniques of 

qualitative and quantitative domains, when interlinked, help to maximize the 

knowledge yield of research outcomes (Teddlie and Tashakkori, 2009). Mixed 

Method also allows the researcher to discover and justify the model components 
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within one study. In addition, qualitative techniques permit gathering of data that is 

robust in details, which will have a great influence on the research output. 

 

When qualitative and quantitative methods are mixed in a single study, one method is 

usually given priority over the other. This is less challenging in sequential Mixed 

Method studies, where one approach clearly informs the other (Ostlund et al., 2011). 

The proposed Sequential exploratory strategy for this research starts with in-depth 

reviews of literature (qualitative), to capture as much of the construction researchers’ 

perspectives towards risk effect on project costs. Information obtained from this 

process is then fed into the development of a questionnaire survey (quantitative) to 

extract definitive data on risk effect on project costs from historical project records.  

 

3.2 Data Collection 

The process of acquiring data for determining the risks (Objective 1 of this study) and 

construction project features (Objective 2 of the study) that could be employed for the 

development of an artificial neural network for predicting risk effect on project costs 

began with a review of relevant literature. This exercise yielded a total of 70 risk 

factors and 33 CPFs that were then whittled down to more manageable numbers (see 

Section 3.3) before inclusion into the research instrument of the study.  

 

Data employed for the determination of effect of risk on project costs (Objective 3) 

was obtained from the final account documentations as well as the bills of quantities 

of the sampled building projects. Project Quantity Surveyors (PQS) served as sources 

of experiential data by helping to identify the risks that had influenced the costs of the 

building projects. In some cases, apart from extraction of relevant information from 
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final account documents, the PQS also provided project files for perusal of records of 

architect’s instructions, variations and certificates, arising out of site meetings or other 

project communications. All of the foregoing kinds of data were thereafter employed 

in the development of artificial neural networks for predicting risk effect in final costs 

of building projects, which was Objective 4 of the study. Analysis of the performance 

of the neural networks thus developed (Objective 5 of the study) did not require any 

additional kind of data apart from what was used to develop the neural networks. 

 

3.2.1 Population of the study  

The unit of analysis of this study is building construction projects. The population of 

the study comprised building projects where final accounts had been prepared to mark 

the end of the construction phase. Final accounts are technical documents detailing the 

costs incurred on a construction project over the construction phase of the project. 

They are prepared by quantity surveyors, and are of a confidential nature. There was 

no organization, statutory, voluntary or otherwise, that was known to the researcher 

which kept complete lists of completed building projects for which final accounts had 

been prepared. Fragmented sets of the population of interest were maintained by some 

statutory organizations such as the Development Control Unit of the Federal Capital 

Development Agency (FCDA) as well as the various quantity surveying consultancy 

firms.   

 

In order to improve the chances of obtaining as many final accounts as possible, it 

was decided to approach the QS consultancy firms directly. Purposive sampling was 

identified as the sampling technique that offered the best chance of accessing the most 

projects.  
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3.2.2 Sampling technique  

Purposive sampling technique was employed in this study, because projects had to 

satisfy some criteria to qualify for inclusion in the study (building project; completed 

between 2004-2015; detailed final account prepared). The 2015 Diary of the Nigerian 

Institute of Quantity Surveyors (NIQS) was consulted to provide an indication of the 

population of QS consultancy firms that could be approached. There were a total of 

230 firms registered with the NIQS nationwide, of which 48 were located in Abuja 

(NIQS, 2015). The NIQS, which is a trade association, was employed rather than the 

Quantity Surveyors Registration Board of Nigeria (QSRBN) which is a statutory 

body. This was because the NIQS publishes annual lists of members qualified to 

practice Quantity Surveying. 

 

The choice of purposive sampling technique hinged on its ability to provide a 

representative sample (Patton 2001) of sample elements based on certain specified 

criteria, such as the possession of specific knowledge required by the study. An 

alternative non-probability sampling technique that could be employed is convenience 

sampling, where selection is based on willingness to participate in the study. Both of 

these two sampling techniques have been recognized as appropriate in situations when 

respondents are not randomly selected from the entire population Wilkins (2011). 

This study required input from PQS who had worked on projects that had been 

affected by risk; such effect must have manifested as change in the cost of the project.  

 

3.2.3 Sample size and response rates 

Information in final accounts of 77 completed projects was entered into the research 

instrument. This information included additions and omissions to projects costs as 
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presented in BOQs. Detailed breakdown of the information collected is presented in 

Section 3.2.4. The inability to provide final accounts of completed building projects 

supervised by them limited the participation of most of the quantity surveying firms 

located within the study area. Eight final accounts were found to provide incomplete 

project financial information and were discarded, leaving 69 project final accounts for 

use in the study.  

 

Based on the fact that the study population could not be defined accurately, response 

rates for the study could not be computed. However, the quantum of data collected 

and utilized for the development of the artificial neural network, 69 projects in all, 

compared favourably with precedents in the literature (see Table 2.2a and Table 2.2b 

in Chapter 2 for a detailed list of sample sizes for researches that have utilized ANN). 

Sample sizes for some studies that had building projects as unit of analysis include 55 

datasets for Odeyinka et al. (2013) (obtained from a potential population of 370, 

representing a 14.86% response rate) and 19 datasets for Odeyinka et al, (2012) 

(obtained from a population of 62, representing a 30.65% response rate)..  

 

3.2.4 Research instruments 

Two kinds of questionnaires were used for data collection, to obtain information on 

the CPFs as well as the specific risks that affected project costs. The CPF 

questionnaire contained two sections, Section ‘A’ where ‘general demographic 

information about the respondents’ was requested; in Section ‘B’ information on the 8 

construction project features was requested. A sample of the CPF questionnaire was 

included as Appendix A.  
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The Risks questionnaire was designed to accommodate cost information extracted 

from final accounts of projects, against which respondents filled in information on 

risks. All of the 5 classes of costs in final accounts were covered (provisional sums 

(PS), provisional quantities (PQ), variations that increase costs (Va), variations that 

decrease costs (Vo) and variations that substitute costs (Vs)). A sample of the Risk 

questionnaire was included as Appendix B. 

 

3.2.5 Classification and measurement of research variables 

CPF Questionnaire – Section A 

The variables in Section A of the questionnaire were classified and measured as 

follows: 

QV1 - Designation of respondents: On the designation of respondents, the 

respondents were asked to state their position in the organization.  

QV2 - Construction experience:  The construction experience of respondents were 

measured and assigned values as follows: Less than 11 years - 1; 11 - 20 years 

- 2; 21 - 30 years - 3; more than 30 years - 4.  

QV3 - Highest academic qualification:  For the academic qualification, values 

were assigned as follows: OND-1; HND-2; B.Sc-3; PGD-4; M.Sc-5; PhD-6; 

Others-7  

CPF Questionnaire – Section B 

The variables in Section B of the questionnaire were classified and measured as 

follows: 

QV4 - Year: The year in which construction of the project commenced would be 

provided.  
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QV5 – Gross floor area:  The area covered by the building being constructed, 

measured to the external faces of enclosing walls. Measurement was in square 

meters.  

QV6 – Project type:  The type of project was classified into 11 categories and values 

were assigned as follows: Carpark-1; Hospital-2; Hostel-3; Hotel-4; House-5; 

Library-6; Office-7; School-8; Warehouse-9; Workshop-10; Others-11. 

QV7 – Project nature: The nature of project was classified into 2 categories 

and values were assigned as follows: New construction-1; Refurbishment-2. 

QV8 – Cost of structural element: The Naira value of the structural element of the 

building (which encompassed the substructure, frames, external and internal 

walls and roof) would be provided. 

QV9 – Cost of services element: The Naira value of the services element of the 

building (which encompassed the plumbing, mechanical and electrical 

engineering installations) would be provided. 

QV10 – Cost of finishing element: The Naira value of the finishing element of the 

building (which encompassed the floor, wall and ceiling finishing, as well as 

painting and decoration) would be provided. 

QV11 – Cost of external work element: The Naira value of the external work 

element of the building (which encompassed the fencing, roads, landscaping, 

external lighting, stormwater drainage, gate and generator houses) would be 

provided. 

Risks Questionnaire 

The variables in the Risks questionnaire were defined and measured as follows:  

CV1 – Section of Final Account concerned: This column identified the information 

presented in each row as taken from either ‘Adjustments to Prime 
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Costs/Provisional Sums’, or ‘Re-measurements of Provisional Quantities’, or 

‘Variations’ section of Final Account. 

CV2 - Brief Description of costs items in Final Account: Very brief description of 

individual items in Final Accounts are inserted here.  

CV3 – Value of costs items in Final Account: The value in Naira of individual cost 

items in Final Accounts are inserted here under either an ‘Addition’ or 

‘Omission’ column.  

CV4 –Risks: the risk that was identified as responsible for changes in individual cost 

items in Final Accounts is identified here from a List of Risks: The risks to be 

selected were identified and assigned values as follows: Risk1 [Client scope 

change] – 1; Risk2 [Client variation/design change]– 2; Risk3 [Consultants' 

error/omission in design] – 3; Risk4 [Consultants' error/omission in estimates] 

– 4; Risk5 [Consultants' design change]  – 5; Risk6 [Unforeseen economic 

conditions] – 6; Risk7 [Unforeseen site conditions] – 7; Risk8 [Unforeseen 

social disturbance] – 8. 

 

3.2.6 Validity of the research instruments 

This study adopted the classification and measurements of variables as employed in 

previous researches such as Odeyinka (2003); Aibinu and Jagboro (2002) and 

Ogunsemi (2002); this was to ensure the validity of the contents of the research 

instruments. The supervisors of this study and senior researchers who possessed 

experience in risk analysis were also consulted on the freedom from ambiguities and 

validity of the contents of the research instrument. The responses from these varied 

sources were used to design the version of the research instruments that was used in 

the fieldwork.  
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3.2.7 Reliability of the research instruments 

In order to provide assurance that the research instruments for the study were reliable, 

a split-half test was done in order to provide evidence that the research instruments 

will be able to retrieve the same information every time from respondents. Pilot data 

was collected, split into two halves and analyzed using Spearman’s Correlation. The 

results presented in Table 3.1 showed that the research instruments were reliable. 

Details of the analysis as performed with SPSS are included as Appendix C. 

 

Table 3.1: Reliability of research instruments 

Type of Research Instrument 
Spearman’s 

‘rho’ 

Coefficient of 

Determination  

(R
2
 in %) 

Remark 

CPF Questionnaire 0.887 78.68% Highly reliable 

Risks Questionnaire 0.911 82.99% Highly reliable 

Both Questionnaires 0.895 80.10% Highly reliable 

Source: Author (2016) 

 

3.3 Method of Analysis of the Research Data  

This section dealt with the manner in which the data collected for achieving the 

research objectives were analyzed, in order to provide meaningful information. The 

treatment of the data in this study was summarized in general terms in Table 3.2. A 

complete list of the projects that made up the study sample was included as Appendix 

D; the changes in project costs and the associated risks which were encountered in 

these projects were included as Appendix E. 
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Table 3.2: Data analysis tools and decision criteria 

Research objectives Types of data 
Types of analytical 

tools 
Decision criteria 

Obj1 To determine the risks to use in 

predicting the effect of risks in 

the final costs of building 

projects. 

Risks from previous studies  

(client scope change, client variation/design change, 

consultants' error/omission in design, consultants' 

error/omission in estimates, consultants' design change, 

unforeseen economic conditions, unforeseen site conditions, 

unforeseen social disturbance) 

Literature search; 

purposive selection of 

risk based on 

relevance to study 

Meet at least 1 of 3 criteria: 

Applied ANN; Predicted 

building costs;In Nigeria 

Risk is significant if it 

impacted >9 projects 

Obj2 To determine the Construction 

Project Features (CPFs) to use in 

predicting the effect of risks in 

the final costs of building 

projects 

Construction Project Features employed in multiple studies 

(gross floor area, project type, project nature, year, elemental 

costs – structural, services, finishing, external work). 

Literature search; 

purposive selection of 

CPF based on 

relevance to study 

Meet 4 criteria: 

Applied ANN; 

Forecasted building costs; 

Construction industry-based 

In more than 2 study 

Obj3 To determine the effect of risks 

in the final costs of building 

projects. 

Monetary values of 5 clasess of costs in final accounts  

(provisional sums (PS), provisional quantities (PQ), variations 

that increase costs (Va), variations that decrease costs (Vo) 

and variations that substitute costs (Vs); 

Initial Contract Value; Final Contract Value 

Tabulation using data 

filters; 

Correlation analysis; 

Bar charts; Pie charts; 

Modal values of risk 

occurrence 

Obj4 To develop an artificial neural 

network for the prediction of risk 

effect in final costs of building 

projects. 

Numerical values of: 

Construction project features  

Effect of risks on project costs  

Initial Contract Value; Final Contract Value 

Neural network 

toolbox of MATLAB 

2015; 

ANN was validated by 

MSE, SSE, SAE, MAPE 

values; 

Obj5 To carry out a performance 

analysis of artificial neural 

network developed for the 

prediction of risk effect in final 

costs of building projects. 

Simulation output of the developed neural network Obj4 True positive values are > 

false positive values of 

simulation output. 

Source: Author (2017) 
Notes: MSE = Mean Square Error; SSE = Sum of Squared Errors; SAE = Sum of Absolute Error; MAPE = Mean Absolute Percentage Error; 
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3.3.1 Method of data analysis for determination of risks for predicting variance 

on costs of building projects 

Seventy risks had earlier been identified from construction management literature (see 

Table 2.1a and Table 2.1b in Chapter Two). Risks to be included in the research 

instrument were purposively selected from this list by extracting risks that were 

considered relevant to this study. Relevance to the study was believed to be enhanced 

by use of the risks in ANN prediction studies and use of the risks as predictors in cost 

forecasting with statistical tools. Nineteen risks were obtained from the purposive 

selection phase as presented in Table 3.3; these risks were included in the research 

instrument.  

 

Table 3.3: Result of purposive selection of risks 

Risk 

Nr 
Risks Sources 

1 Acts of God Windapo and Martins (2010) 

2 Cash flow difficulties Omoregie and Radford (2006); Aibinu 

(2008); Windapo and Martins (2010) 

3 change in design / variations by the client Odeyinka et al. (2012); Odeyinka et al. 

(2013) 

4 Change in scope of work Odeyinka et al. (2012); Perrenoud et al. 

(2016) 

5 change in the design by the Architect Odeyinka et al. (2012); Odeyinka et al. 

(2013) 

6 Changes in site conditions Omoregie and Radford (2006); Odeyinka 

et al. (2012)  

7 Consultant competence Windapo and Martins (2010) 

8 Contractor competence Windapo and Martins (2010) 

9 contractor/subcontractor/ supplier issues Perrenoud et al. (2016); Aibinu (2008) 

10 Incomplete drawings Aibinu (2008) 

11 Delay due to excessive approval procedures Omoregie and Radford (2006) 

12 Equipment breakdown/ maintenance Aibinu (2008) 

13 error/omission in design/estimates Perrenoud et al. (2016); Aibinu (2008) 

14 Inclement weather Odeyinka et al. (2013) 

15 Inflation Omoregie and Radford (2006) 

16 Labour shortage Odeyinka et al. (2013) 

17 Poor contract management Omoregie and Radford (2006) 

18 Production target slippage Odeyinka et al. (2013) 

19 Social issues/area boys, original land owners Windapo and Martins (2010) 

Source: Researcher’s summary 
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3.3.2 Method of data analysis for determination of Construction Project 

Features (CPFs) for predicting risk effect on costs of building projects 

An extensive literature search yielded thirty-three CPFs which were presented in 

Table 3.4. All of the CPFs in the table were collated from studies carried out within 

the construction industry where artificial neural network (ANN) had been employed 

as the prediction tool. Only one CPF (gross floor area) had been used in 4 studies.  

 

Table 3.4:  Construction project features applied as ANN inputs 

S/N CPFs a b c d e f g h i j k l m 

1 Gross floor area  x 
  

x x 
   

x 
    

2 Number of stories x 
  

x 
    

x 
    

3 Type of project x 
  

x 
 

x 
       

4 Duration  x 
      

x 
     

5 Estimated Sum 
   

x 
   

x 
     

6 Initial contract sum 
      

x 
  

x 
   

7 Number of basements 
          

x 
 

x 

8 Procurement Route; 
   

x 
 

x 
       

9 Risk probability 
      

x 
    

x 
 

10 Risk impact 
      

x 
    

x 
 

11 area of formworks 
            

x 
12 Estimating Method 

   
x 

         
13 fluctuation measure 

     
x 

       
14 Floor Height 

          
x 

  
15 Ground conditions x 

            
16 Land Acquisition 

          
x 

  
17 Lowest tender price x 

            
18 Location; 

   
x 

         
19 Market conditions x 

            
20 Number of tenderers x 

            
21 Number of cols 

    
x 

        
22 Structural Material 

   
x 

         
23 payment method, 

     
x 

       
24 Site slope x 

            
25 Site access x 

            
26 Scope of project 

       
x 

     
27 Type of contract x 

            
28 typical floor area 

    
x 

        
29 type of client 

     
x 

       
30 volume of concrete 

            
x 

31 weight of steel 
            

x 

32 Work space in site x 
            

33 Year 
          

x 
  

Source: Researcher’s summary 
Note:  a = Elhag and Boussabaine (1998); b = Palaneeswaran et al. (2008); c = Wang and Gibson 

(2010); d = Aibinu et al. (2011); e = Arafa and Alqedra (2011); f = Ahiaga-Dagbui  and Smith 

(2012); g = Odeyinka et al. (2012); h = Ahiaga-Dagbui  and Smith (2013); i = Gulcicek et al. 

(2013); j = Amusan et al. (2013); k = Kim et al. (2013); l = Odeyinka et al. (2013); m = Roxas 

and Ongpeng (2014). 
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This was followed by two CPFs (number of stories and type of project) which had 

been used in 3 studies each. A further seven CPFs had been employed in 2 papers 

each (duration, estimated sum, initial contract sum, number of basements, 

procurement route, risk probability and risk impact). The balance of 23 CPFs had 

been employed in only one research study each. 

 

Three CPFs were purposively selected from the thirty-three in Table 3.4 as being 

relevant to this study. The selection was done bearing in mind that the CPFs would be 

converted to binary scale. The 3 CPFs were gross floor area, type of project and year. 

The use of five additional CPFs as predictors in neural networks was explored in this 

study. The 5 CPFs were project nature and costs of structural, services, finishing and 

external works expressed as a percentage of the initial contract values of projects.  

 

The 5 CPFs that were not taken directly from literature nevertheless shared 

similarities with those taken from literature. The costs of elements were related to the 

targets of the ANN employed in Arafa and Alqedra (2011), which was termed 

structural cost of building. A general elemental layout of building was followed, 

where elements are defined as groups of works that perform the similar 

notwithstanding their location or the materials used to construct them. The selection 

of CPFs in this study however emphasized elements that contributed heavier 

proportions of the project cost. 

 

3.3.3 Method of data analysis for determination of risk effect in costs of 

building projects 

This subsection of the study dealt, in general terms, with how the effect of risks on 

project costs was determined. More specifically, the subsection showed the effect on 
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project costs of those risks that were employed as targets in neural networks. The 

ANN had to predict three attributes of those risks – occurrence, type and degree. The 

same data was employed for all 3 kinds of predictions. The effect of risks on projects 

was shown by a tabular listing of risks and (i) associated frequency of occurrence, (ii) 

arithmetical sign of the risk and (iii) impact of the risk expressed as a proportion of 

the project cost. 

 

Piecharts were thereafter employed to summarize and compare the proportion of risk 

effect on project costs accounted for by the risks that were employed as targets in 

ANN. This process of summarizing and comparing the proportion of risk effect was 

repeated for the 3 classes of costs that can generally be found in a final account – 

provisional sums, provisional quantities and variations. Finally the proportion of risk 

effect was summarized and compared in piecharts for the three kinds of variations 

conventionally presented in final accounts – addition, omission and substitution.  

 

3.3.4 Method of data analysis for development of artificial neural network for 

prediction of risk effect in costs of building projects 

Two approaches were followed in developing the neural networks in this study. ANN 

Approach 1 (abbreviated as ANN1) is presented in Section 3.3.5, while ANN 

Approach 2 (abbreviated as ANN2) is the subject of Section 3.3.6. The key 

differences between ANN1 and ANN2 are presented in Table 3.5. 
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Table 3.5:  Differences between approaches 1 and 2 for ANN development 

Basis for contrast ANN1 ANN2 

network inputs Risk effect CPFs 

network targets Cost variance Risk effect 

Treatment of inputs Grouping of risks Conversion to binary scale 

Source: Author (2017) 

  

3.3.5 Method of data analysis for ANN1: prediction of variance in cost of 

building projects using ANN 

Inputs for ANN1 were taken from the 19 risks that were presented to respondents in 

the research questionnaire. Modal values of risk occurrence were used to select risks 

to be used as ANN1 inputs. Using modal values of occurrence as opposed to modal 

values of impact ensured that the neural network was designed to predict project cost 

variance by employing the most frequently occurring risks. The ANN could thus be 

applied to a wider selection of projects than would be the case if modal values of 

impact had been employed. 

 

Some of the forecasting techniques generate a multivariate error distribution; artificial 

neural network is not an exception. Clear and actionable information about this 

distribution can be provided by a suitable error measure (Murphy and Winkler, 1992). 

Researchers have thus employed various accuracy measures to evaluate the 

performance of forecasting techniques. This study also followed suit by applying the 

following error measures, which are among the most commonly used error measures 

in business (Co, 2007). These are the mean absolute error (MAE), mean absolute 

percentage error (MAPE), and mean squared error (MSE) 
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The overall sequential procedure taken in the development of ANN1 is presented in 

Figure 3.1. There were 6 main steps and a total of 22 secondary steps. Validation of 

the ANN model was provided in part by comparison with a multiple linear regression 

model which was developed concurrently. While the superior performance of ANN 

over conventional forecasting techniques such as regression has been acknowledged 

in literature (for example Kim et al., 2013), the exact circumstances in this study are 

different. in the literature Regression has not been used concurrently with ANN where 

the input data is risk impact on project costs obtained from project final accounts. 

Regression has also not been concurrently employed where risks have been grouped 

and their impact on project costs used to predict the cost variance of projects. 

 

Fig 3.1: Overall sequential procedure for ANN1development 

 

•Data acquired through survey, case study or experiment 
ANN Model Development: 

Data Acquisition 

•Data Representation 

•Missing data 

•Data Partitioning 

•Data Grouping 

•Data Normalization 

ANN Model Development: 

Data Pre-processing 

•ANN Model Development 

•ANN Architecture 

•Transfer functions 

•Hidden layers 

•Number of processing elements (neurons) 

ANN Model Development: 

Data Processing 

•Data Denormalization 

•Model testing with holdout data 

•Model validation in terms of performance metrics 

ANN Model Development: 

Data Post-processing 

•Normality of variables 

•Linearity of variables 

•Equality of variances 

•Independence of variables 

•Validation of MLR model in terms of predictive accuracy 

Multiple Linear Regression 
Model Development 

•Prediction results of ANN model 

•Prediction results of MLR model 

•COmparison of results in terms of SSE, MSE, MAPE, SAE and MAE. 
Comparison of Models 
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Tasks involved in the development of the neural network component of ANN1 were 

depicted in a flowchart in Figure 3.2. This procedure was adopted based on evidence 

from literature, such as Jha and Chockalingham (2009) and Jha and Chockalingham 

(2011). 

 

Fig. 3.2: Flowchart of ANN1 

 

3.3.5.1 Data pre-processing (ANN1) 

Pre-processing of data is carried out in order to achieve several objectives. These 

include reducing input space size, achieving smoother relationships, and normalizing 

data by forcing it into a narrower range of values (Kennedy et al., 1998).  

Divide data set into training and validation sets 

Training data set Validation data set 

Train Neural network 

Modify architecture by 
experimenting with different 
numbers of hidden layers etc 

Is *MSE 

acceptable

? 
Validate trained network 

for accuracy and predictive 
ability using holdout data 

Is **MAPE 

acceptable

? 
No 

No 

Yes 

Yes 

End ANN process 

Acquisition of data on significant risk events 
and construction cost variability through 
surveys of QS firms within the study area. 
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3.3.5.2 Handling of missing data (ANN1) 

Each of the 69 projects in the dataset of the study had an average of only three risks 

identified as having some effect on construction costs. Only one project had cost 

consequences that were attributable to 6 risks. The risk register approach links 

individual events that affected project costs to a specific risk, or group of risks. The 

downside of such methodological approach is that not all risks will feature in all 

projects. Thus not all of the projects in a sample can be used to develop an ANN. This 

probably underscores why there have been so few researches on risk effect on 

construction cost that utilized the risk register methodology.  

 

Grouping of risks according to some criteria of similarity was thus explored, in order 

to generate a dataset that will be complete, not having any instances of missing data, 

and which will be of sufficient size as to be adequate for ANN development. 

Grouping of risks into broad categories has featured in the literature on risk 

assessment and handling. For example, in Perera et al. (2014), risks were grouped 

according to the project stakeholder most fitted to handle them. Thus there were risks 

allocated to the client, the contractor and the consultants. The effects of risks on 

construction costs in Perrenoud et al. (2016) were also documented along project 

stakeholder lines (client, contractor and consultants); a fourth category covered risks 

that could not reasonably be foreseen by or attributed to any of the parties. 

 

Against this backdrop, the 8 risks that had been determined as having impact on 

project costs were separated into three groups; these were the client, consultants and 

unforeseen risks groups. Within each group, the effects of risks were summed up for 
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each project. This re-classification of risks into groups provided only three inputs for 

the ANN, but at the same time improved the likelihood of having an adequate dataset 

for the ANN model development. The re-classification of risks resulted in 46 projects 

impacted by two risk groups (clients and consultants).  

 

3.3.5.3 Data representation (ANN1) 

Data intended for use in the creation of an ANN could be represented in several ways; 

such data could be in the form of numbers, alphabets, symbols or a mixture of 

alphabets and numbers. The data employed in the ANN modelling process was 

entirely numeric in nature. Some of the salient aspects of the data employed for the 

development of the ANN were presented in Table 3.6.  

 

Table 3.6: Description of the data employed for ANN development 

Parameters for 

description 
Description of ANN input  Description of ANN Output 

Definition of the data Cost consequences of risks 
Deviation of final accounts (FA) 

from the initial contract values (ICV) 

Measurement type Ratio Ratio 

Measurement units Percentages Percentages 

Numeral type Non-integer percentages Non-integer percentages 

Decimal places Two (2) Two (2) 

Bit length 8-bit (255 characters) 8-bit (255 characters) 

Normalized data range 0 to +1 0 to +1 

Source: Author (2017). 

 

 

3.3.5.4 Data partitioning (ANN1) 

Partitioning is the splitting of data into different subsets that will be applied to 

training, validating and testing of the developed network. Different researchers have 

partitioned their data into training and validation sets in different ways. Some 

previous research studies have established that using the larger portion of a research 
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dataset for training gives better results (Arditi and Gunaydin, 1998; Chaphalkar and 

Sandbhor, 2014). Chaphalkar et al. (2015) in their own research favoured the 

randomization of input into the ANN; this was a position that this study also took. The 

actual process of randomization was however carried out by default settings in the 

MATLAB software employed. Since any model developed from the ANN would be 

applied to projects that will be completed in the future, the most recent portion of the 

dataset was kept for testing of the developed network.  

 

The 46 projects that were impacted by the clients and consultants risks groups were 

spilt in the ratio 70:15:15 for training, validation and testing respectively. Forty 

projects were applied to the training and concurrent validation of the ANN model, 

while 6 projects were employed in validating and testing the developed model. 

 

3.3.5.5 Data normalization (ANN1) 

Normalization was done to constrain the data within a uniform and narrow scale, such 

as 0 to 1. This ensures that the network’s energy is not dissipated in trying to learn all 

data combinations within a very wide scale, for example 0 to 10,000. Several standard 

data normalization techniques such as min-max, softmax, z-score, decimal scaling, 

and box-cox have been employed in previous researches (Kuźniar and Zając, 2015). 

Researchers need to consider whether a general guideline exists with respect to the 

appropriate technique for a particular application? The choice of activation functions 

(logsig [0, 1] or tansig [-1, 1] will also affect the selection of a normalization 

technique. Four types of normalization techniques were applied to the research data; 

these techniques were the (i) decimal scaling, (ii) Min-Max, (iii) Unitary, and (iv) Z-
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score normalization techniques. Some summary statistic measures of the resulting 

data were computed and presented in Table 3.7. 

 

Trends that were observed in the normalized data included that all of the mean values 

for the three variables were now positive after Min-Max normalization. The unitary 

method of normalization resulted in smaller values for standard deviations and 

variance of the distribution. In addition the unitary technique has a fixed upper 

boundary (+1) and a floating lower boundary which depends on the values in the 

dataset. By comparison, only the Min-Max technique resulted in a dataset with 

minimum and maximum boundaries rigidly fixed at 0 and +1 respectively.  

 

Table 3.7: Effect of different normalization techniques on research variables 

Risk group 
Normalization 

type 
Mean Std Dev Variance Min Max N 

Client risks Actual 5.21 11.05 122.05 -32.79 48.49 40 

 
Decimal scaling 0.05 0.11 0.01 -0.33 0.48 40 

 
Min-max 0.47 0.14 0.02 0.00 1.00 40 

 
Unitary 0.11 0.23 0.05 -0.68 1.00 40 

 
Z-score 0.00 1.00 1.00 -3.44 3.92 40 

        
Consultant Risks Actual 1.73 11.04 121.88 -16.51 46.37 40 

 
Decimal scaling 0.02 0.11 0.01 -0.17 0.46 40 

 
Min-max 0.29 0.18 0.03 0.00 1.00 40 

 
Unitary 0.04 0.24 0.06 -0.36 1.00 40 

 
Z-score 0.00 1.00 1.00 -1.65 4.04 40 

        
FCV - ICV Actual 2.47 15.18 230.56 -19.51 53.72 40 

 
Decimal scaling 0.02 0.15 0.02 -0.20 0.54 40 

 
Min-max 0.30 0.21 0.04 0.00 1.00 40 

 
Unitary 0.05 0.28 0.08 -0.36 1.00 40 

 
Z-score 0.00 1.00 1.00 -1.45 3.38 40 

Source: Author (2017). 

Notes: FCV = Final Contract Value; ICV = Initial Contract Value;  

Decimal scaling = transforms data into decimal fractions (-0.99 to +0.99) 

Min-Max = compressing all data into a range with a minimum of -1 and a maximum of +1. 

Unitary = dividing through with the largest value;  

Z-score = converts data to have mean = 0 and variance = 1 
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The Min-Max technique compressed the data and converted negative values to zero; 

this might enhance the ability of the ANN to produce better predictions. The actual 

extent of improvement in prediction would only be known after developing the ANN. 

This was why all four normalization methods were employed. 

 

Decimal Scaling Normalization 

Decimal scaling normalization is also a linear scaling algorithm. It transforms the 

original input range into a new data range that is now composed of decimal fractions 

(typically -0.99 to +0.99). It was given as: - 

        
      

     
        …….Equation 3.1 

                                             ; yold is the original value of a 

variable before normalization; ynew is the value of the variable after 

normalization.  

 

Min-Max Normalization 

Min-max normalization is a linear scaling algorithm. It transforms the original input 

range into a new data range (typically 0 -1). It was given as: - 

        
      –      

      –      
                        …….Equation 3.2                              

Where: 

yold is the old value; ynew is the new value; and minl and maxl are the 

minimum and maximum of the original data range,  

 

Another form of the min-max equation that compresses the data into any specified 

range (such as -1, +1; +0.1, +0.9 etc) was given as equation 3.3. 
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      –      

      –      
                                   …….Equation 3.3                              

Where: 

min2 and max2 are the minimum and maximum of the new data range. 

Since the min-max normalization is a linear transformation, it can preserve all 

relationships of the data values exactly.  

 

Unitary Normalization 

Unitary normalization is carried out by dividing the entire data, column by column, by 

the largest value in each column. It has the effect of transforming all of the data into 

decimal fractions, with the exception of the largest value, which acquires a new 

transformed value of 1.0. The equation for z-score normalization was given as: - 

        
      

      
                         …….Equation 3.4                               

Where ymax is the largest value in each column. 

 

Z-Score Normalization 

In Z-score normalization, the input variable data is converted into zero mean and unit 

variance. The mean and standard deviation of the input data should be calculated first. 

Z-score is often used when responses are on different magnitude scales. All of the 

mentioned techniques are sensitive to outliers in the data, although the effect is less 

felt in the case of Z-score. The equation for z-score normalization was given as: - 

        
      –       

     
                        …….Equation 3.5                              

Where: 

yold is the old value; ymean is the mean of the range of values of y; std is the 

standard deviation of the original data range,  
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3.3.5.6 Data processing (ANN1) 

MATLAB 2015a software was used to design and train the ANN models. A feed 

forward neural network based on back propagation was applied in the ANN model 

training. Training algorithm and transfer functions were selected based on trial and 

error procedures. Work by other researchers had found that the Levenberg-Marquardt 

back propagation algorithm (trainlm in MATLAB) and the hyperbolic tangent transfer 

function (tansig in MATLAB) for the neurons in the hidden layers gave quicker 

convergence and better results during training and validation (Jha and 

Chockalingham, 2009).  

 

3.3.5.7 Network architecture (ANN1) 

Designing the network architecture involved selection of key parameters such as 

transfer functions, number of input and output nodes, number of hidden layers and the 

number of neurons in the hidden layer(s) (Costantino et al., 2015), number of 

partitions of the data, number of cycles to be run to train the network and criteria for 

validating the performance of the trained network.  

 

The partitioning of the data had been handled in an earlier section of this thesis (see 

subsection 3.3.5.4). In this study, twenty-seven training runs were initially preset to be 

carried out within each training cycle that was ordered. This was because 27 different 

numbers of hidden neurons were subjected to trial and error selection. The network 

was designed to allow training cycles to be requested and commenced manually. Each 

training run was continued for as many epochs as the software deemed necessary. 

Based on the early stopping criterion adopted however, this setting was modified such 
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that where no decrease in validation parameter occurred for six (6) consecutive 

epochs, the training run was discontinued. The validation parameter adopted in this 

study was the mean square error (MSE). This network topology concurred with that of 

previous studies such as Costantino et al. (2015). 

 

3.3.5.8 Transfer functions (ANN1) 

Hyperbolic tangent sigmoid activation function has been employed in several studies 

such as Marzouk and Elkadi (2016) and Odeyinka et al. (2013) for the nodes in the 

hidden layer. This study employed the hyperbolic tangent sigmoid transfer function in 

the hidden layers; for the output layers of the network, a linear transfer function was 

used. This choice of transfer functions had also been used by Mučenski et al. (2013) 

when they modelled the recycling capacities of multistory structures.  

 

3.3.5.9 Number of hidden layers (ANN1) 

This study employed networks that had two hidden layers. The survey of literature 

carried out had shown that most researchers worked with networks that had either one 

or two hidden layers. This could be seen in their comparison of the performance of 

ANN and GA-ANFIS in forecasting short time building energy, where Li et al. (2011) 

used feed forward neural network with a single hidden layer of tansig neurons to 

predict hourly energy consumption.  In the modelling of construction project time 

performance, Le-Hoai et al. (2013) also adopted one hidden layer for their perceptron 

model, based on minimal errors of both training and testing sets. There thus appeared 

to be a preponderance of research that employed only one hidden layer of neurons; 

however Mučenski et al. (2013) had employed neural networks that consisted of two 
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hidden layers. They opined that having more than 2 hidden layers produces networks 

that are unstable in prediction and less accurate (Mučenski et al., 2012).  

 

3.3.5.10 Number of neurons (ANN1) 

Three approaches towards the selection of number of neurons were found. 

Experimentation in a trial and error manner has been described as the ‘art’ aimed at 

identifying the optimal architecture, which gives the best performance outcomes. This 

approach was adopted by El Shazly and El Shazly (1997). They suggested that as a 

starting point of experimentation, researchers could apply the following formulae:  

i. Number of hidden neurons = training facts x error tolerance;  

ii. Number of hidden neurons = (sum of inputs + outputs)/2; or  

iii. Number of hidden neurons = 5 - 10% of training facts.  

Some researchers consider that as a rule of thumb, the number of neurons (nodes) in 

the hidden layer should be (i) less than twice the number of input neurons or (ii) in 

between the number of neurons in the input layer and the number of neurons in the 

output layer (Heaton, 2008). Based on this, Shrestha and Shrestha (2016) employed 

the following equation:   

N = (m + b + o) * 2/3;  

where N = the number of neurons in hidden layers; m = the number of neurons in the 

input layer; b = the number neurons as biased inputs and; o = the number of neurons 

in output layers. 

 

The second approach for the selection of number of neurons involves the application 

of statistical tests. This approach was adopted by Li et al. (2011) for forecasting short 

time building energy, by using a methodology based on least squares estimation and 
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statistical tests (Rivals and Personnaz, 2003; Karatasou et al., 2006). In the third 

approach, the choice of the number of neurons is left to the software employed, based 

on the proviso that the eventual selection optimizes the performance of the network. 

Le-Hoai et al. (2013) in their study of project time performance adopted this 

approach. The number of neurons in the hidden layers of the network developed in 

this study was based on experimentation. However, the experimentation was restricted 

to a range between 5 and 60; only odd numbers of neurons were tested, based on trial 

and error results. The incremental rate was thus 2, resulting in a simple arithmetical 

series of the form 5, 7, 9, 11 …… 59. There could thus be a minimum of 5 and a 

maximum of 59 neurons in the first hidden layer; the second hidden layer contained 

only one neuron. 

 

3.3.5.11 Code for design and validation of neural network (ANN1) 

The neural network required in furtherance of Objective 4 of this study was developed 

with the use of the code provided below. All of the settings of the network 

architecture described in this subsection have been incorporated into the code.  
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Neural network code for prediction of risk effect in final cost variance 

clear all  
clc 
%    [num,txt,raw]=xlsread('Modified_Data_P.xlsx'); 
%    Client=num(:,5); 
%    Consultant=num(:,6); 
%    FCV=num(:,7); 
%  
load 'New_data1.mat' 
% Preprocessing effect.  
% Decimal_Scaling_Normalization 
% MinMax_Normalization 
% Modified_MinMax_Normalization 
% Z_Score_Normalization 
% Unitary_Normalization 
% N_Input_Data=[NCL';NCO'] data Set= client risks, consultant risks. 
% Target =NFC'.  
Input_1=[NCL NCO] 
Input_data=Input_1';   %Input to the ANN 

  
Target_1= [NFCV] 
Target_data=Target_1';    % Target of the ANN 

  
% ======================================================================= 
% ======================================================================= 
% To create multidimensional ANN to investigate the effect of different 
% parameters on the effect of the prediction of the deviation of Final  
% Contract Value (FCV) based on Client risks (CL), Consultant risks (CO). 
%======================================================================== 
% ======================================================================= 
counter=0; 

  
for Hidden_Neuron =5:2:60   % 5:2:60 is the range of the data set. 
% Changes for the number of Neurons in the Hidden Layer 
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            Cost_var=newff(Input_data,Target_data,[Hidden_Neuron,1], {'tansig','purelin'},'trainlm','learngdm');  

% creating the network with Performance Features and selection for the ANN  
            Cost_var.trainParam.showWindow= true  % Turning off the nntool GUI 
            Cost_var.trainParam.showCommandLine=true %Turning off the commandline outputs 
            Cost_var.trainParam.lr =0.01 % Sets the learning rate of the Network.  
            Cost_var.trainParam.mc = 0.9 %Sets the Momentum of the Network 
            Cost_var.trainParam.show= 2  % epoch between progress to show. 
            Cost_var.trainParam.time=inf % maximum time to train network in seconds 
            Cost_var.trainParam.goal=0 %Performance goal 

           
% The training of the Network and its Simulation.  
            Cost_var=train(Cost_var,Input_data,Target_data); % Training the network 
            Cost_Output=sim(Cost_var,Input_data);%Simulation of the ntw with the training data 

             
% Performance Analysis of the FCV_Network. 

  
            Perf_2=mse(Cost_var, Target_data,Cost_Output); %MSE performance  (Mean Square Error) 
            Perf_3=sse(Cost_var, Target_data,Cost_Output); %SSE Performance (Sum Square Error) 
            Perf_4=sae(Cost_var, Target_data,Cost_Output); %SAE Performance (Sum Absolute Error) 

            

  
            Cost_ANN_Display=['Cost_Result' num2str(counter)] %saving by coounter 
            save(Cost_ANN_Display,'Hidden_Neuron','Cost_var','Cost_Output','Perf_2','Perf_3','Perf_4') 

%saving by counter 
            counter=counter+1; %counter for result (Load by Counter) 
end 

     
         Load_Results_Simulation  

% This would load the simulation result to give you the network with the best performance.  

         
        Display_Prediction_Results   

% This would display in graph the performance of the Predicted Data Vs Actual Data.  
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3.3.5.12 Network performance (ANN1) 

The performance of the trained networks was validated with the aid of three measures, 

which were obtained from review of relevant literature (Palaneeswaran et al., 2008; 

Kumar, 2005). These were the sum of squared error (SSE), sum of absolute error 

(SAE) and mean squared error (MSE). The squaring of the errors in the MSE measure 

achieves two ends: (1) positive or negative sign differences are neutralized, and (2) 

there is greater magnification of any errors present. The MSE measures the difference 

between the set of actual observations and corresponding predicted values of the 

neural network. The SSE is the sum of the difference between actual observations and 

corresponding predicted values. The sum of absolute errors (SAE) is a basic indicator 

of network performance being the sum of absolute values of the difference between 

actual observations and the corresponding network prediction values (Palaneeswaran 

et al., 2008).  

 

A total of 540 training runs of the network were carried out spread across the different 

configurations of network design parameters as provided in Table 3.9. The networks 

were labeled based on the minimization techniques employed; decimal scaling 

networks were ‘MIN1’, min-max networks were ‘MIN2’, unitary networks were 

‘MIN3’, and z-score networks were ‘MIN4’. To further aid identification, each 

network carried a number suffix that denoted the particular training cycle concerned. 
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Table 3.8:  Number of training runs of ANN carried out 

S/No Minimization techniques 
Training and 

Validation cycles 

Training runs per 

training cycle 

Total number of 

training runs 

1 Decimal scaling (MIN1) 5 27 135 

2 Min-max (MIN2) 5 27 135 

3 Unitary (MIN3) 5 27 135 

4 Z-score (MIN4) 5 27 135 

 Total - - 540 

Source: Author (2017). 

 

 

3.3.5.13 Regression model development 

A Multiple Linear Regression (MLR) model of the influence of risk on the deviation 

of the final account from the initial contract value was also carried out in this study. 

This was done in order to provide information against which the predictive 

performance of the developed ANN model could be compared.  

 

Linear Regression estimates the coefficients of the linear equation, involving one or 

more independent variables, which best predict the value of the dependent variable. 

There are four basic assumptions of linear regression, which must be met in order for 

the results obtained to be valid. These are assumptions are as follows: 

1. For each value of the independent variable, the distribution of the dependent 

variable must be normal; (The error term should have a normal distribution 

with a mean of 0.) 

2.  The variance of the distribution of the dependent variable should be constant 

for all values of the independent variable; (The variance of the error term 

should be homoscedastic, meaning it is constant across cases and 

independent of the variables in the model.) 
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3. The relationship between the dependent variable and each independent 

variable should be linear, and  

4. All observations should be independent. 

 

In order to check whether these assumptions have either been met or violated, 

different types of graphical plots can aid in the validation of the assumptions of 

normality, linearity, and equality of variances. To determine which model to use, the 

research data should be plotted. If the research variables appear to be related linearly, 

a simple linear regression model should be used. When the variables are not linearly 

related, an attempt could be made to transform the data in order to apply curve 

estimation, (IBM SPSS 20, 2011) 

 

3.3.5.14 Normality of variables 

The skewness of a distribution is a good starting point for establishing the normality 

of a dataset. Skewness is a measure of the asymmetry of a distribution. The normal 

distribution is symmetric about the mean and has a skewness value of 0. A 

distribution that has a long right tail is said to exhibit significant positive skewness, 

while the opposite (a distribution that has a long left tail) displays significant negative 

skewness. It is generally taken that a distribution is said to be asymmetrical when its 

skewness value is more than twice the standard error of the skewness. From the 

statistics presented in Table 3.10, it appeared that ‘client risks’ was only variable that 

was normally distributed, since its skewness value was less than twice its standard 

error. 
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Table 3.9: Descriptive statistics of the variables for regression 

Statistics Client Risks Consultant Risks Final Cost Variance 

N 
Valid 34 34 34 

Missing 0 0 0 

Mean 5.08 1.17 1.77 

Std. Error of Mean 2.00 1.85 2.58 

Median 3.58 -0.82 -0.83 

Std. Deviation 11.69 10.81 15.02 

Variance 136.60 116.92 225.55 

Skewness 0.73 2.21 1.74 

Std. Error of Skewness 0.40 0.40 0.40 

Kurtosis 7.95 8.51 4.13 

Std. Error of Kurtosis 0.79 0.79 0.79 

Range 81.29 62.88 73.23 

Minimum -32.79 -16.51 -19.51 

Maximum 48.49 46.37 53.72 

Source: Author (2017). 

 

A second measure of the shape of a distribution is known as kurtosis, which is a 

measure of the extent to which observations cluster around a central point. The value 

of the kurtosis statistic is zero for a normal distribution. All three variables exhibited 

leptokurtic distributions.  This was because their kurtosis values were positive, which 

indicated that their observations were more clustered about the center of the 

distribution, resulting in thinner tails; the extreme ends of the tails were however 

thicker than those of a normal distribution. A platykurtic distribution would be the 

reverse of this observation. Graphical representation of the distributions of the three 

variables of the research relative to the normal distribution was presented in Figs3.3, 

3.4 and 3.5. 
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Fig. 3.3:  Histogram of Client risks with superimposed normal distribution 

 

 

 
Fig. 3.4:  Histogram of Consultant risks with superimposed normal distribution 
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Fig. 3.5:  Histogram of Final cost variance with superimposed normal 

distribution 

 

 

3.3.5.15 Linearity of variables 

The assumption of linearity of the relationship between the variables was explored 

with the aid of scatter plots using non-normalized data. Scatter plots are also useful 

for detecting outliers, unusual observations, and influential cases. A single point on a 

graph is recorded for each pair of observations from the two variables under study. 

The plots showed that the research data was mostly clustered around the point at 

which the x and y axes cross each other. In the case of consultant risks and cost 

deviation, however, a sizeable proportion of the observations fell within the negative 

region of both axes. All of these observations were presented in Figs. 3.6 and 3.7. 
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Fig. 3.6:  Scatter plot of client risks and final account cost deviation  

 

 

Fig. 3.7:  Scatter plot of consultant risks and final account cost deviation  

 

 

3.3.5.16 Equality of variances 

Error bar charts summarize the distribution of one or more numeric variables, and 

help researchers visualize distributions and dispersion by indicating the variability of 

the measure being displayed. In Fig. 3.8, the means of the three variables in this study, 

which were ratio in terms of measurement scale, were plotted. The length of 
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the error bars on either side of the mean value indicated the spread of 2 

standard errors of the mean.   

 

 
 

Fig. 3.8:  Error bar chart of variables using non-normalized data 

 

 

It was apparent that the two independent variables had similar variances; the variance 

of the dependent variable was however much longer than that of the other two 

variables.  

 

3.3.5.17 Independence of variables 

A starting point for determining whether or not the variables in this study are 

independent of each other is to compute the correlation coefficient (r) of pairs of the 

variables. Correlations measure how variables or rank orders are related. It is 

advisable to screen data for outliers before calculating the correlation coefficient; this 

is because outliers, which are unusually large or small values, relative to the 
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generality of the data, can cause misleading results. Pearson's correlation coefficient is 

a measure of linear association, which uses symmetric quantitative variables and can 

provide evidence of a linear relationship, as presented in Table 3.11.  

 

Table 3.10: Correlation coefficients of the research variables 

 Client Risks 
Consultant 

Risks 
FCV - ICV 

Client Risks 
Pearson Correlation --- -0.413

*
 0.507

**
 

Sig. (2-tailed) --- 0.015 .002 

Consultant Risks 
Pearson Correlation -00.413

*
 --- 0.422

*
 

Sig. (2-tailed) 0.015 --- 0.013 

FCV - ICV (%/M2) 
Pearson Correlation 0.507

**
 0.422

*
 --- 

Sig. (2-tailed) 0.002 0.013 --- 

Source: Author (2017). 

Notes: *. Correlation is significant at the 0.05 level (2-tailed).  

**. Correlation is significant at the 0.01 level (2-tailed); N = 34 

 

It was observed from the information in Table 3.11 that both of the independent 

variables had relatively weak associations with the dependent variable; both 

correlations were however positive, indicating that increases in the costs due to any of 

the two groups of risks would be associated with an increase in the deviation between 

the final and initial contract values. The correlation between the two independent 

variables was also relatively weak and negative. However, there was still a need to 

establish if one of the independent variables was a linear function of the other. This 

undesirable situation is referred to as collinearity.  

 

The collinearity diagnostics that were presented in Table 3.12 confirmed that there 

were no problems with multicollinearity in the dataset. None of the eigenvalues were 

close to 0; this indicated that the predictors were not intercorrelated, and that small 
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changes in the data values would not lead to large changes in the estimates of the 

coefficients. Furthermore, condition indices were computed as the square roots of the 

ratios of the largest eigenvalue to each successive eigenvalue. Condition indices 

values that were greater than 15 would indicate a possible problem with collinearity; 

any value greater than 30 would be indicative of a serious problem. None of the 

indices obtained for the research dataset were larger than 2, confirming that there was 

no problem with collinearity.  

 

Table 3.11 Collinearity Diagnostics
 
of the independent variables 

Model Dimension Eigenvalue 
Condition 

Index 

Variance Proportions 

(Constant) 
Client 

Risks 

Consultant 

Risks 

1 

1 1.472 1.000 .15 .26 .09 

2 1.107 1.154 .27 .00 .45 

3 .421 1.870 .57 .74 .46 

Source: Author (2017). 

 

 

3.3.6 Method of data analysis for ANN2: prediction of risk effect in cost of 

building projects using ANN 

The different tasks involved in the manipulation of the data as part of the process for 

ANN2, which involved the development of a neural network for the prediction of risk 

effect on final costs of buildings, using CPFs as network inputs were depicted 

graphically in Figure 3.9.  
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Figure 3.9: Network development process for ANN2 

 

3.3.6.1 Data pre-processing (ANN2) 

Pre-processing represented the first level in the preparation of data for use in neural 

network development. The objectives of data preprocessing are five: reduction of the 

input space size, smoother relationships, data normalization, noise reduction, and 

feature extraction (Kennedy et al., 1998). Three activities were grouped under data 

pre-processing in this study; these were data representation, data partitioning and data 

normalization. Each of these activities contributed to adding value to the data, by 

improving the performance of the data in the developed neural network. 
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3.3.6.2 Data representation (ANN2) 

Data intended for use in the creation of an ANN could be represented in several ways; 

such data could be in the form of numbers, alphabets, symbols or a mixture of 

alphabets and numbers. Numeric, alphabetic, symbolic and alphanumeric data might 

need to be converted or transformed in some manner before they could be suitable for 

neural network development.  

 

The data employed in the neural network development process was entirely numeric 

in nature. The input data was comprised of selected construction project features 

(CPFs), which were expressed in various units such as square meters, percentages of 

initial contract values, and years. The output data employed was the cost 

consequences of risks, which were measured as percentages of the Initial Contract 

Value of the sampled projects.  

 

The dataset comprised 8 input variables (the CPFs) and 8 output or target variables 

(the risks determined through a questionnaire survey). Only 6 of the 8 risks were 

however employed in the ANN. These were R3-CLV, R4-CLS, R5-CND, R6-UNS, 

R10-CNV and R13-CNE. One of the 6 risks (R13-CNE) was employed twice, for two 

different classes of cost (provisional quantities and variations). The ANN was thus 

developed with 7 targets (R3-CLV, R4-CLS, R5-CND, R6-UNS, R10-CNV, R13-

CNE(pq) and R13-CNE(va). The details of the input and output variables were 

provided in Tables 3.12 and 3.13 under Section 3.3.6.4. 
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3.3.6.3 Data partitioning (ANN2) 

Data partitioning involved the splitting of datasets into different subsets that were 

applied to different purposes during the development the neural network. Datasets are 

commonly split into three groups so that part of the data is used for training the 

developed network and for validating the trained network; the rest of the data is then 

introduced to the network in order to test its predictive ability.  

 

Decisions on how to split the data into training and validation sets vary from 

researcher to researcher. Husin (2017) employed a dataset of 156 actual projects for 

training the neural network, and 15 simulated projects for validating the trained 

network. In their own case Juszczyk and Lesniak (2016) divided their data set in the 

ratio 60:20:20, for learning, validation and testing respectively. Chaphalkar et al. 

(2015) took cognizance of earlier research studies and divided their dataset into 70% 

for training, 15% for validation and 15% for testing purposes. They were able to 

achieve an MSE (mean square error) of 0.01 and a correlation coefficient (r) of 1.00.  

 

In this study, the entire data employed for neural network development was 50 

projects out of the total sample of 69 projects. This was spilt in the ratio 80:20 for 

training/validation and testing respectively. This meant 40 projects were applied to the 

training of the neural network, while 10 projects were employed in testing the 

developed network. The projects in the test group were purposively selected to reflect 

all of the different data combinations observed in the training group. 
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3.3.6.4 Data normalization (ANN2) 

Normalization is done to map the data to a uniform scale. Knowledge of the domain is 

important in choosing preprocessing methods to highlight underlying features in the 

data, which can increase the network's ability to learn the association between inputs 

and outputs. To do this, several standard data normalization techniques such as min-

max, softmax, z-score, decimal scaling, box-cox are available (this list is not 

exhaustive and many more techniques are in use) (Kuźniar and Zając, 2015).  

 

There are several questions which must be answered when normalization is applied o 

a research data. Some of the questions include whether there is a general guideline to 

determine the appropriate technique for a particular application? Whether the 

normalization method should be solely determined by the range of input features (for 

removing scaling effect)? The influence of the choice of activation functions (logsig 

[0, 1] or tansig [-1, 1], etc.) has to be considered as well. Researchers must also 

consider what influence the type of the problem they are trying to solve 

(classification, function approximation, prediction, forecasting of time-series data, 

etc) will have on the type of normalization technique they adopt. 

 

In this study, the normalization technique employed was binarization. All of the 8 

inputs were binarized (see Table 3.12); the 7 outputs were however subjected to three 

different levels of binarization. The first level of binarization was simply to represent 

the occurrence or non-occurrence of risk. The second level of binarization employed 3 

categories to represent the type of impact exerted by the risk where it occurred 

(negative, no impact and positive). The third level of binarization divided the level of 
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severity of the risk into seven categories. Table 3.13 presented the output data both 

before and after binarization. 

 

The midpoint of the data in terms of year of construction was 2010; the entire study 

period of 2003 – 2016 was however situated within a relatively uniform political 

climate. The data contained a preponderance of small sized projects since only 25% of 

the projects had gross floor areas in excess of 1000 square meters. Institutional 

projects included lecture rooms, offices, hostels and workshops; residential houses 

were the main type of non-institutional buildings. Classification of works as new 

construction or renovation was done in line with the practice in most Commonwealth 

countries, where separate information services were maintained for new and 

maintenance works. In the case of elemental costs, typical proportions of such 

elements were obtained for institutional and non-institutional buildings; an average 

value was computed and used as the cutoff point for the binarization. 

 

Table 3.12:  Binary equivalents of input variables 

S/Nr Description Min Max Unit Binary components 

1 Year  2003 2016 Years Before 2010 = 0; 2010 and after = 1 

2 Gross floor area 33 6646 M
2
 Less than 1000M

2
 = 0; 1000M

2
 and greater = 1 

3 Project type - - - Non-institutional = 0; Institutional = 1 

4 Project nature - - - Renovation = 0; New construction = 1 

5 Structural  costs 25 83 % of ICV Less than 57% = 0; 57% or greater = 1 

6 Services  costs 6 21 % of ICV Less than 17% = 0; 17% or greater = 1 

7 Finishing  costs 3 34 % of ICV Less than 16% = 0; 16% or greater = 1 

8 External works 

costs 

0 41 % of ICV Zero  = 0; Greater than 0% = 1 

Source: Author (2017) 
Notes: Min = Minimum value; Max = Maximum value; ICV = Initial Contract Value;  
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Table 3.13:  Binary equivalents of output variables 

Risk 

code 
Nature and source of risk Min Max Unit  

Binary equivalents of risk 

Occur? Type? Degree? 

CLSva Additional costs arising from 

variation to scope by client 

0 29.36 % of ICV  

Yes = 1 ;  

 

No  = 0 

 

-ve = 01 ;  

 

Zero = 00 ;  

 

+ve = 11 

 

-22 to -11 = 000; 

 

-11 to 0 = 001; 

 

0 to 11 = 010; 

 

11 to 22 = 011; 

 

22 to 33 = 100 

 

33 to 44 = 101 

 

44 to 55 = 110 

CLVva Additional costs arising from 

variation to design by client 

0 50.08 % of ICV 

CNDva Additional costs arising from 

variation to design by 

consultants 

0 49.08 % of ICV 

CNEpq Changes in Provisional 

Quantities arising from errors 

in estimates by consultants 

-16.51 21.38 % of ICV 

CNEva Additional cost variations 

arising from errors in 

estimates by consultants 

0 3.42 % of ICV 

CNVps Changes in Provisional Sums 

arising from changes to 

design by consultants 

-16.75 11.07 % of ICV 

UNSpq Changes in Provisional 

Quantities arising from 

unforeseen site conditions 

-4.29 0.11 % of ICV 

Author (2017) 
Notes: Min = Minimum value; Max = Maximum value; ICV = Initial Contract Value;  

 

 

3.3.6.5 Data processing (ANN2) 

This section detailed how the artificial neural network was developed from its key 

components, with the aim of predicting the effect of risks on project costs, (as the 

output or target of the network) using selected features of building projects (as the 

input vectors).  

 

MATLAB 2015a software was used to design and train the neural network. A feed 

forward neural network based on back propagation was employed. The Levenberg-

Marquardt back propagation algorithm (trainlm in MATLAB) was used because of its 

quicker convergence and better results during training and validation (Jha and 
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Chockalingham, 2009). Transfer functions were selected based on trial and error 

experimentation.  

 

3.3.6.6 Network architecture (ANN2) 

The design of the architecture of the network involved the selection of the values of 

the key parameters of an artificial neural network such as transfer functions, number 

of input and output nodes, number of hidden layers and the number of neurons in the 

hidden layer(s) (Costantino et al., 2015). There are some other considerations in 

neural network design such as number of partitions of the data, number of cycles to be 

run to train the network and criteria for validating the performance of the trained 

network.  

 

The partitioning of the data had been handled in an earlier section of this thesis (see 

subsection 3.3.6.3). Most of the software that are employed in neural network 

development come with preset settings for either number of training cycles, time 

allotted for training the network, or the number of epochs to be completed by the 

network before validation is undertaken. In the case of this study, the following 

approach was employed. The networks were initially created with all 8 inputs and 

only 1 output; this was done to provide valuable insight into the predictability of a 

single risk, as a prelude to the prediction of groups of risks. The risk selected for this 

purpose was R10-CNVps (changes in provisional sums arising from changes to 

design by consultants), which, it was observed, occurred in 44 out of the 69 projects 

in the dataset. Three different activation functions were explored (Logsig, Purelin and 

Tansig).  
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Number of neurons and hidden layers were initially set at the lowest practicable levels 

(2 and 1 respectively). The survey of literature carried out had shown that most 

researchers worked with networks that had either one or two hidden layers. This could 

be seen in their comparison of the performance of ANN and GA-ANFIS in 

forecasting short time building energy, where Li et al. (2011) used feed forward 

neural network with a single hidden layer of tansig neurons to predict hourly energy 

consumption.  In the modeling of construction project time performance, Le-Hoai et 

al. (2013) also adopted one hidden layer for their perceptron model, based on minimal 

errors of both training and testing sets. There thus appeared to be a preponderance of 

research that employed only one hidden layer of neurons; however Mučenski et al. 

(2013) had employed neural networks that consisted of two hidden layers. They 

opined that having more than 2 hidden layers produces networks that are unstable in 

prediction and less accurate (Mučenski et al., 2012).  

 

This created an 8:2:1 back-propagation multi-layer perceptron network, which was 

trained at the default settings of nntool (epochs 1000; target MSE 0.0; minimum 

gradient 10
-7

; mu 0.001; mu_dec 0.1; mu_inc 10). Each training run was continued for 

as many epochs as the software deemed necessary. Based on the early stopping 

criterion adopted however, this setting was modified such that where no decrease in 

validation parameter occurred for six (6) consecutive epochs, the training run was 

discontinued. The validation parameter adopted in this study was the mean square 

error (MSE). 

 

The default settings of nntool which were used to train the network initially were later 

modified in the light of unsatisfactory performance of the network. It was observed 
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that overfitting of the data was occurring, a situation where training results are 

excellent, yet simulation results with fresh data are abysmally poor (MATLAB, 

2015). The solution proposed in MATLAB (2015) was adopted and the nntool setting 

were adjusted accordingly (epochs 1000; target MSE 0.0; minimum gradient 10
-7

; mu 

1; mu_dec 0.7; mu_inc 1.3). This improved the performance of the network both in 

training and simulation appreciably. 

 

3.3.7 Method of data analysis for performance analysis of artificial neural 

network for prediction of risk effect in costs of building projects 

The performance analysis of the developed neural networks was carried out with the 

aid of performance metrics obtained from literature. To aid comparison of 

performance, five (5) measures of performance were computed, using the 2 x 2 

contingency table approach. The performance metrics and the parameters employed in 

their computation were presented in Table 3.15. 

 

Table 3.15: Formulae for common performance metrics  

Performance 

parameter 

Formula Where: 

P = sum of positives (true positives and false negatives in 

output);  

N = sum of negatives (true negatives and false positives in 

output);  

TP = sum of true positives (with a value of 1 in both target 

and output);  

TN = sum of true negatives (with a value of 0 in both 

target and output);  

FP = sum of false positives (with a value of 0 in target and 

1 in output);  

FN = sum of false negatives (with a value of 1 in target 

and 0 in output) 

Accuracy (TP+TN)/(P+N) 

False Positives 

Rate 

FP/(FP+TN) 

Precision TP/(TP+FP) 

Sensitivity TP/(TP+FN) 

Specificity TN/(FP+TN) 

True Positives 

Rate 

TP/(TP+FN) 

Source: Hart (2016) 
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Receiver operating characteristics (ROC) charts were also plotted and used to decide 

on which network parameter (threshold, activation function and number of neurons) 

enabled the network to attain optimum performance in predicting the effect of risk on 

final costs of building project. 
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CHAPTER FOUR 

4.0         RESULTS AND DISCUSSION 

 

4.1 Arrangement of Results 

The results of the five objectives set out in Chapter One are presented and discussed 

in this chapter. Sections 4.3, 4.4 and 4.5 dealt with Objectives 1, 2 and 3 respectively, 

while results for Objective 4 were presented in Sections 4.6 and 4.7. This was because 

of the two different procedures employed in predicting the effect of risk on the final 

costs of building projects. Thus Section 4.6 reported the results for ANN1 which 

developed a neural network for predicting final cost variance using risk effect as 

network input. Section 4.7 on the other hand reported the results for ANN2, which 

developed a neural network for predicting risk effect in final cost using construction 

project features (CPFs) as network input. Section 4.8 was concerned with results 

pertaining to Objective 5; a summary of all the findings made in the chapter was 

presented as Section 4.9. 

 

4.2 Analysis of Respondent Demographics 

This section presents relevant demographic information on the survey respondents for 

the 69 projects that were found suitable for development and validation of the 

artificial neural network model undertaken in the study. Table 4.1 presents data on 

some salient aspects of the projects that served as the sources of data for this research.  

 

All of the respondents were quantity surveyors, at various stages in their careers. 

Two-thirds of the sample was made up of resident quantity surveyors (Resident QS), 

who are attached to specific projects; this class of construction professionals usually 
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has dedicated offices on site. Their functions are identical to those of project quantity 

surveyors (Project QS). The different nomenclature reflected the particular party to 

the construction contract that the quantity surveying firms worked for. Resident QS 

work for the project owner, often referred to as the Employer; project QS on the other 

hand usually denote those QS professional who work for contractors, subcontractors 

or suppliers. Chief quantity surveyors (Chief QS) are senior professionals who 

supervise the resident quantity surveyors.  

 

Table 4.1: Summary of respondents’ demographic information 

Parameter Options Frequency 
Percent 

(%) 

Designation Chief QS 1 1.4 

 
Resident QS 49 71.0 

 
Project QS 19 27.5 

  
69 100 

    
Experience Less than 11 years 49 71.0 

 
11 - 20 years 20 29.0 

  
69 100 

    
    Qualification MSc 3 4.3 

 
BSc 66 95.7 

  
69 100 

    
Project Description Car park 1 1.4 

 
Hospital 5 7.2 

 
Hostel 4 5.8 

 
Hotel 1 1.4 

 
House 26 37.7 

 
Library 1 1.4 

 
Office 9 13.0 

 
School 19 27.5 

 
Warehouse 2 2.9 

 
Workshop 1 1.4 

  
69 100 

Source: Author (2017) 

 

About three quarters of the sample (71%) had worked in construction for between 1 

and 11 years; close to a third of the sample had however worked for between 11 and 
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20 years. Sixty-six of the respondents had Bachelor degrees while 3 respondents had 

acquired Masters Degrees.  

 

The dominant use of the projects that were employed in the development of the 

artificial neural network model was institutional (39 out of 69 projects), while three 

projects were for commercial purposes. The physical size of the projects varied from 

33 - 6646 square meters. Information on the effect of risk as was applicable to the 

projects was summarized descriptively in Table 4.2.  

 

Table 4.2: Summary of project cost information 

Category Sum  (%) 

Total ICV of all sampled projects 7,940,987,258.81  - 

Mean ICV of all sampled projects  115,086,771.87  - 

Standard Deviation of ICV of projects 170,124,024.89  - 

Minimum ICV 1,472,635.50  - 

Maximum ICV 1,046,041,530.38  - 

Average increase in project costs 13,989,698.44 8.14 

Total increases in project costs  965,289,192.63 12.16 

Risk source 
  

Cost increases caused by Clients  431,134,033.79 5.43 

Cost increases caused by Consultants 190,413,480.47 2.40 

Cost increases due to Other Causes 343,741,678.37 4.33 

Source: Author (2017) 
Notes: ICV = Initial Contract Value 

 

The mean difference between the final account and the contract value of the projects 

was 8.14%, which indicated cost overrun. Increases in project costs as a result of 

changes requested by clients were the major reason for the cost overrun (making up 

44.7% of the cost overrun). This pattern of project stakeholder responsibility for cost 

increases, where client-caused increases were the dominant contributor to the overall 
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difference between the initial contract sums and final accounts, has been documented 

in the literature by Perrenoud et al. (2016). 

 

A summary of the risk information available about the projects that were sampled is 

provided in Table 4.3. A total of 1047 risk events that impacted on the costs of 

projects were identified from the sample of 69 projects. This meant that each 

individual project experienced an average of 15 risk events during the period of 

construction. About 64% of these risk events contributed to increases in the project 

costs; 35% of the risk events resulted in decreases in project costs, while in about 1% 

of the risk events no changes were recorded in the project costs. 

 

Table 4.3: Summary of project risk information 

Category Sum (%) 

Number of Projects 69 - 

Number of risk events 1047 - 

Average number of risk events per project 15 - 

Standard Deviation of risk events per project 14.55 - 

Risk nature 
  

Increase 674 64.37 

No change 10 0.96 

Decrease 363 34.67 

Source: Author (2017) 

 

 

4.3 Results of Data Analysis for Objective 1: 

Risks Encountered in Building Projects 

Review of relevant literature was carried out in order to generate a list of the risks that 

could be tested for significance of effect on the costs of building projects. A list of 70 

risks was generated; purposive selection of risks that were considered relevant to the 
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study reduced this number to 19. These 19 risks were then included in the research 

instrument, in order to determine which risks had impacted on the costs of the projects 

sampled in this study. This section presents the results of the questionnaire survey that 

was carried out with respect to the risks that had impacted on the costs of projects.   

 

The 69 projects sampled in this study were examined for impact of risks and a tabular 

record of the examination is presented in Table 4.4a and 4.4b. All of the 19 risks in 

the research instrument served as column headings while the rows represented 

individual projects. A zero in the table meant that the risk at the head of the column in 

which the zero appeared did not occur on the project identified by the row number. 

The number 1 meant the reverse; the specific risk occurred on the specific project 

referred to by the row number. The prefix ‘A’ in the first column (which was labeled 

Proj Nr) identified multistory projects; a ‘B’ referred to single-story projects while ‘C’ 

denoted refurbishment projects. 

 

It was observed from Table 4.4a and 4.4b that only 8 risks impacted on the costs of 

the 69 projects that were sampled. These 8 risks were labelled R3, R4, R5, R6, R10, 

R13, R15 and R19. Some of these 8 risks occurred very sparingly; for example it was 

only in two instances that R19 (Social issues/disturbance) was associated with 

changes in project costs. This risk had been identified by Windapo and Martins 

(2010); their study was located in the southern part of Nigeria, where tussles over the 

ownership of land were rife, as noted in their study (the ‘omo onile’ phenomenon, a 

euphemism for landlord). The other 11 risks did not have any impact on the costs of 

the projects.  
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Table 4.4a:  Risks that impacted on costs of Projects 1 - 35 

Proj Nr R
1

 

R
2

 

R
3

 

R
4

 

R
5

 

R
6

 

R
7

 

R
8

 

R
9

 

R
1

0
 

R
1

1
 

R
1

2
 

R
1

3
 

R
1

4
 

R
1

5
 

R
1

6
 

R
1

7
 

R
1

8
 

R
1

9
 

A01 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 
A02 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

A03 0 0 1 1 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 
A04 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 

A05 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 
A06 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 

A07 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

A08 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 
A09 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 

A10 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 
A11 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 

A12 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

A13 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
A14 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

A15 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
A16 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

B17 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
B18 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

B19 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

B20 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
B21 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

B22 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
B23 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

B24 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 

B25 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 
B26 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 

B27 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 
B28 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 

B29 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 

B30 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 
B31 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 

B32 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 
B33 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 

B34 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 
B35 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 

Source: Author (2017) 
Notes: R1= Acts of God; R2= Cash flow difficulties; R3= change in design / variations by the client; 

R4= Change in scope of work; R5= change in the design by the Architect; R6= Changes in 

site conditions; R7= Consultant competence; R8= Contractor competence; R9= Nominated 

suppliers cash flow problems; R10= Consultants' design change; R11= Delay due to excessive 

approval procedures; R12= Equipment breakdown/ maintenance; R13= error/omission in 

design/estimate; R14= Inclement weather; R15= Inflation; R16= Labour shortage; R17= Poor 

contract management; R18= Production target slippage; R19= Social issues/area boys, original 

land owners. 
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Table 4.4b:  Risks that impacted on costs of Projects 36 - 69 

Proj Nr R
1

 

R
2

 

R
3

 

R
4

 

R
5

 

R
6

 

R
7

 

R
8

 

R
9

 

R
1

0
 

R
1

1
 

R
1

2
 

R
1

3
 

R
1

4
 

R
1

5
 

R
1

6
 

R
1

7
 

R
1

8
 

R
1

9
 

B36 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 
B37 0 0 1 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 
B38 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 

B39 0 0 1 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 
B40 0 0 1 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 

B41 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

B42 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 
B43 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 

B44 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
B45 0 0 0 1 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 

B46 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 

B47 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 
B48 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 

C49 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
C50 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C51 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 
C52 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 

C53 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 

C54 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C55 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

C56 0 0 0 1 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 
C57 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 

C58 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 

C59 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 
C60 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 

C61 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 
C62 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 

C63 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 

C64 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 
C65 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 

C66 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 
C67 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 

C68 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 
C69 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 

Source: Author (2017) 
Notes: R1= Acts of God; R2= Cash flow difficulties; R3= change in design / variations by the client; 

R4= Change in scope of work; R5= change in the design by the Architect; R6= Changes in 

site conditions; R7= Consultant competence; R8= Contractor competence; R9= Nominated 

suppliers cash flow problems; R10= Consultants' design change; R11= Delay due to excessive 

approval procedures; R12= Equipment breakdown/ maintenance; R13= error/omission in 

design/estimate; R14= Inclement weather; R15= Inflation; R16= Labour shortage; R17= Poor 

contract management; R18= Production target slippage; R19= Social issues/area boys, original 

land owners. 

 

 

Definitions for the 8 risks that impacted on project costs are presented in Table 4.5. 

Two of the risks have clients as their source (R3 and R4), while consultants serve as 
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the source of three risks (R5, R10 and R13). The other three risks arose from 

unforeseeable causes (R6, R15 and R19).  

 

Table 4.5: Definition of risks that impacted on project costs 

Risk Label Category Description  Source 

R3 CLV Client 

variation/design 

change 

Instructions to vary initial tenders (and 

sometimes designs) that originate from clients; 

does not usually involve modification of the 

project brief. 

Client 

R4 CLS Client scope 

change 

Changes from or additions to initial designs 

(and at times tenders) requested by clients as 

modification of the project brief. 

Client 

R5 CND Consultants' 

error/omission 

in design 

Impacts caused by incomplete or inaccurate 

construction documents provided by designers. 

Architect 

/Consultants 

R6 UNS Unforeseen site 

conditions 

Impacts arising from unforeseeable conditions 

such as unknown ground conditions. 

Unforeseeable 

R10 CNV Consultants' 

design change 

Changes to initial designs that originate from 

designers (Architect and Engineers). 

Architect 

/Consultants 

R13 CNE Consultants' 

error/omission 

in estimates 

Impacts caused by incomplete or inaccurate 

price information provided by quantity 

surveyors. 

Architect 

/Consultants 

R15 UNE Unforeseen 

economic 

conditions 

Impacts arising from changes in the economic 

climate such as due to inflation. 

Unforeseeable 

R19 USD Unforeseen 

social 

disturbance 

Impacts arising from unforeseeable conditions 

such as social unrest. 

Unforeseeable 

Source: Author (2017). 

 

The impact of the 8 risks in Table 4.5 was obtained for 5 classes of costs 

conventionally presented in final accounts. This was in order to provide further detail 

on what types of risks the different classes of project costs are susceptible to. For 

example costs associated with incomplete detailing of construction work are usually 

classed as ‘Provisional Quantities’, and may be more susceptible to certain types of 

risks than others. Information on the breakdown of risk effect on different cost classes 

was presented in detail in Appendix E and summarized in Table 4.6. 



122 
 

Table 4.6: Occurrence of risks in different classes of project cost presented in final accounts 

Proj Nr 

R3-CLV R4-CLS R5-CND R6-UNS R10-CNV R13-CNE R15-UNE R19-USD 

p
q

 

p
s 

v
a
 

v
o
 

v
s 

p
q

 

p
s 

v
a
 

v
o
 

v
s 

p
q

 

p
s 

v
a
 

v
o
 

v
s 

p
q

 

p
s 

v
a
 

v
o
 

v
s 

p
q

 

p
s 

v
a
 

v
o
 

v
s 

p
q

 

p
s 

v
a
 

v
o
 

v
s 

p
q

 

p
s 

v
a
 

v
o
 

v
s 

p
q

 

p
s 

v
a
 

v
o
 

v
s 

Sum of risk 

occurrence in all 

69 projects 

1 0 12 3 7 0 0 31 4 9 3 0 14 5 2 18 2 2 0 0 2 44 5 0 0 36 0 13 1 5 0 1 9 0 1 0 0 1 0 0 

  Source: Author (2017). 
Notes: R3= change in design / variations by the client; R4= Change in scope of work; R5= change in the design by the Architect; R6= Changes in site conditions; 

R10= Consultants' design change; R13= error/omission in design/estimate; R15= Inflation; R19= Social issues/area boys, original land 

owners.pq=provisional quantities; ps=provisional sums; va=variations (addition); vo=variations (omissions); vs=variations (substitution) 

 

 

The overall aim of this study is to predict the occurrence, type and degree of impact of risks on costs of building projects by developing an 

artificial neural network model. This was done using a sample of 69 projects. However, as has been shown in this section, in Table 4.4a, 4.4b 

and 4.5, risk occurrence varies from project to project. No single risk impacted on costs of all 69 projects. The modal value of 44 in Table 4.6 

represents the largest subset of the sample of 69 projects that could be used to develop the ANN, since neural networks are a data-hungry 

procedure (Elhag and Boussabaine, 1998).  The seven instances in which risks impacted on the costs of 10 or more projects were thus selected 

for use in developing the ANN. 
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The 7 selected instances referred to the impact of (i) R3 on variations; (ii) R4 on 

variations; (iii) R5 on variations; (iv) R6 on provisional quantities; (v) R10 on 

provisional sums; (vi) R13 on provisional quantities, and (vii) R13 on variations. Only 

6 risks were thus employed to develop the ANN (R3, R4, R5, R6 and R13), but one 

out of these six risks impacted on more than one class of project cost (R13).  

 

4.4 Results of Data Analysis for Objective 2: 

Construction Project Features Employed in Building Cost Prediction 

The second objective of the study dealt with the identification of the features of 

construction projects that had been employed for the prediction of the costs of 

building projects. This process has been described in Chapter Three. The 8 CPFs 

which were adopted for use as predictors in ANN are identified by bold face type in 

Table 4.7.  

 

The variables adopted as ANN predictors in this study were normalized by conversion 

to binary variables. Conversion of variables to a binary scale in effect transforms the 

parameter into one that has only two states. These states are usually different in terms 

of only size. This means that notwithstanding the parameter employed as a predictor 

in ANN, the ANN is really predicting based on differences in the sizes of the 

variables entered into it; such binary variables have only two sizes. This property of a 

binary scale makes it just as feasible to use a non-numerical variable as a numerical 

one.  
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Table 4.7:  Construction project features adopted as ANN inputs in this study 

S/N CPFs a b c d e f g h i j k l m 

T
h

is
 

st
u

d
y

 

1 Area of formworks   
          

x 
 

2 Cost of external work   
           

√ 

3 Cost of finishing   
           

√ 

4 Cost of services   
           

√ 

5 Cost of structural element   
           

√ 

6 Duration  x  
     

x 
      

7 Estimated Sum   
 

x 
   

x 
      

8 Estimating Method   
 

x 
          

9 Floor Height   
        

x 
   

10 Fluctuation measure   
   

x 
        

11 Gross floor area  x  
 

x x 
   

x 
    

√ 
12 Ground conditions x  

            
13 Initial contract sum   

    
x 

  
x 

    
14 Land Acquisition   

        
x 

   
15 Location   

 
x 

          
16 Lowest tender price x  

            
17 Market conditions x  

            
18 Nature of project   

           
√ 

19 Number of basements   
        

x 
 

x 
 

20 Number of columns   
  

x 
         

21 Number of stories x  
 

x 
    

x 
     

22 Number of tenderers x  
            

23 Payment method,   
   

x 
        

24 Procurement Route   
 

x 
 

x 
        

25 Risk impact   
    

x 
    

x 
  

26 Risk probability   
    

x 
    

x 
  

27 Scope of project   
     

x 
      

28 Site access x  
            

29 Site slope x  
            

30 Structural Material   
 

x 
          

31 Type of client   
   

x 
        

32 Type of contract x  
            

33 Type of project x  
 

x 
 

x 
       

√ 

34 Typical floor area   
  

x 
         

35 Volume of concrete   
          

x 
 

36 Weight of steel   
          

x 
 

37 Work space in site x  
            

38 Year   
        

x 
  

√ 

 

Source: Researcher’s summary 
Note:  a = Elhag and Boussabaine (1998); b = Palaneeswaran et al. (2008); c = Wang and Gibson 

(2010); d = Aibinu et al. (2011); e = Arafa and Alqedra (2011); f = Ahiaga-Dagbui  and Smith 

(2012); g = Odeyinka et al. (2012); h = Ahiaga-Dagbui  and Smith (2013); i = Gulcicek et al. 

(2013); j = Amusan et al. (2013); k = Kim et al. (2013); l = Odeyinka et al. (2013); m = Roxas 

and Ongpeng (2014). 

 

 

The 8 CPFs employed in this study as identified in Table 4.7 are defined in Table 4.8. 

The units in which the CPFs were measured are also provided.  
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Table 4.8 Descriptions of CPFs employed in study 

Source: Author (2017) 

 

 

4.5 Results of Data Analysis for Objective 3: 

Effect of Risk in Costs of Building Projects  

The third objective of this study which was ‘to determine the effects of risks on the 

final costs of building projects’ was addressed in this section. Different levels of risk 

are associated with different projects and the number of risk events recorded on 

projects also differs; it is believed that the more complex and large a project is, the 

more risk it involves (Furlong et al., 2017).  

 

The effect of risks on the project costs was examined in three main areas; in terms of 

occurrence, in terms of the arithmetical sign of the risk which determines its effect on 

project costs, and in terms of the degree of impact of the risk. The third area was 

measured in relation to the initial cost of the projects. These three areas of assessing 

CPF 

Nr 
CPF Description of CPF 

1 Gross floor area Area covered by building, across all walls and partitions, measured to the 

external faces of extreme parts of the buildings. Expressed in square 

meters. 

2 Project type The intended use or purpose of the project. Examples include office, 

classroom, hotel and workshop. 

3 Year The year the project construction commenced. 

4 Project nature Whether the project is for a new construction or maintenance of an old 

building. 

5 Costs of structural 

elements 

Costs of substructure, load bearing walls and roof, all expressed as a 

proportion of the initial contract value of the project. 

6 Costs of Services Costs of mechanical and electrical engineering services, all expressed as 

a proportion of the initial contract value of the project. 

7 Costs of Finishing Costs of floor, wall and ceiling finishing and decoration, all expressed as 

a proportion of the initial contract value of the project. 

8 Costs of External 

work 

Costs of all works that are external to the building structure itself, such as 

fencing, external electrification and landscaping, expressed as a 

proportion of the initial contract value of the project. 
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risk impact on the project costs were dealt with in Sections 4.5.1, 4.5.2 and 4.5.3 

respectively. 

 

4.5.1 Risk occurrence in building projects 

The number of times that risks impacted on the costs of the 69 projects in the study 

was examined by constructing a frequency table of the projects and associated risks. 

Risks were identified at the heads of columns in Table 4.9a and 4.9b, while the rows 

referred to individual projects. The number of times a risk occurred on a project was 

recorded at the intersection of the row and the column that identified both the project 

and the risk. Both Table 4.9a and 4.9b contained similar information; Table 4.9a 

presented risk frequencies for Projects A01 to B35 while Table 4.9b presented the 

same information for Projects B36 to C69. 

 

It was observed that not all of the risks occurred on every project; in fact the highest 

number of risks that occurred concurrently was observed on only two projects. These 

were Projects A03 and B45, on which 6 risks occurred. The mean, median and modal 

values for risk occurrence were found to be 3.02, 3 and 3 respectively. The risks that 

occurred most frequently were R10-CNV and R13-CNE, while the least frequent risk 

was R19-USD. The projects on which risks occurred most frequently were Project 

A02 (65 risk occurrences recorded); Project C61 (58 risk occurrences); and Project 

B45, on which 56 occurrences of risk was recorded. 
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Table 4.9a: Frequency of risks in building projects (Projects A01 to B35) 

Proj 

Grp 

Nr 

R3-

CLV 

R4-

CLS 

R5-

CND 

R6-

UNS 

R10-

CNV 

R13-

CNE 

R15-

UNE 

R19-

USD 

A01 

 

3 

 

1 21 9 

  A02 

 

46 17 

   

2 

 A03 1 13 15 1 2 1 

  A04 

  

6 

 

7 12 1 

 A05 

  

6 1 7 6 

  A06 

  

4 

 

7 12 

  A07 

 

3 

   

3 

  A08 

    

6 6 10 

 A09 2 1 

  

4 1 

  A10 4 

 

5 

 

10 26 

  A11 

 

5 

  

3 11 

  A12 1 4 

  

18 

   A13 

  

8 

 

34 

   A14 6 4 1 

 

5 

   A15 

 

3 1 

  

1 

  A16 

 

7 8 

     B17 

 

1 

    

2 

 B18 

 

2 

    

1 

 B19 

 

2 

    

1 

 B20 

 

2 

    

1 

 B21 

 

2 

    

1 

 B22 

 

1 

      B23 

 

1 

      B24 8 

   

4 12 

  B25 

   

1 

 

4 

  B26 

   

1 

 

3 

  B27 

   

1 3 4 

  B28 1 

  

1 3 4 

  B29 

   

1 3 4 

  B30 

   

1 2 4 

  B31 

   

1 3 4 

  B32 

   

1 3 4 

  B33 

   

1 

 

4 

  B34 

   

1 

 

5 

  B35 

   

3 

 

6 

  Source: Author (2017). 
Notes: R3= change in design / variations by the client; R4= Change in scope of work; R5= change in 

the design by the Architect; R6= Changes in site conditions; R10= Consultants' design change; R13= 
error/omission in design/estimate; R15= Inflation; R19= Social issues/area boys, original land owners 
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Table 4.9b: Frequency of risks in building projects (Projects B36 to C69) 

Proj 

Grp 

Nr 

R3-

CLV 

R4-

CLS 

R5-

CND 

R6-

UNS 

R10-

CNV 

R13-

CNE 

R15-

UNE 

R19-

USD 

B36 

   

1 3 4 

  B37 1 1 

 

1 4 1 

  B38 1 1 

 

1 4 1 

  B39 1 1 

 

1 4 1 

  B40 2 1 

 

1 4 1 

  B41 1 4 

  

1 

   B42 

 

1 

  

2 2 

  B43 

 

1 

  

1 2 

  B44 1 

       B45 

 

9 6 2 6 30 3 

 B46 

 

1 13 

 

2 4 

  B47 

 

5 

 

1 

 

1 

  B48 

 

10 

  

1 2 

  C49 

 

1 

  

1 

   C50 6 

       C51 

 

1 

  

1 3 

  C52 

 

9 

  

2 2 

  C53 

 

10 

  

2 2 

  C54 

 

10 

   

2 

  C55 

 

1 

      C56 

 

17 1 

 

5 18 1 

 C57 

 

10 

  

4 32 

  C58 

 

11 

  

3 12 

  C59 

 

7 

  

4 9 

  C60 8 

   

6 14 

  C61 3 

   

5 48 

 

2 

C62 

  

3 

 

2 5 

  C63 

 

2 

  

2 1 

  C64 

  

4 

 

5 6 

  C65 

  

7 

 

2 3 

  C66 2 

 

12 

 

4 2 

  C67 1 

 

2 

 

3 4 

  C68 3 

  

2 

 

13 

  C69 2 

   

4 5 

  Source: Author (2017). 
Notes: R3= change in design / variations by the client; R4= Change in scope of work; R5= change in 

the design by the Architect; R6= Changes in site conditions; R10= Consultants' design change; R13= 
error/omission in design/estimate; R15= Inflation; R19= Social issues/area boys, original land owners 
 

 

The frequency of occurrence of the 8 risks found to have impacted on project costs 

through the questionnaire survey was summarized by a piechart in Figure 4.1. Four 

risks are immediately recognizable as being the most frequent on the sampled 
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projects. The four risks were R4-CLS, R5-CND, R10-CNV and R13-CNE. These four 

risks accounted for 90% of all occurrences of risk on the projects.  

 

Different project stakeholders served as the source of the four most frequently 

occurring risks identified above. Three of the risks, R5-CND, R10-CNV and R13-

CNE are associated with the design and construction consultants on the projects. This 

meant that risks arising from the actions or inactions of the project consultants made 

up 69% of all risks that occurred on the projects that were sampled. In terms of 

frequency of occurrence alone, the risk that occurred most frequently and was 

associated with clients was R4-CLS, which accounted for 21% of all recorded risks. 

This classification of risks according to source of the risk was based on evidence from 

literature, such as Perrenoud et al. (2016), Perrera et al. (2014) and Zou et al. (2006). 

 

 

Figure 4.1: Summary of risk frequency 

 

 

R3-CLV 
5% 

R4-CLS 
21% 

R5-CND 
11% 

R6-UNS 
3% 

R10-CNV 
22% 

R13-CNE 
36% 

R15-UNE 
2% 

R19-USD 
0% 
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4.5.2 Type of risk effect on building project costs 

The number of times that risks impacted either positively or negatively on the costs of 

the 69 projects in the study was examined by constructing a frequency table of the 

projects and associated risks. Within the context of this study, the phrase ‘positive and 

negative effects of risk’ refer to the arithmetical signs associated with numerical 

values of risks. Positive effects increase the costs of projects, while negative effects 

decrease the costs of projects.  

 

Risks were identified at the heads of columns in Table 4.10a and 4.10b, while the 

rows referred to individual projects. Risks were further subdivided into positive and 

negative, based on the arithmetical signs associated with numerical values of the risks. 

The number of times a risk occurred on a project was recorded at the intersection of 

the row and the column that identified the project, the risk and the arithmetical sign of 

the risk. Both Table 4.10a and 4.10b contained similar information; Table 4.10a 

presented risk frequencies for Projects A01 to B35 while Table 4.10b presented the 

same information for Projects B36 to C69. 

 

It was observed that both positive and negative risks occurred on most projects; in fact 

only on 11 projects were risks of only one type observed. On the other 58 projects 

both positive and negative risks were recorded. The mean, median and modal values 

for risk occurrence were found to be 1.58, 2 and 2 respectively for positive risks; the 

corresponding values were 2.35, 2 and 2 for negative risks. The positive risks that 

occurred most frequently were R10-CNV and R13-CNE, while the least frequent 

positive risk was R19-USD (it did not occur at all). The negative risks that occurred 
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most frequently were R13-CNE and R4-CLS, while the least frequent negative risk 

was R19-USD. 

 

Table 4.10a: Frequency of risks with positive effect on costs (Projects A01 to B35) 

Proj 

Grp Nr 

R3-CLV R4-CLS R5-CND R6-UNS R10-CNV  R13-CNE R15-UNE R19-USD 

 +ve  -ve  +ve  -ve  +ve  -ve  +ve  -ve  +ve  -ve  +ve  -ve  +ve  -ve  +ve  -ve 

A01 

  

3 0 

  

0 1 4 17 5 4 

    A02 

  

0 46 0 17 

      

0 2 

  A03 0 1 13 0 4 11 1 0 2 0 0 1 

    A04 

    

0 6 

  

3 2 9 3 0 1 

  A05 

    

0 6 0 1 6 1 2 4 

    A06 

    

0 4 

  

3 2 8 4 

    A07 

  

0 3 

      

2 1 

    A08 

        

2 0 3 3 6 4 

  A09 0 2 0 1 

    

2 1 1 0 

    A10 0 4 

  

0 5 

  

6 4 14 12 

    A11 

  

2 3 

    

2 1 3 8 

    A12 0 1 0 4 

    

8 10 

      A13 

    

0 8 

  

16 18 

      A14 0 6 4 0 0 1 

  

4 1 

      A15 

  

1 2 1 0 

    

0 1 

    A16 

  

1 6 1 7 

          B17 

  

0 1 

        

0 2 

  B18 

  

0 2 

        

0 1 

  B19 

  

0 2 

        

0 1 

  B20 

  

0 2 

        

0 1 

  B21 

  

0 2 

        

0 1 

  B22 

  

0 1 

            B23 

  

0 1 

            B24 0 8 

      

0 4 2 10 

    B25 

      

1 0 

  

0 4 

    B26 

      

1 0 

  

0 3 

    B27 

      

1 0 1 2 0 4 

    B28 1 0 

    

1 0 1 2 0 4 

    B29 

      

1 0 1 2 0 4 

    B30 

      

1 0 1 1 0 4 

    B31 

      

1 0 1 2 0 4 

    B32 

      

1 0 1 2 0 4 

    B33 

      

1 0 

  

0 4 

    B34 

      

1 0 

  

1 4 

    B35 

      

0 3 

  

1 5 

    Source: Author (2017). 
Notes: R3= change in design / variations by the client; R4= Change in scope of work; R5= change in 

the design by the Architect; R6= Changes in site conditions; R10= Consultants' design change; R13= 
error/omission in design/estimate; R15= Inflation; R19= Social issues/area boys, original land owners 
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Table 4.10b: Frequency of risks with positive effect on costs (Projects B36 to C69) 

Proj 

Grp Nr 

R3-CLV R4-CLS R5-CND R6-UNS R10-CNV  R13-CNE R15-UNE R19-USD 

 +ve  -ve  +ve  -ve  +ve  -ve  +ve  -ve  +ve  -ve  +ve  -ve  +ve  -ve  +ve  -ve 

B36 

      

1 0 1 2 0 4 

    B37 0 1 0 1 

  

1 0 0 4 0 1 

    B38 0 1 0 1 

  

1 0 0 4 0 1 

    B39 0 1 0 1 

  

1 0 0 4 0 1 

    B40 1 1 0 1 

  

1 0 0 4 0 1 

    B41 0 1 1 3 

    

0 1 

      B42 

  

0 1 

    

2 0 2 0 

    B43 

  

0 1 

    

1 0 0 2 

    B44 1 0 

              B45 

  

0 9 2 4 2 0 5 1 16 14 0 3 

  B46 

  

1 0 5 8 

  

1 1 4 0 

    B47 

  

0 5 

  

1 0 

  

1 0 

    B48 

  

0 10 

    

1 0 0 2 

    C49 

  

0 1 

    

1 0 

      C50 0 6 

              C51 

  

0 1 

    

1 0 0 3 

    C52 

  

0 9 

    

0 2 2 0 

    C53 

  

0 10 

    

0 2 2 0 

    C54 

  

0 10 

      

1 1 

    C55 

  

0 1 

            C56 

  

0 17 1 0 

  

4 1 12 6 0 1 

  C57 

  

0 10 

    

3 1 13 19 

    C58 

  

0 11 

    

3 0 6 6 

    C59 

  

0 7 

    

4 0 6 3 

    C60 0 8 

      

5 1 6 8 

    C61 0 3 

      

3 2 28 19 

  

0 2 

C62 

    

1 2 

  

2 0 2 3 

    C63 

  

0 2 

    

2 0 1 0 

    C64 

    

0 4 

  

4 1 4 2 

    C65 

    

0 7 

  

2 0 2 1 

    C66 2 0 

  

0 12 

  

3 1 0 2 

    C67 0 1 

  

0 2 

  

3 0 3 1 

    C68 0 3 

    

0 2 

  

9 4 

    C69 0 2 

      

3 1 3 2 

    Source: Author (2017). 
Notes: R3= change in design / variations by the client; R4= Change in scope of work; R5= change in 

the design by the Architect; R6= Changes in site conditions; R10= Consultants' design change; R13= 
error/omission in design/estimate; R15= Inflation; R19= Social issues/area boys, original land owners 
 

 

 

The frequency of occurrence of risks found to have positive impact on project costs 

was summarized by a piechart in Figure 4.2. Two risks are immediately recognizable 

as being the most frequent on the sampled projects. The two risks were R13-CNE and 
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R10-CNV which accounted for 49% and 33% of all occurrences of risk on the 69 

projects that were sampled.  

 

 

Figure 4.2: Frequency of risks with positive impact on project costs 

 

Both of the two most frequently occurring positive risks R13-CNE and R10-CNV 

were associated with the project consultants. This meant that 82% of all risks that 

increased the costs of the projects that were sampled arose from the actions or 

inactions of the project consultants. With respect to clients as a source of positive risk, 

only 9% of all recorded risk occurrences was identified (R4-CLS, which accounted 

for 7% and R3-CLV, which accounted for 2%).  

 

Although risks were classified into types was based on evidence from literature, such 

as Yildiz et al. (2014), Karim et al. (2012) and Chileshe and Yirenkyi-Fianko (2011), 

there is need for caution in comparing the results obtained in this study with those of 

earlier studies. This is based on the fact that risk categories are defined differently in 

R3-CLV (+ve) 
2% 

R4-CLS (+ve) 
7% R5-CND (+ve) 

4% 

R6-UNS (+ve) 
5% 

R10-CNV (+ve) 
33% 

R13-CNE (+ve) 
49% 
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different studies. This study has found that the project consultants accounted for the 

largest proportion of positive risks in contrast to the finding by Perrenoud et al. (2016) 

found that clients accounted for over half of all risk occurrences. However in the 

Perrenoud study there was only one category associated with consultants (unlike the 3 

in this study) and and four categories that were associated with clients (unlike the 2 in 

this study). 

 

The frequency of occurrence of risks found to have negative impact on project costs 

was summarized by a piechart in Figure 4.3. Two risks, R13-CNE and R4-CLS are 

recognizable as being the most frequently occurring negative risks on the sampled 

projects. The two risks accounted for 30% and 28% respectively of all occurrences of 

risk.   

 

Figure 4.3: Frequency of risks with negative impact on project costs 

 

Two other risks, R10-CNV and R5-CND were also found to be frequently occurring 

negative risks, accounting for 16% and 15% of risk occurrence respectively. Of these 

R3-CLV (-ve) 
7% 

R4-CLS (-ve) 
28% 

R5-CND (-ve) 
15% 

R6-UNS (-ve) 
1% 

R10-CNV (-ve) 
16% 

R13-CNE (-ve) 
30% 

R15-UNE (-ve) 
3% 

R19-USD (-ve) 
0% 
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four frequently occurring negative risks, three (R13-CNE, R10-CNV and R5-CND) 

were associated with the project consultants. This meant that 61% of all risks that 

decreased the costs of the projects were associated the project consultants.  

 

4.5.3 Impact of risks on project costs 

The impact of risks on the costs of the 69 projects in the study was examined by 

estimating the numerical values of the risks. The impact of risks was estimated by 

considering the increase or decrease in the project costs arising as a consequence of 

the risk. This was then taken as a proportion of the initial contract value of the project. 

Risks were identified at the heads of columns in Table 4.11a and 4.11b, while the 

rows referred to individual projects. The percentage increase or decrease in the cost of 

the project associated with a risk that had occurred was recorded at the intersection of 

the row and the column that identified both the project and the risk. Both Table 4.11a 

and 4.11b contained similar information; Table 4.11a presented risk frequencies for 

Projects A01 to B35 while Table 4.11b presented the same information for Projects 

B36 to C69. 

 

The mean and median values for risk occurrence were found to be 2.69% and 0.83% 

respectively. Modal values could not be computed, owing to non-repetition of the 

discrete values of risk impact. The risks that had the highest impact on project costs 

were R4-CLS and R5-CND, while the risk with the least impact was R19-USD. The 

projects on which risks had had the highest and least impacts on project costs were 

Project A03 (58.47%) and Project B43 (-10.53%). 
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Table 4.11a: Risk impact on costs (Projects A01 to B35) 

Proj 

Grp Nr 

R3-

CLV 

R4-

CLS 

R5-

CND 

R6-

UNS 

R10-

CNV 

R13-

CNE 

R15-

UNE 

R19-

USD 

A01 

 

-1.49 

 

0.08 9.31 5.75 

  A02 

 

10.39 5.25 

   

20.88 

 A03 50.09 -1.60 -0.59 -1.74 -1.30 13.61 

  A04 

  

4.61 

 

0.21 -0.75 3.33 

 A05 

  

1.66 0.14 -1.57 6.04 

  A06 

  

8.08 

 

-0.46 -2.40 

  A07 

 

0.77 

   

-0.02 

  A08 

    

-0.63 -2.77 -4.54 

 A09 2.44 0.07 

  

11.07 -0.18 

  A10 2.19 

 

2.49 

 

-1.35 2.25 

  A11 

 

-0.10 

  

0.02 -2.04 

  A12 0.31 0.97 

  

2.22 

   A13 

  

3.22 

 

-3.50 

   A14 2.32 -4.91 2.12 

 

-3.89 

   A15 

 

3.88 -0.11 

  

0.85 

  A16 

 

1.17 2.78 

     B17 

 

3.37 

    

10.06 

 B18 

 

8.66 

    

6.85 

 B19 

 

8.88 

    

6.71 

 B20 

 

8.01 

    

3.93 

 B21 

 

24.69 

    

2.35 

 B22 

 

10.65 

      B23 

 

29.36 

      B24 9.24 

   

7.27 21.39 

  B25 

   

-0.39 

 

2.71 

  B26 

   

-0.58 

 

2.73 

  B27 

   

-0.46 0.26 2.82 

  B28 0.00 

  

-0.55 1.18 2.91 

  B29 

   

-0.59 0.88 2.73 

  B30 

   

-1.17 0.00 2.39 

  B31 

   

-0.58 0.48 2.97 

  B32 

   

-0.58 0.45 2.82 

  B33 

   

-1.58 

 

3.29 

  B34 

   

-0.48 

 

1.38 

  B35 

   

2.21 

 

3.47 

  Source: Author (2017). 
Notes: R3= change in design / variations by the client; R4= Change in scope of work; R5= change in 

the design by the Architect; R6= Changes in site conditions; R10= Consultants' design change; R13= 
error/omission in design/estimate; R15= Inflation; R19= Social issues/area boys, original land owners 
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Table 4.11a: Risk impact on costs (Projects B36 to C69) 

Proj 

Grp Nr 

R3-

CLV 

R4-

CLS 

R5-

CND 

R6-

UNS 

R10-

CNV 

R13-

CNE 

R15-

UNE 

R19-

USD 

B36 

   

-0.78 0.65 3.42 

  B37 0.21 1.25 

 

-2.36 2.20 0.67 

  B38 0.19 1.31 

 

-2.44 2.16 0.82 

  B39 2.30 1.20 

 

-4.29 2.23 0.68 

  B40 -0.49 1.31 

 

-1.40 2.13 0.50 

  B41 18.33 1.40 

  

0.34 

   B42 

 

0.22 

  

-3.63 -0.58 

  B43 

 

0.33 

  

-16.75 5.89 

  B44 -0.37 

       B45 

 

1.31 -1.89 -0.62 -9.98 0.55 1.26 

 B46 

 

-0.51 6.17 

 

-1.13 -1.81 

  B47 

 

3.91 

 

-2.11 

 

-0.62 

  B48 

 

18.82 

  

-12.42 1.74 

  C49 

 

0.66 

  

-1.20 

   C50 42.72 

       C51 

 

0.57 

  

-3.05 1.60 

  C52 

 

4.45 

  

9.36 -0.89 

  C53 

 

13.12 

  

9.36 -0.89 

  C54 

 

24.41 

   

-16.51 

  C55 

 

19.17 

      C56 

 

6.54 -1.88 

 

0.01 0.83 6.90 

 C57 

 

4.32 

  

7.34 6.15 

  C58 

 

5.80 

  

-4.26 1.06 

  C59 

 

3.72 

  

-8.78 0.55 

  C60 6.98 

   

-7.58 -0.99 

  C61 4.25 

   

-1.16 -5.29 

 

6.63 

C62 

  

9.80 

 

-4.55 4.10 

  C63 

 

20.02 

  

-9.30 -0.17 

  C64 

  

16.89 

 

6.54 -1.96 

  C65 

  

24.56 

 

-10.71 0.04 

  C66 -32.79 

 

49.08 

 

-3.48 0.77 

  C67 3.44 

 

15.06 

 

-16.31 -4.55 

  C68 6.41 

  

0.11 

 

-3.25 

  C69 14.74 

   

-2.49 -8.37 

  Source: Author (2017). 
Notes: R3= change in design / variations by the client; R4= Change in scope of work; R5= change in 

the design by the Architect; R6= Changes in site conditions; R10= Consultants' design change; R13= 
error/omission in design/estimate; R15= Inflation; R19= Social issues/area boys, original land owners 
 

 

The impact of the 8 risks was summarized by a piechart in Figure 4.4. Three risks are 

recognizable as having the most impact on the sampled projects. The three risks are 

R4-CLS, R5-CND and R3-CLV; they accounted for 33%, 21% and 19% of all risk 

impact on the projects. Two of the risks, R4-CLS and R3-CLV are associated with the 
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clients of the projects. This meant that risks arising from the actions of the project 

clients made up 52% of all recorded risk impacts. This value is less than the 73.7% 

obtained by Perrenoud et al. (2016).  

 

 

Figure 4.4: Impact of risks on project costs  

 

The risks that had the most impact on costs in this study were found to be scope and 

design risks, which accounted for 33% and 21% of all cost impacts due to risks 

respectively. This finding was similar but lower than that of Perrenoud et al. (2016), 

where scope and design risks made up 63% and 10% of total cost impact due to risks. 

Economic risk such as inflation (coded as R15-UNE and accounting for 8% of cost 

impacts in this study) had been found by Chileshe and Yirenkyi-Fianko (2011) as 1 of 

the 5 risks with the most impact on project costs in their study.   

R3-CLV 
19% 

R4-CLS 
33% 

R5-CND 
21% 

R6-UNS 
-3% 

R10-CNV 
-8% 

R13-CNE 
8% 

R15-UNE 
8% 
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4.6 Results of Data Analysis for Objective 4: 

Development of Artificial Neural Network for Prediction of Cost Variance 

of Building Projects (ANN1) 

This section deals with the first part of the fourth objective of the study, which was to 

develop an artificial neural network capable of predicting the effect of risk on the final 

cost of building projects. Apart from differences in the source and type of the input 

data, the procedure employed in developing the ANN closely followed the procedures 

described in the literature on risk modelling using ANN, for example in Odeyinka et 

al. (2013) and Odeyinka et al. (2012).  

 

4.6.1 Optimal validation results for ANN1 

In this subsection the comparison of validation results across the five training cycles 

was undertaken. The best validation results from each training cycle are presented in 

Table 4.12 and Figure 4.5. It was apparent from the results that min-max 

minimization technique produced the lowest error levels.  

 

Table 4.12:  Performance statistics for the best performing networks  

S/No 
Normalization 

type 

Number 

of trial 

runs 

Neurons 

in 

hidden 

layer 

Network 

architecture 
MSE SSE SAE MAE 

1 MIN2_1 27 21 2:21:1:1 0.0035 0.14 1.5541 0.038853 

2 MIN2_2 27 13 2:13:1:1 0.0033 0.133 1.7387 0.043468 

3 MIN2_3 27 7 2:7:1:1 0.0046 0.1859 1.9116 0.04779 

4 MIN2_4 27 31 2:31:1:1 0.0026 0.1048 1.4186 0.035465 

5 MIN2_5 27 25 2:25:1:1 0.0029 0.1169 1.6502 0.041255 

Source: Author (2017)  

Notes:  SSE = sum of squared errors; MSE = mean squared error; SAE = sum of absolute errors; 

MAE = mean absolute error. 
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It was also observed that MIN2_4 gave the best performance outcomes of all the 4 

minimization techniques during the five training cycles carried out, each comprising 

27 trial runs. 

 

 

Figure 4.5: Simulated and target output of MIN2_4 network 

 

The MSE and MAE of MIN2_4 network was the lowest of the 540 runs carried out; 

MIN2_4 also had the highest number of neurons in the first hidden layer. All of the 

performance indices values were given in normalized values. Performance outcomes 

for artificial neural networks vary widely; for example, Palaneeswaran et al. (2008) 

obtained a MAE value of 0.646 for the estimation of contractual claims. Jha and 

Chockalingam (2009) obtained MAPD of 8.044 percent and MSE of 0.958 for neural 

networks that modelled quality of construction works. Arafa and Alqedra (2011) 

reported a training MSE of 0.0014 for early stage cost estimates. These studies did not 

contain any indications as to whether the values of the performance indices provided 

were computed from normalized data.  
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The best performance network developed in this study was visually represented in 

Figure 4.6; for purposes of clarity and a lack of sufficient space, the entire 31 neurons 

of the first hidden layer were not represented. Only the first and last three neurons 

were provided, and this has support in the literature, for example Odeyinka et al. 

(2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Visual representation of 2:31:1:1 developed network for (ANN1) 
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4.6.2 Multiple linear regression model 

This study utilized the Enter procedure for variable selection in which all variables in 

a block are entered in a single step. This was advisable for two reasons; one, there 

were only two independent variables to be used in developing the regression model; 

two, the significance values in a linear regression output are based on fitting a single 

model. This means that significance values are generally invalid when a stepwise 

method is applied. Nevertheless, all of the variables to be included in the model had to 

pass the tolerance criterion to be entered in the equation, regardless of the entry 

method specified. The default tolerance level was 0.0001, and a variable is not entered 

if it would cause the tolerance of another variable already in the model to drop below 

the tolerance criterion. None of these situations were encountered during the 

regression model development carried out. 

 

The change in the R
2
 statistic that is produced by adding or deleting an independent 

variable was observed to be the same as the R
2
 value itself.  Generally, if 

the R
2
 change associated with a variable (or group of variables) is large, that means 

that the variable is a good predictor of the dependent variable. Therefore, from the 

very large change associated with the removal of the independent variables, it was 

apparent that the two groups of risks were good predictors of the percentage deviation 

of the final contract value from the initial contract value. 

 

The coefficients of the regression model were extracted from the statistical output and 

are presented in Table 4.13. The default linear regression model assumes that there is 

a linear, or "straight line," relationship between the dependent variable and each 

predictor, as shown in Equation 4.1. 
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Table 4.13:  Multiple linear regression analysis results 

x y df df F F0.05 r r2 P Remark 

Consultant 

risks, Client 

risks 

Final cost 

variance 
2 31 43.761 3.32 0.859 0.738 0.000 

Significant; good 

prediction ability 

Source: Author (2017) 

 

 

This relationship is described in the following formula. 

yi = b0 + b1xi1 + ... + bpxip + ei     …….Equation 4.1 

where 

yi is the value of the i
th

 case of the dependent scale variable 

p is the number of predictors 

bj is the value of the j
th

 coefficient, j=0,...,p 

xij is the value of the i
th

 case of the j
th

 predictor 

ei is the error in the observed value for the i
th

 case 

 

The derived regression model is provided as Equation 4.2; it showed that the 

percentage deviation of the final contract value from the initial contract value would 

always be negative (indicative of savings in projects costs) whenever the effects of the 

two groups of risks was zero, or less than zero. 

Final cost variance = -4.834 + 1.056Consultant risks + 1.058Client risks  

         …….Equation 4.2 
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4.6.3 Predictive accuracy of the regression model 

The error in the developed multiple linear regression model was represented by the 

difference between the actual value of the dependent variable (y) and the estimated 

value of y, which was obtained from solving for y in the regression model. The main 

measure of the error level employed was the mean absolute percentage deviation 

(MAPD), which was the same as the Mean Absolute Percent Error (MAPE) has the 

formulae as presented in Equation 4.3. 

MAPD = ∑
n

i=1 |((Actual – Predicted)/Actual/n)*100|  …….Equation 4.3 

In the Mean Absolute Percent Error (MAPE) that was used to evaluate the prediction 

performance actual referred to observed data values, predicted referred to predicted 

data values, and n was total number of testing cases. MAPE is the most suitable 

indicator to measure the relative error because of the input data used for the model 

estimation; preprocessed data and raw data have different scales (Azadeh et al., 2011). 

 

The six projects set aside for testing were used to test the model. The model’s 

accuracy level was found to be 72%, based on a MAPE of 28.08%; this was close to 

the R
2
 of 73.8%. The derived MAPE was also comparable with the average absolute 

error of 26.8% obtained by Tu and Huang (2013) in their study of Operation and 

Maintenance costs of condominiums in Taiwan. The results of the model testing were 

presented in Table 4.14. 
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Table 4.14: Test results of the regression model  

S/No 
Project 

Nr 
Project type CLT CNT FCV - ICV Year 

Const 

(b0) 
b1 x1 b2 x2 

Predicted 

y 

Actual 

y 
error SSE MSE MAPE SAE MAE 

1 A04 Multi-storey 4.06 3.33 6.83 2013 -4.834 1.056 4.06 1.058 3.33 2.98 6.83 3.85 14.82 14.82 56.38 3.85 3.85 

2 A05 Multi-storey 6.14 0.14 5.40 2014 -4.834 1.056 6.14 1.058 0.14 1.80 5.40 3.60 12.95 12.95 66.68 3.60 3.60 

3 A08 Multi-storey -3.40 -4.54 -10.57 2012 -4.834 1.056 -3.40 1.058 -4.54 -13.24 -10.57 2.66 7.08 7.08 -25.17 2.66 2.66 

4 B17 Single-storey 3.37 10.06 13.43 2010 -4.834 1.056 3.37 1.058 10.06 9.36 13.43 4.06 16.50 16.50 30.26 4.06 4.06 

5 B21 Single-storey 24.69 2.35 27.04 2010 -4.834 1.056 24.69 1.058 2.35 23.73 27.04 3.32 10.99 10.99 12.26 3.32 3.32 

6 B33 Single-storey 3.29 -1.58 0.00 2014 -4.834 1.056 3.29 1.058 -1.58 -3.04 0.00 3.04 9.23 9.23 
 

3.04 3.04 

 
              

71.57 10.22 28.08 20.52 2.93 

Source: Author (2017) 

Notes:  CLT = Client risks; CNT = Consultant risks; FCV-ICV = Final cost variance; b0 = constant; b1 = coefficient of x1; b2 = coefficient of x2; x1 = 1
st
 independent 

variable (CLT); x2 = 2
nd

 independent variable (CNT); y = dependent variable (FCV-ICV); SSE = sum of squared errors; MSE = mean squared error; MAPE = mean 

absolute percent error; SAE = sum of absolute errors; MAE = mean absolute error.
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4.6.4 Comparison of predictive accuracy of artificial neural network and 

multiple linear regression 

It is always difficult comparing different techniques in terms of their performance in a 

selected aspect. There is the danger that such comparison might turn out to be a case 

of comparing apples with oranges. However, an abundance of literature evidence was 

found that proved that comparisons of statistical regression and artificial neural 

network techniques have become almost standard procedures (Wang and Gibson, 

2010; Gunduz et al., 2011; Yeh and Deng, 2012; Gulcicek et al., 2013; Tu and Huang, 

2013). Where a suitable performance measure has been identified and computed, 

comparison can be successfully undertaken. Suitable performance measures found to 

have been used in literature include R
2
, RMSE, MSE, MAE and percentage error 

(PE).  

 

The results presented in Table 4.15 revealed that the ANN1 outperformed the 

regression model by an order of magnitude. For example, in terms of MAE, the 

ANN1 value was more than 100 times smaller than that of the regression model 

(0.0355 compared to 2.93). The MSE value for ANN1 was 0.0026, compared to the 

regression model, which had 10.22. These results prove conclusively that the ANN1 

displayed superior performance when compared to the regression model. However, 

with an absolute error level of 28.08%, the regression model can be said to possess 

relatively adequate performance. 
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Table 4.15:  Measures of Accuracy of MLR and ANN1 models  

S/No Model Type SSE MSE MAPE SAE MAE Model structure 

1 Regression 71.57 10.22 28.08 20.52 2.93 
FCV-ICV = -4.834 + 1.056Consultant 

Risks + 1.058Client Risks 

2 ANN1 0.105 0.0026 
 

1.419 0.0355 2 : 31 : 1 : 1 

Source: Author (2017)  

Notes:  MLR = multiple linear regression; SSE = sum of squared errors; MSE = mean squared error; 

MAPE = mean absolute percent error; SAE = sum of absolute errors; MAE = mean absolute 

error; FCV-ICV = Cost deviation. 

 

 

To provide some context from the literature to the results presented in this study, 

Wang and Gibson (2010) in their research into preproject planning reported R 

(coefficient of correlation) for ANN (0.75) as against that of the simple linear 

regression model (0.475). When identified outliers were excluded, the RMSE for the 

ANN model (0.081) was better than that of the simple linear regression model 

(0.086). Gulcicek et al., (2013) obtained MSE values of 0.02210 for multiple 

regression and 0.00524 for ANN. Their research focused on cost assessment of 

construction projects using neural networks; they found that in terms of prediction 

power, ANNs yield a high performance and are frequently employed in engineering 

problems (Berlin et al., 2009; Gunduz et al., 2011; Yeh and Deng, 2012). 

 

Tu and Huang (2013) revealed that ANN model outperformed regression model in 

predicting the operation and maintenance (O&M) costs of condominium properties. 

The O&M costs predicted by the ANN model had an average absolute error of 7.2%, 

compared to the regression model’s 26.8%. They concluded that the ANN model was 

a more accurate and reliable cost prediction model as compared with the regression 

model. Le-Hoai et al. (2013) reported that their regression model had MAPE value of 
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2.30% and RMSE of 0.03. For the ANN model, the RMSE value was 0.024 while 

MAPE value was 8.96% for the testing sample. This study joined the aforementioned 

studies in finding that ANN models outperformed regression models when applied to 

the prediction of the values of variables.  

 

4.7 Results of Data Analysis for Objective 4: 

Development of Artificial Neural Network for Prediction of Risk Effect in 

Cost of Building Projects (ANN2) 

This section dealt with the second approach (ANN2) used to achieve the fourth 

objective of the study, which was to develop an artificial neural network for 

predicting the effect of risks on final project costs through the use of construction 

project features as network inputs.  

 

4.7.1 Selection of threshold (cutoff point) and activation function for ANN2 

The determination of the optimum threshold and activation function were carried out 

concurrently. Activation functions are the parts of a neural network that link the 

weighted sums of nodes in a layer to the values of nodes in the succeeding layer. The 

developed network was simulated with the test data, then a range of thresholds with 

an incremental step of 0.1 were applied to the simulation output. The output data was 

subjected to thresholds 0.1 up to 1.0. To aid comparison of performance amongst the 

thresholds, five (5) measures of performance were computed, using the 2 x 2 

contingency table approach as presented in Table 3.15 of Chapter 3.  

 

Line charts of 4 performance metrics (accuracy, precision, sensitivity and specificity) 

were plotted in Microsoft Excel. A receiver operating characteristics (ROC) chart was 
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also plotted and used to decide on which threshold and activation function provided 

optimum performance in predicting the effect of risk on final costs of building project.  

From the literature on neural network development for use in the construction 

industry, different activation functions have been applied in different studies. In their 

study of construction costs of water treatment plants, Marzouk and Elkadi (2016) 

employed the hyperbolic tangent activation function for hidden layers and the identity 

function for the output layer. The hyperbolic tangent activation function that they 

employed takes real values and transforms them to the range (-1, 1), while the identity 

function acts as purelin in MATLAB by taking real values and returning them 

unchanged (IBM Corporation, 2011). In the case of the impact of risks on 

construction costs, Odeyinka et al. (2013) employed the sigmoid transfer function for 

the nodes in the hidden layer. This was also adopted by Jha and Chockalingham 

(2009) in their modeling of quality on construction projects. 

 

From the results presented in Figure 4.7 to Figure 4.10, Tansig activation function 

was adjudged to be the best performing transfer function amongst the 3 that were 

tested. It had the highest accuracy level at 0.7 in Figure 4.7; the precision level of 

Tansig was also the highest in Figure 4.8, with a value of 0.857. All the three 

activation functions had the same level of sensitivity (0.75, in Figure 4.9), but Tansig 

was found to do better with respect to the specificity of the network, as presented in 

Figure 4.10 where Tansig had a value of 0.5. In terms of threshold, it was found that 

from threshold 0.2 to 0.9, the performance metrics obtained were similar. In particular 

there were no changes in the values of true positive rate and false positive rate when 

the following thresholds were applied – 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. 

Faced with this situation, 0.3 was selected arbitrarily as the working threshold. 
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Fig. 4.7: Effect of threshold on accuracy of network Fig. 4.8: Effect of threshold on precision of network 
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Fig. 4.9: Effect of threshold on sensitivity of network Fig. 4.10: Effect of threshold on specificity of network
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Fig. 4.11: ROC chart of prediction performance of different activation functions 
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decide on which number of neurons provided optimum performance in predicting the 

effect of risk on final costs of building project. In order to conclusively show which 

threshold would aid optimum performance of the network, some further works were 

carried out as follows. The computation of performance metrics was repeated, using 

two more thresholds – 0.5 and 0.7. ROC charts were also plotted using the data thus 

generated.  

 

From the results presented in Figure 4.12 to Figure 4.15, the neural network that had 

19 neurons was adjudged to be the best performing network amongst the 38 that were 

tested. It was also found that thresholds 0.3 and 0.5 provided results that were similar, 

indeed almost identical (see Figure 4.13 and Figure 4.14). In particular there was no 

change in the values of true positive rate and false positive rate for the selected 

network with when 19 neurons when thresholds 0.3 and 0.5 were applied. It was 

decided to retain 0.3 as the final working threshold. The ROC chart confirmed that the 

choice of 19 neurons for the network was best; the developed network would correctly 

predict the occurrence of risk 7 times out of 10, without raising a false alarm at any 

time (0 times out of 10). 
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Fig. 4.12: ROC chart of performance of networks having between 2 

and 20 neurons using 0.7 as threshold 

 

Fig. 4.13: ROC chart of performance of networks having between 2 

and 20 neurons using 0.5 as threshold
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Fig. 4.14: ROC chart of performance of networks having between 2 

and 20 neurons using 0.3 as threshold 

 

Fig. 4.15: ROC chart of performance of networks having between 

21 and 39 neurons using 0.3 as threshold 

 

7n, 9n, 0.500, 
0.750 

19n, 0.000, 
0.750 

20n, 0.500, 
0.875 

0.000 

0.100 

0.200 

0.300 

0.400 

0.500 

0.600 

0.700 

0.800 

0.900 

1.000 

0.000 0.200 0.400 0.600 0.800 1.000 

Tr
u

e
 p

o
si

ti
ve

 r
at

e
 (

se
n

si
ti

vi
ty

) 

False positive rate (1-specificity) 

Tan_2_20.3 No info (guessing) 

4n, 11n, 14n, 
16n, 0.5, 0.75 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 0.2 0.4 0.6 0.8 1 

Tr
u

e
 p

o
si

ti
ve

 r
at

e
 (

se
n

si
ti

vi
ty

) 

False positive rate (1-specificity) 

Tan_21_39.3 No info (guessing) 



156 
 

4.7.3 Number of network input features for ANN2 

The determination of the optimum number of input features to be used in the network 

was carried out by trial and error experimentation. The networks in this study were 

initially created using 8 inputs. The process of experimentation involved creating 8 

new networks; each network was however developed with only 7 inputs. A different 

input had been removed from each network. Tansig activation function and a 

threshold of 0.3 were applied in the design and simulation of the networks. All of the 

networks were simulated with the test data, and then simulation output was used to 

compute the five (5) performance metrics presented in Table 3.15 of Chapter Three. A 

receiver operating characteristics (ROC) chart was also plotted and used to decide on 

which network provided optimum performance in predicting the effect of risk on final 

costs of building project.  

 

From the results presented in Figure 4.17 and Figure 4.18, the 2 neural networks from 

which inputs 3 and 5 had been removed were found to provide the most accurate 

prediction results. This observation was confirmed by perusal of the ROC chart, 

which revealed that networks developed separately without input 3 and input 5 would 

be able to correctly predict the occurrence of risk 9 times out of 10. However, these 

networks would also raise a false alarm 5 time out of 10 about the occurrence of risk, 

when in fact no risk event had happened. It was decided to retain the use of all 8 

inputs, since better prediction performance had been obtained in that way. 
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The network developed in this study was visually represented in Figure 4.16. The 

entire 19 neurons of the hidden layer were presented. 

 

Figure 4.16: Visual representation of the developed 8:19:7 neural network 

Output Layer (OL) Input Layer (IL) Hidden Layer (HL) 

HL4 

HL3 

HL2 

HL1 

HL8 

HL7 

HL6 

HL5 

HL 
12 

HL 
11 

HL 
10 

HL9 

HL 
16 

HL 
15 

HL 
14 

HL 
13 

HL 
19 

HL 
18 

HL 
17 

IL4 

CPF 1 

IL3 

IL2 

IL1 

IL8 

IL7 

IL6 

IL5 

CPF 2 

CPF 3 

CPF 4 

CPF 5 

CPF 6 

CPF 7 

CPF 8 

OL4 

OL3 

OL2 

OL1 

OL7 

OL6 

OL5 

Risk 1 

Risk 2 

Risk 3 

Risk 4 

Risk 5 

Risk 6 

Risk 7 



158 
 

 

   

Fig. 4.17: Effect of input feature reduction on precision and 

accuracy 

Fig. 4.18: ROC chart of performance of networks with 1 input 

feature removed 

  

0.000 

0.100 

0.200 

0.300 

0.400 

0.500 

0.600 

0.700 

0.800 

0.900 

1.000 

cnv cnv-1 cnv-2 cnv-3 cnv-4 cnv-5 cnv-6 cnv-7 cnv-8 

P
re

ci
si

o
n

 /
 A

cc
u

ra
cy

 l 
e

ve
l 

NEtwork inputs 

Pr_T19 Acc_T19 

Minus R5, 0.500, 
0.875 

Minus R3, 0.500, 
0.875 

Minus R8, 0.500, 
0.750 

0.000 

0.100 

0.200 

0.300 

0.400 

0.500 

0.600 

0.700 

0.800 

0.900 

1.000 

0.000 0.200 0.400 0.600 0.800 1.000 

Tr
u

e
 p

o
si

ti
ve

 r
at

e
 (

se
n

si
ti

vi
ty

) 

False positive rate (1-specificity) 

T19_0.3 No info (guessing) 



159 
 

4.7.4 Post-processing of data for ANN2 

At the beginning of the neural network development process, it was reported that the 

data was normalized through the process of reduction to its binary form. After the 

network had been developed and validated, it was necessary to post-process the data 

by reversing the normalization process. This would allow the data to be examined in 

real-life terms; appropriate statistics of real-life performance of the developed 

network could also be computed. This Section reported the results generated by the 

developed network for the prediction of risk occurrence, type and degree. The 

performance of the network was assessed in terms of its MAPE and MSE. 

 

4.7.4.1 Results of ANN2 prediction of risk occurrence 

The prediction results for risk occurrence were presented in Table 4.16 and Figure 

4.19 to Figure 4.25. In Table 4.16 the first 10 rows represented the target of the 

network while the 11
th

 to the 20
th

 rows contained the data produced by the network 

during simulation. The two sets of data did not require any post processing, since they 

were already in binary form before normalization was done. Comparison of the 

simulated data with the target data was carried out, and the number of targets that 

were correctly predicted was entered beneath each column. The percentage of targets 

that were incorrectly predicted was also entered at the bottom of each column. The 

mean squared error of each of the 7 targets of the network (the risks which impacted 

the project costs) was provided. The last two rows of the table contained the average 

MAPE and MSE for all 7 targets together. 

 

The results revealed that Risk R13-CNE(va) was predicted at higher level of accuracy 

compared to the other risks. The MSE of this risk was 0.1. In the case of even the 
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worst predicted risks, the network still performed better than mere guesswork, since 6 

out of 10 instances of risk occurrence were correctly predicted. For the best-predicted 

risk (R13-CNE(va)), this value was 9 out of 10.  

 

Table 4.16: ANN prediction results for risk occurrence 

S/Nr 
Output 

type 

R3-

CLV 

R4-

CLS 

R5-

CND 

R6-

UNS 

R10-

CNV 

R13-

CNE(pq) 

R13-

CNE(va) 

1 

Target 

output of 

network 

1 1 0 0 1 0 0 

2 0 0 0 1 1 0 1 

3 0 1 0 0 0 0 0 

4 1 0 1 0 1 1 0 

5 0 0 0 0 0 0 0 

6 0 1 0 0 0 0 0 

7 0 1 0 1 1 1 0 

8 0 0 1 0 1 1 0 

9 0 1 0 0 1 0 0 

10 1 0 0 0 0 0 0 

1 

Simulated 

output of 

network 

0 1 1 0 1 1 1 

2 0 0 0 1 1 0 1 

3 0 0 0 0 0 0 0 

4 0 0 1 1 1 1 0 

5 0 1 0 0 1 1 0 

6 0 1 0 0 0 0 0 

7 1 0 0 0 1 1 0 

8 0 0 0 0 1 1 0 

9 1 0 0 0 1 1 0 

10 1 0 0 0 1 1 0 

Correct 

predictions n 
6 6 8 8 8 6 9 

Incorrect 

predictions % 
40 40 20 20 20 40 10 

MSE of risks 0.27 0.29 0.10 0.19 0.12 0.40 0.10 

Aggregate MAPE 27.14% 

Aggregate MSE 0.2109 

Source: Author (2017) 
Notes:  MAPE = mean absolute percentage error; MSE = mean squared error 

 

Although evidence from the literature suggested that the developed network 

performed relatively poorly compared to results from studies such as Chaphalkar et al. 

(2015) and Husin (2017). Chaphalkar et al. (2015) obtained an MSE of 0.01 in their 

study of construction dispute claims, while Husin (2017) had a validation MSE of 

0.009 for estimating the standard building unit price. However, there are other studies 
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such as Jha and Chockalingam (2009) attempt to model the quality of construction 

works that obtained a MAPE of 8.044 percent and an MSE of 0.958.  Furthermore, 

two important considerations need to be borne in mind; (i) these studies did not 

contain any indications as to whether the performance metrics provided were 

computed from normalized or denormalized data, and (ii) no studies that followed the 

same approach as this study were found to which the results obtained could be 

compared. 

 

The target and simulated values of the 7 risks that were predicted in this study were 

displayed in line charts for the purpose of visual comparison of the prediction 

performance of the developed network. Where targets have been correctly simulated, 

the two lines (red and blue) in the charts will have no spaces between them, forming 

almost a single line. Incorrect simulation will be identified as wide spaces between the 

two lines; the spaces represented the error between the target and simulated values. 

 

Figure 4.19: Simulation results for 

occurrence of R10-CNV 

 

Figure 4.20: Simulation results for 

occurrence of R13-CNE(pq) 
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Figure 4.21: Simulation results for 

occurrence of R4-CLS 

Figure 4.22: Simulation results for 

occurrence of R6-UNS 

 

 

Figure 4.23: Simulation results for 

occurrence of R5-CND 

 

Figure 4.24: Simulation results for 

occurrence of R13-CNE(va) 

 

 

Figure 4.25: Simulation results for occurrence of R3-CLV 
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4.7.4.2 Results of ANN2 prediction of type of risk  

The prediction results for type of risk were presented in Table 4.17 and Table 4.18 

and Figure 4.26 to Figure 4.32. In Table 4.17 the data was provided in binary coding 

as employed in the development of the neural network, before it was converted back 

to real-life representation of the type of risk as presented in Table 4.18. In both tables 

the first 10 rows represented the target of the network while the 11
th

 to the 20
th

 rows 

contained the data produced by the network during simulation.  

 

Table 4.17: ANN risk type prediction results for (before post-processing) 

S/Nr 
Output 

type 

R3-

CLV 

R4-

CLS 

R5-

CND 

R6-

UNS 

R10-

CNV 

R13-

CNE(pq) 

R13-

CNE(va) 

1 

Target 

output of 

network 

0 0 11 1 1 10 10 

2 1 0 0 0 11 10 0 

3 0 0 11 1 0 0 10 

4 0 11 0 10 1 11 0 

5 0 0 0 0 0 0 0 

6 0 0 11 1 0 0 10 

7 1 11 11 11 1 11 10 

8 0 1 0 10 1 10 0 

9 0 0 11 1 1 10 10 

10 0 0 0 0 0 0 0 

1 

Simulated 

output of 

network 

1 1 11 11 0 0 10 

2 1 0 0 0 11 10 0 

3 1 0 0 0 0 0 0 

4 10 11 0 10 11 11 1 

5 0 11 11 11 1 11 10 

6 0 0 11 1 0 0 10 

7 0 11 1 10 11 11 10 

8 0 11 0 10 11 11 0 

9 0 11 1 10 11 11 10 

10 0 11 1 10 11 11 10 

Source: Author (2017) 
 Notes: 00 = zero impact = 0; 01 = negative impact = -1; 11 = positive impact = 1. 

 

Comparison of the simulated data with the target data was carried out, and the number 

of targets that were correctly predicted was entered beneath each column in Table 

4.18. The percentage of targets that were incorrectly predicted was also entered at the 

bottom of each column. The mean squared error of each of the 7 targets of the 
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network (the risks which impacted the project costs) was provided. The last two rows 

of the table contained the average MAPE and MSE for all 7 targets together. The 

results revealed that Risks R5-CND and R13-CNE(va) were predicted at higher level 

of accuracy compared to the other risks. The MSE of these 2 risks were all not higher 

than 0.1. For these best-predicted risks (R5-CND and R13-CNE(va)), in 9 out of 10 

instances the type of risk was correctly predicted.  

 

Table 4.18: ANN prediction results for risk type (after post-processing) 

S/Nr 

Output 

type 

R3-

CLV 

R4-

CLS 

R5-

CND 

R6-

UNS 

R10-

CNV 

R13-

CNE(pq) 

R13-

CNE(va) 

1 

Target 

output of 

network 

1 1 0 0 -1 0 0 

2 0 0 0 -1 1 0 1 

3 0 1 0 0 0 0 0 

4 1 0 1 0 -1 1 0 

5 0 0 0 0 0 0 0 

6 0 1 0 0 0 0 0 

7 0 1 0 -1 -1 1 0 

8 0 0 1 0 -1 -1 0 

9 0 1 0 0 -1 0 0 

10 1 0 0 0 0 0 0 

1 

Simulated 

output of 

network 

0 1 0 -1 0 -1 1 

2 0 0 0 -1 1 0 1 

3 0 0 0 -1 0 0 0 

4 0 0 1 0 1 1 0 

5 0 1 0 0 -1 1 0 

6 0 1 0 0 0 0 0 

7 1 -1 0 0 1 1 0 

8 0 0 0 0 1 1 0 

9 1 -1 0 0 1 1 0 

10 1 -1 0 0 1 1 0 

Correct 

predictions n 6 5 9 7 3 5 9 

Incorrect 

predictions % 40 50 10 30 70 50 10 

MSE of risks 0.28 0.33 0.1 0.1 0.35 0.34 0.09 

Aggregate MAPE 37.14% 

Aggregate MSE 0.2284 

Source: Author (2017) 
Notes:  0 = zero impact; -1 = negative impact; 1 = positive impact; MAPE = mean absolute 

percentage error; MSE = mean squared error 

 

Evidence from the literature suggested that the developed network performed 

relatively well compared to results from studies such as Odeyinka et al. (2012) and 
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Odeyinka et al. (2013) which obtained MAPE values of 3.7% and 9.8%. The two best 

predicted risks in this study (R5-CND and R13-CNE(va)) had MAPE values of 10%. 

It was also important to bear in mind; the fact that no studies that predicted risk type 

through the use of binarization of data were found to which the results obtained could 

be compared. 

 

The target and simulated values of the 7 risks that were predicted in this study were 

displayed in line charts for the purpose of visual comparison. Correctly simulated 

targets were identified where the two lines (red and blue) in the charts had no spaces 

between them. Incorrectly simulated targets were identified as wide spaces between 

the two lines, representing the error between the target and simulated values. 

 

Figure 4.26: Simulation results for type 

of risk (R10-CNV) 

 

Figure 4.27: Simulation results for type 

of risk (R13-CNE(pq)) 

 

Figure 4.28: Simulation results for type 

of risk (R4-CLS) 

 

Figure 4.29: Simulation results for type 

of risk (R6-UNS) 
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Figure 4.30: Simulation results for type 

of risk (R5-CND) 

Figure 4.31: Simulation results for type 

of risk (R13-CNE(va)) 

 

 

Figure 4.32: Simulation results for type of risk (R3-CLV) 
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tables the first 10 rows represented the target of the network while the 11
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 to the 20
th

 

rows contained the data produced by the network during simulation. 
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Table 4.19: ANN prediction results for risk degree (before post-processing) 

S/Nr 
Output 

type 

R3-

CLV 

R4-

CLS 

R5-

CND 

R6-

UNS 

R10-

CNV 

R13-

CNE(pq) 

R13-

CNE(va) 

1 

Target 

output of 

network 

10 0 100 11 10 10 10 

2 10 1 10 10 101 1 10 

3 10 10 101 10 10 10 10 

4 110 100 10 110 10 10 101 

5 10 10 10 10 10 10 10 

6 10 10 101 10 10 10 10 

7 100 0 100 10 10 1 10 

8 1 100 10 10 10 10 101 

9 10 100 100 10 10 10 10 

10 10 10 10 110 10 10 10 

1 

Simulated 

output of 

network 

1 10 0 10 101 10 10 

2 10 111 10 10 101 1 10 

3 10 10 10 10 10 11 10 

4 101 100 10 10 111 10 101 

5 101 110 111 10 10 10 10 

6 10 10 101 10 10 10 10 

7 101 1 11 110 11 10 10 

8 101 101 11 110 10 10 10 

9 101 1 11 110 11 10 10 

10 101 1 11 110 11 10 10 

Source: Author (2017) 
Notes:  000 = 1 = -22% to -11%; 001 = 2 = -11% to 0%; 010 = 3 =0% to 11%; 011 = 4 =11% 

to 22%; 100 = 5 =22% to 33%; 101 = 6 = 33% to 44%; 110 = 7 = 44% to 55%. 

 

Comparison of the simulated data with the target data was carried out, and the number 

of targets that were correctly predicted was entered beneath each column in Table 

4.20. The percentage of targets that were incorrectly predicted was also entered at the 

bottom of each column. The mean squared error of each of the 7 targets of the 

network (the risks which impacted the project costs) was provided. The last two rows 

of the table contained the average MAPE and MSE for all 7 targets together. The 

results revealed that Risks R13-CNE(pq) and R13-CNE(va) were predicted at higher 

level of accuracy compared to the other five risks. The MSE of these 2 risks were not 

higher than 0.1. For these two risks (R13-CNE(pq) and R13-CNE(va)), in at least 8 

out of 10 instances of risk occurrence the degree of risk was correctly predicted. 
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Table 4.20: ANN prediction results for risk degree (after post-processing) 

S/Nr 
Output 

type 

R3-

CLV 

R4-

CLS 

R5-

CND 

R6-

UNS 

R10-

CNV 

R13-

CNE(pq) 

R13-

CNE(va) 

1 

Target 

output of 

network 

3 1 5 4 3 3 3 

2 3 2 3 3 6 2 3 

3 3 3 6 3 3 3 3 

4 7 5 3 7 3 3 6 

5 3 3 3 3 3 3 3 

6 3 3 6 3 3 3 3 

7 5 1 5 3 3 2 3 

8 2 5 3 3 3 3 6 

9 3 5 5 3 3 3 3 

10 3 3 3 7 3 3 3 

1 

Simulated 

output of 

network 

2 3 1 3 6 3 3 

2 3 7 3 3 6 2 3 

3 3 3 3 3 3 4 3 

4 6 5 3 3 7 3 6 

5 6 7 7 3 3 3 3 

6 3 3 6 3 3 3 3 

7 6 2 4 7 4 3 3 

8 6 6 4 7 3 3 3 

9 6 2 4 7 4 3 3 

10 6 2 4 7 4 3 3 

Correct 

predictions n 
3 3 3 5 5 8 9 

Incorrect 

predictions % 
70 70 70 50 50 20 10 

MSE of risks 0.38 0.25 0.44 0.11 0.19 0.09 0.1 

Aggregate 

MAPE 
48.57% 

Aggregate MSE 0.223 

Source: Author (2017) 
Notes:  1 = -22% to -11%; 2 = -11% to 0%; 3 =0% to 11%; 4 =11% to 22%; =22% to 33%; 6 

= 33% to 44%; 7 = 44% to 55%; MAPE = mean absolute percentage error; MSE = 

mean squared error. 

 

Evidence from the literature suggested that the developed network performed 

relatively well compared to results from studies such as Odeyinka et al. (2013) which 

obtained MAPE values of 9.8%. The best predicted risk in this study (R13-CNE(va)) 

had a MAPE value of 10%. It has been pointed out earlier that no studies that 

predicted the degree of risk through the use of binarization of data were found to 

which the results obtained could be compared. 
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The target and simulated values of the 7 risks that were predicted in this study were 

displayed in line charts for the purpose of visual comparison of the prediction 

performance of the developed network with respect to the degree of risk. Correctly 

simulated targets were identified where the two lines (red and blue) in the charts had 

no spaces between them, forming a single line. Incorrectly simulated targets on the 

other hand had wide spaces between the two lines, which represented the error 

between the target and simulated values. 

 

 

Figure 4.33: Simulation results for 

degree of risk (R10-CNV) 

Figure 4.34: Simulation results for 

degree of risk (R13-CNE(pq)) 

 

 

 

 

Figure 4.35: Simulation results for 

degree of risk (R4-CLS) 

 

Figure 4.36: Simulation results for 

degree of risk (R6-UNS) 
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Figure 4.37: Simulation results for 

degree of risk (R5-CND) 

 

Figure 4.38: Simulation results for 

degree of risk (R13-CNE(va)) 

 

Figure 4.39: Simulation results for degree of risk (R3-CLV) 
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example, Palaneeswaran et al. (2008) obtained a MAE value of 0.646 (equivalent to a 

MAPE of 64.6%) for their network, which estimated amount of contractual claims 

from 28 rework factors. Arafa and Alqedra (2011) reported a MSE of 0.0014 for the 

training subset of their data, which dealt with early stage cost estimates. Their study 

did not indicate whether this value was obtained from normalized or de-normalized 

data.  
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4.8 Results of Data Analysis for Objective 5: 

Performance Analysis of the Developed Artificial Neural Network 

(ANN2) 

This section dealt with the fifth objective of the study, which was to undertake a 

performance analysis of the artificial neural network that had been developed for 

predicting the effect of risk on the final costs of building project based on knowledge 

of some selected construction project features. The main tool employed in analysis of 

the performance of the developed networks was the ROC chart. The performance of a 

measuring tool such as an artificial neural network is considered to be optimized when 

it meets the following two conditions. The tool is able to detect all or almost all 

occurrences of the parameter in which the researcher is interested; the tool does not 

trigger a false alarm where no occurrence was actually recorded. In this study the 

parameter in which the researcher is interested was the ‘effect of risk on costs of 

building projects’. 

 

The conditions for the optimization of a measuring tool could be expressed in another 

way. The ideal neural network should possess both high sensitivity and high 

specificity. However, in reality, these two values often have an inverse relationship 

(Hart, 2016), and researchers must sacrifice one measure in order to maximize the 

other. In the prediction of risk impact in building projects, it is better that the 

developed network correctly identifies when risk impact occurs (positive outcomes - 

sensitivity), even if it fails to identify correctly some instances where there is no risk 

impact (negative outcomes – specificity). This is because clients are more interested 

in the occurrence of risk (which might result in more money being needed to achieve 

their planned project). Rather than having a situation where a client is caught 



172 
 

unawares when a risk materializes, without having made preparation for such a 

contingency, it is better that the developed tool puts the client on alert in time, even if 

it turns out to be a false alert. 

 

4.8.1 Performance analysis of risk occurrence prediction using ANN2 

The neural network that was developed was employed in two ways; it was used to 

predict the occurrence of all of the 7 risks, altogether in one operation (R3-CLV, R4-

CLS, R5-CND, R6-UNS, R10-CNV, R13-CNE(pq), and R13-CNE(va)). This meant 

the network had 7 targets at one time, and the analysis of the performance of the 

targets thus generated together was presented in Figure 4.40. The network was also 

used to predict the occurrence of all of the 7 risks considered in this study, one at a 

time. This meant that the network had only one target at any one time and the analysis 

of the performance of the targets thus generated singly was presented in Figure 4.41. 

 

Both methods of risk occurrence prediction (combined or separately) gave similar 

results in the case of R10-CNV, R13-CNE(pq) and R13-CNE(va). However there 

were significant differences in the case of R4-CLS, R6-UNS and R5-CND. When 

predicted in a combined manner, these three risks had high sensitivity and low 

specificity; for example, R6-UNS had a true positive rate of 1.0 and a false positive 

rate of 0.5. Separate prediction of these risks improved the results by raising the 

specificity of the risks, although there was a corresponding drop in their sensitivity. 

Using the example of R6-UNS once more, it now had a true positive rate of 0.5 and a 

false positive rate of 0.125. This result was considered better because while the 

sensitivity had been halved, the specificity had been reduced by a ratio of 4:1. The 

same trend was observed in the case of R3-CLV, which was to all appearances useless 
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for prediction purposes under combined prediction of risk, since it had both true 

positive and false positive rates of 0.00. When R3-CLV was predicted separately 

however, it now had a true positive rate of 0.333 and a false positive rate of 0.286. 

The differences between the two approaches to prediction of risk occurrence 

(combination and separation) were summarized with the aid of a modified risk 

quadrant in Figure 4.40. The two main merits of the separation approach over the 

combination approach was observed to be (i) the reduction of the number of risks that 

had high true positive and false positive rates; (ii) the number of risks that had high 

true positive and low false positive rates was optimized (3 out of a total of 7 risks; 

these were R6-UNS, R5-CND, and R13-CNE(va)). According to Fawcett (2006), 

prediction results that fall wihin the upper left quadrant of the figure are preferred; 

any approach that maximizes the number of risks that have performance metrics 

located in this quadrant will thus be considered as better than other approaches. 
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Where:  

C = combination approach; S = separation approach; TPR = true positive rate; FPR 

= false positive rate. 

 

Figure 4.40: Combination and separation approaches to risk occurrence prediction 

False positive rate 

T
ru

e 
p

o
si

ti
v

e 
ra

te
 



174 
 

 

The performance of the the two approaches was also examined by direct review of the 

performance metrics that had been computed and used to create the ROC charts. 

These metrics had been presented graphically as line charts in Figure 4.43 to Figure 

4.46. The first two charts, Figure 4.43 and Figure 4.44, dealt with the precision and 

accuracy of the networks developed through the different approaches of combination 

and separation. The last two charts presented the sensitivity and specificity of the 

networks under the two approaches of combination and separation. 

 

It must be borne in mind that the two approaches also differed in the number of 

networks required for prediction. The combination approach made use of only one 

network; all seven risks were predicted at one and the same time by the eight input 

variables in an 8:19:7 network. The import of this was that the predictive power of the 

inputs was spread across the seven targets. This may explain why the network did not 

perform optimally. In thcase of the separation approach, seven different networks 

were employed; each had a single risk as target output and 8:19:1 as network 

structure. This meant that the power of eight input variables was focused on only one 

target, and could thus generate better predictions than the combination approach.  

 

In Figure 4.43 the precision and accuracy of the network under combination approach 

was observed to exhibit an erratic pattern, with a range of 0.0 to 0.9. Comparatively, 

under the separation approach, the network’s precision and accuracy had been forced 

into a narrower range of 0.3 to 0.9 in Figure 4.44. The same pattern was observed in 

the sensitivity and specificity of predictions; prediction fell within a wider range 

under the combination approach (Figure 4.45), and a narrower range under the 
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separation approach (Figure 4.46). It was however observed that the performance 

metrics for Risk6 remained unchanged under both prediction approaches. 
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Fig. 4.41: ROC chart of network performance in risk occurrence 

prediction (all 7 risks predicted together, all at once) 

Fig. 4.42: ROC chart of network performance in risk occurrence 

prediction (all 7 risks were predicted separately, one risk at a time) 
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Fig. 4.43: Precision and accuracy of network in risk occurrence 

prediction (all 7 risks predicted together, all at once) 

Fig. 4.44: Precision and accuracy of network in risk occurrence 

prediction (all 7 risks were predicted separately, one risk at a time) 
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Fig. 4.45: Sensitivity and specificity of network in risk occurrence 

prediction (all 7 risks predicted together, all at once) 

Fig. 4.46: Sensitivity and specificity of network in risk occurrence 

prediction (all 7 risks were predicted separately, one risk at a time) 
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4.8.2 Performance analysis of risk type prediction using ANN2 

In the case of type of risk prediction, the developed neural network was used to 

predict the occurrence of the entire 7 risks (R3-CLV, R4-CLS, R5-CND, R6-UNS, 

R10-CNV, R13-CNE(pq), and R13-CNE(va)) one at a time. This was based on the 

findings from the prediction of risk occurrence, where separate prediction of targets 

had been proved to optimize prediction accuracy. This meant that the network had 

only one target at any one time; the performance analysis of the targets presented in 

Figure 4.48 was thus created with the output of seven networks, each of 8:19:1 

structure. The performance of the network in the prediction of type of risk was 

summarized with the aid of a risk quadrant approach in Figure 4.47.  
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Where:  

C = combination approach; S = separation approach; TPR = true positive rate; FPR 

= false positive rate. 

 

Figure 4.47: Evaluation of risk type prediction using risk quadrant  
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R6-UNS, R5-CND, and R13-CNE(va)). This according to Fawcett (2006) is the 

preferred outcome of a prediction exercise. 

 

The performance of the network in the prediction of type of risk was also examined 

by direct review of performance metrics that were used to create the ROC charts. 

These metrics had been presented graphically as line charts in Figure 4.49 and Figure 

4.50; the first chart dealt with the precision and accuracy of the networks while the 

second chart presented the sensitivity and specificity of the networks. In Figure 4.49 it 

was observed that R5-CND had the highest values for both precision and accuracy. 

R13-CNE(va) however exhibited the highest levels of both sensitivity and specificity. 

Another pertinent observation was that the performance metrics for R13-CNE(va) 

remained unchanged during prediction of both risk occurrence and type (see Figure 

4.41, 4.42 and 4.48). 
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Fig. 4.48: ROC chart of network performance in risk type prediction (all 7 risks 

predicted separately, one risk at a time) 
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Fig. 4.49: Precision and accuracy of the network in predicting type 

of risk (all 7 risks predicted separately, one risk at a time) 

Fig. 4.50: Sensitivity and specificity of the network in predicting 

type of risk (all 7 risks predicted separately, one risk at a time) 
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4.8.3 Performance analysis of degree of risk prediction using ANN2 

In the case of degree of risk prediction, the developed neural network was used to 

predict the occurrence of the entire 7 risks (R3-CLV, R4-CLS, R5-CND, R6-UNS, 

R10-CNV, R13-CNE(pq), and R13-CNE(va)) one at a time. This was based on the 

findings from the prediction of risk occurrence, where separate prediction of targets 

had been proved to optimize prediction accuracy. This meant that the network had 

only one target at any one time; the performance analysis of the targets presented in 

Figure 4.52 was thus created with the output of seven networks, each of 8:19:1 

structure. The performance of the network in the prediction of degree of risk was 

summarized with the aid of a risk quadrant approach in Figure 4.51. It was observed 

that the network optimized the number of risks that had high true positive and low 

false positive rates (5 out of a total of 7 risks; these were Risk1, Risk2, Risk3, Risk4, 

and Risk6). Fawcett (2006) described this as the preferred situation in prediction, 

where the majority of the results fall wihin the upper left quadrant. 

TPR > 0.500 

FPR < 0.500 

TPR > 0.500 

FPR > 0.500 

 

 

S = 5 

 

 

S = 2 

 

 

S = 0 

 

 

S = 0 

TPR < 0.500 

FPR < 0.500 

TPR < 0.500 

FPR > 0.500 

 

Where:  

C = combination approach; S = separation approach; TPR = true positive rate; FPR 

= false positive rate. 

 

Figure 4.57: Evaluation of risk degree prediction using risk quadrant 
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The performance of the networks in prediction of the degree of risk was also 

examined by direct review of the performance metrics that were used to create the 

ROC charts. These metrics had been presented graphically as line charts in Figure 

4.53 (which dealt with the precision and accuracy) and Figure 4.54 (which presented 

the sensitivity and specificity).  A systematic pattern was observed, where R10-CNV, 

R4-CLS, R5-CND, and R3-CLV had low precision and accuracy values (ranging from 

0.3 to 0.7). Conversely, R13-CNE(pq), R6-UNSand R13-CNE(va) had relatively 

higher precision and accuracy values (ranging from 0.7 to 0.9). The same pattern was 

observed in the sensitivity and specificity of predictions; odd-positioned risks 

performed poorly compared to even-positioned numbered risks.  

 

 

Fig. 4.52: ROC chart of network performance in risk degree prediction (all 7 risks 

predicted separately, one risk at a time) 
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Fig. 4.53: Precision and accuracy of the network in predicting 

degree of risk (all 7 risks predicted separately, one risk at a time) 

Fig. 4.54: Sensitivity and specificity of network in risk degree 

prediction (all 7 risks predicted separately, one risk at a time)
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4.9 Summary of Findings 

This section presented a summary of the results that have been obtained in this study 

with respect to the five objectives that were formulated in Chapter One.  

1. Costs of building projects were impacted by 8 risks; these were (a) Client 

scope change; (b) Client variation/design change; (c) Consultants' 

error/omission in design; (d) Consultants' error/omission in estimates; (e) 

Consultants' design change; (f) Unforeseen economic conditions; (g) 

Unforeseen site conditions, and (h) Unforeseen social disturbance. 

2. Project consultants were responsible for 69% of risks that occurred on 

building projects; however 52% of risk impacts resulted from the actions of 

project clients. 

3. Variance between initial and final contract values of building projects was 

predicted with ANN1, a 2:31:1:1 MLP neural network, which on validation 

had an MSE of 0.0026. The regression model Final cost variance = -4.834 + 

1.056Consultant Risks + 1.058Client Risks had an MSE of 10.22. 

4. Effect of risk on building project costs was predicted with ANN2, an 8:19:7 

MLP neural network which had a validation MSE of 0.2109. 

‘Errors/omissions in design/estimates’ (R13-CNE(va)) was the most 

accurately predicted risk.   
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CHAPTER FIVE 

5.0  CONCLUSION AND RECOMMENDATIONS  

 

5.1 Conclusion 

Costs of building projects are impacted by 8 risks, which include variation, scope and 

design changes; error/omission in design/estimates, and unforeseen economic, site 

and social conditions. Project consultants are responsible for 69% of risks occurrence; 

52% of the cost impacts of risks however result from the actions of clients. 

 

Eight risks were grouped into client and consultant risks and fed into ANN1, an MLP 

artificial neural network with 2:31:1:1 structure that predicted variance between initial 

and final contract values. A validation MSE of 0.0026 established ANN1’s superiority 

over a conventional MLR statistical model (Final cost variance = -4.834 + 

1.056Consultant Risks + 1.058Client Risks) which had an MSE of 10.22. 

 

Eight features of construction projects including gross floor area and costs of building 

elements were inputted into ANN2, an 8:19:7 MLP network developed to predict risk 

effect in building costs. ANN2 used binarization to normalize data, with a resultant 

MSE of 0.2109. ANN2 obtained lower MSE of 0.09 and higher specificity when risks 

were predicted singly, one at a time. 

 

5.2 Recommendations  

This study has shown the possibility of carrying out risk assessment for building 

project by predicting risk effect on project costs using artificial neural network. The 

following recommendations were made as a means of fine-tuning and extending the 
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approach taken in this study for predicting risk effect on project cost using artificial 

neural network.  

 

1. Risks have differential impact on different classes of cost incurred during the 

construction of buildings. Project consultants need to pay close attention to the 

use of variation that add to ongoing works, because this was the only class of 

cost that was impacted by all of the risks considered in this study.  

2. The results obtained have shown how construction project features can be 

used to estimate the effect of risk on building projects. This study 

recommended that researchers could reduce all input and output in an artificial 

neural network to a common ‘risk-cost’ basis as has been advocated by 

previous researchers. Initial contract values (ICV) of projects were 

recommended as a common base. This was because ICV are common to all 

building projects undertaken in the Nigerian construction industry. 

3. With respect to the effect of risks on project costs, the effect of 

‘Errors/omissions in design/estimates’ (which was coded as R13-CNE(va)) on 

variations was the risk that the artificial neural network developed in this study 

was able to predict with the highest level of accuracy. It is recommended that 

further research should focus on improving the prediction accuracy of other 

risks. 

4. The following recommendations were put forward based on findings made 

with respect to the two approaches employed in the development of neural 

networks (ANN1 and ANN2). To improve clarity and specificity of the 

recommendations, they have been presented in the form of a table (Table 5.1). 
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Table 5.1: Recommendations for development of artificial neural 

networks for predicting risk effect on project costs 

S/Nr 
Specific aspect 

of network 

Recommendations based on 

ANN1 

 

(Prediction of Final cost 

variance from Risk effect) 

Recommendations based on 

ANN2 

 

(Prediction of Risk effect from 

Construction project features) 

1 Normalization 

method 

Min-max technique Conversion to binary scale 

2 Threshold - 0.3 recommended, but all values 

between 0.3 and 0.5 share similar 

performance characteristics. 

3 Activation 

function 

Tansig recommended Tansig recommended 

4 Number of 

neurons 

Thirteen (31) recommended Nineteen (19) recommended 

5 Number of inputs Two (2) employed in ANN1. Eight (8) employed in ANN2; not 

recommended to be reduced; false 

positive rates appear to be inversely 

related to number of inputs. 

6 Number of 

outputs 

Prediction of single output 

(final cost variance) 

recommended. 

Prediction of single risk as output 

recommended; combining risks in 

one output increases false positive 

rates and decreases sensitivity of the 

network. 

7 Number of 

hidden layers 

Two (2) layers employed in 

ANN1; based on satisfactory 

performance, 2 hidden layers 

were recommended. 

One (1) layer employed in ANN2; 

based on satisfactory performance, 

1 hidden layer was recommended. 

8 Training 

parameters 

Train at (epochs 1000; target 

MSE 0.0; minimum gradient 10
-

7
; mu 0.9; mu_dec 0.01; mu_inc 

10); 

Train initially at nntool default 

settings (epochs 1000; target MSE 

0.0; minimum gradient 10
-7

; mu 

0.001; mu_dec 0.1; mu_inc 10); 

if overfitting is suspected, modify 

setting to (epochs 1000; target MSE 

0.0; minimum gradient 10
-7

; mu 1; 

mu_dec 0.7; mu_inc 1.3). 

Source: Author (2017) 

 

5.3 Contribution of the Study to Knowledge 

This study, like many other products of human endeavour, has its strengths and 

weaknesses. The step-by-step process of deductive reasoning applied in the design of 

the neural network and derivation of optimum network parameter settings lends itself 

to replicability easily. This was counted as one of the biggest contributions of the 
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study to knowledge. Other contributions of the study include the discovery that risks 

are best predicted singly rather than in a combined manner. The use of binarization as 

a data normalization technique also allowed accurate prediction of risks within a 

heterogenous sample of building projects. The interdisciplinary nature of the study 

has allowed the study to contribute to knowledge through the transplanting of 

Artificial Intelligence (AI) concepts into Quantity Surveying (QS). This, it is hoped, 

will foster the development of greater expertise in the application of AI concepts by 

the QS community and serve to ensure that the QS profession is not left behind in the 

digitization of knowledge within the built environment field. 

 

5.4 Area for Further Studies 

The following represent new areas into which the research presented in this study 

could be expanded, in order to enhance understanding of the behaviour of project cost 

data when employed for the development of predictive artificial neural networks. 

1) Comparison of the performance of radial basis function (RBF) and multi-layer 

perceptron (MLP) networks in the development of artificial neural network 

models for cost prediction. 

2) The effect of project type on the accuracy of artificial neural network models 

of risk impact on building project costs. 
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Appendix A: Survey Questionnaire 

 
 

 

 

Dear Sir/Ma, 

RE: DEVELOPMENT OF AN ARTIFICIAL NEURAL NETWORK MODEL FOR 

PREDICTING THE IMPACT OF RISK ON COST OF BUILDING PROJECTS 

Variability in construction costs between initial contract sums (ICS) and final accounts (FA) are 

important in the construction industry because they usually represent additional expenditures that 

deliver no additional benefits. Research efforts have been and are still focused on understanding 

the factors that contribute to construction costs variability. A major part of such research is on the 

contribution of risk events to changes in construction costs.  

This survey is being conducted in order to develop models that will help to predict the variability 

between initial contract sums and final accounts of construction projects based on the impact of 

risk factors over the construction phase of building projects. The models will be developed using 

artificial neural network (ANN) techniques. This is a PhD work. 

Your kind response to the questions and requests for information contained in the questionnaire 

and schedule attached herein will be highly appreciated and treated as strictly private and 

confidential. Please make contacts through the following addresses to clarify issues and make 

suggestions. 

The entire questionnaire and schedule takes an estimated fifteen (15) minutes to complete. 

1. Mr. A. A. Oke      

Dept of Quantity Surveying, FUT Minna  08077934944  Researcher 

2. Professor Y. Ibrahim MNIQS RQS       

Dept of Quantity Surveying, ATBU Bauchi   08036134490  Main Supervisor 

3. Professor O. O. Morenikeji       

Dept of Urban and Reg. Planning, FUT Minna    Co-Supervisor 

4. Dr M. A. Aibinu         

Dept of Mechatronics, FUT Minna      Co-Supervisor

  

Thank you for your anticipated genuine contribution to knowledge. 

 

 

(A. A. Oke) 

abdganioke@futminna.edu.ng  

  

FEDERAL UNIVERSITY OF TECHNOLOGY MINNA 

DEPARTMENT OF QUANTITY SURVEYING 
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SURVEY ON  

“DEVELOPMENT OF AN ARTIFICIAL NEURAL NETWORK MODEL FOR 

PREDICTING THE IMPACT OF RISK ON COST OF BUILDING 

PROJECTS” 

 

Questionnaire - Section A 

General Information (takes approximately 3 minutes to complete) 

 

1. Designation of Respondent ------------------------------------------------------------ 

 

2. Construction Experience 

 (a) Less than 10 years   

(b) 11 – 20 years   

(c) 21 – 30 years   

(d) More than 30 years   

 

3. Highest academic qualification obtained 

(a) OND  

(b) HND  

(c) B.Sc  

(d) PGD  

(e) MSc   

(f) PhD   

(g) Others  

 

Questionnaire - Section B  

Construction Project Features 

4. Year 

Year construction of project was started: …………………….. 

 

5. Gross floor area: …………………………. 
 

6. Project type 

(i) Carpark  

(ii) Hospital  

(iii) Hostel  

(iv) Hotel  

(v) House  

(vi) Library  

(vii) Office  

(viii) School  

(ix) Warehouse  

(x) Workshop  

(xi) Others  
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7. Project nature 
(i) New construction  

(ii) Refurbishment  

 

8. Value of structural element: N………………………. 

 

9. Value of services element: N…………………………. 

 

10. Value of finishing element: N………………………… 

 

11. Value of external work element: N ………………………….. 
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Appendix B: Questionnaire for Final Account Details for Project  (takes approximately 12 minutes to complete) 

Please indicate the risk that you consider responsible for each addition/omission item by inserting the appropriate risk reference under ‘Risk Factors’. 

 

S/Nr Risks 
Risk 

Reference 

1 Acts of God R1 

2 Cash flow difficulties R2 

3 change in design / variations by the client R3 

4 Change in scope of work R4 

5 change in the design by the Architect R5 

6 Changes in site conditions R6 

7 Consultant competence R7 

8 Contractor competence R8 

9 Nominated suppliers cash flow problems R9 

10 Incomplete drawings R10 

11 Delay due to excessive approval procedures R11 

12 Equipment breakdown/ maintenance R12 

13 error/omission in design/estimates R13 

14 Inclement weather R14 

15 Inflation R15 

16 Labour shortage R16 

17 Poor contract management R17 

18 Production target slippage R18 

19 Social issues/area boys, original land owners R19 

S/No 
Section of 

Final Account 

Brief Description of costs 

items in Final Account 

Value of costs items in 

Final Account Risk 

Addition Omission 

1      

2      

3      

4      

5      

6      

7      

8      

9      

10      

11      

12      
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Appendix C: SPSS Analysis for reliability of the research instrument 

 

Nonparametric Correlations 

 
Correlations 

   Test_sctnA ReTest_sctnA 

Kendall's tau_b Test_sctnA Correlation Coefficient 1.000 .844
**
 

Sig. (2-tailed) . .000 

N 24 24 

ReTest_sctnA Correlation Coefficient .844
**
 1.000 

Sig. (2-tailed) .000 . 

N 24 24 

Spearman's rho Test_sctnA Correlation Coefficient 1.000 .911
**
 

Sig. (2-tailed) . .000 

N 24 24 

ReTest_sctnA Correlation Coefficient .911
**
 1.000 

Sig. (2-tailed) .000 . 

N 24 24 

**. Correlation is significant at the 0.01 level (2-tailed).   

 

 

Correlations 

 

Descriptive Statistics 

 Mean Std. Deviation N 

Test_sctnA 1.4124E8 3.42834E8 24 

ReTest_sctnA 2.0453E7 3.58360E7 24 

 
Correlations 

  Test_sctnA ReTest_sctnA 

Test_sctnA Pearson Correlation 1 .823
**
 

Sig. (2-tailed)  .000 

N 24 24 

ReTest_sctnA Pearson Correlation .823
**
 1 

Sig. (2-tailed) .000  

N 24 24 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Nonparametric Correlations 

 
Correlations 

   Test_qstnnr ReTest_qstnnr 

Kendall's tau_b Test_qstnnr Correlation Coefficient 1.000 .841
**
 

Sig. (2-tailed) . .000 

N 16 16 

ReTest_qstnnr Correlation Coefficient .841
**
 1.000 

Sig. (2-tailed) .000 . 

N 16 16 

Spearman's rho Test_qstnnr Correlation Coefficient 1.000 .887
**
 

Sig. (2-tailed) . .000 

N 16 16 

ReTest_qstnnr Correlation Coefficient .887
**
 1.000 

Sig. (2-tailed) .000 . 

N 16 16 

**. Correlation is significant at the 0.01 level (2-tailed).   

 

 

Correlations 

 

Descriptive Statistics 

 Mean Std. Deviation N 

Test_qstnnr 1.7500 .85635 16 

ReTest_qstnnr 2.0625 1.12361 16 

 

 
Correlations 

  Test_qstnnr ReTest_qstnnr 

Test_qstnnr Pearson Correlation 1 .849
**
 

Sig. (2-tailed)  .000 

N 16 16 

ReTest_qstnnr Pearson Correlation .849
**
 1 

Sig. (2-tailed) .000  

N 16 16 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Nonparametric Correlations 

 
Correlations 

   Test ReTest 

Kendall's tau_b Test Correlation Coefficient 1.000 .852
**
 

Sig. (2-tailed) . .000 

N 40 40 

ReTest Correlation Coefficient .852
**
 1.000 

Sig. (2-tailed) .000 . 

N 40 40 

Spearman's rho Test Correlation Coefficient 1.000 .895
**
 

Sig. (2-tailed) . .000 

N 40 40 

ReTest Correlation Coefficient .895
**
 1.000 

Sig. (2-tailed) .000 . 

N 40 40 

**. Correlation is significant at the 0.01 level (2-tailed).  

 

 

Correlations 

 

Descriptive Statistics 

 Mean Std. Deviation N 

Test 8.4746E7 2.72445E8 40 

ReTest 1.2272E7 2.93315E7 40 

 

 
Correlations 

  Test ReTest 

Test Pearson Correlation 1 .835
**
 

Sig. (2-tailed)  .000 

N 40 40 

ReTest Pearson Correlation .835
**
 1 

Sig. (2-tailed) .000  

N 40 40 

**. Correlation is significant at the 0.01 level (2-tailed). 

 
 

  



215 
 

Appendix D: Complete list of the projects in the study sample 

Proj 

Grp 

Nr 

Year 
Project 

Description 
Location GFA 

Number 

of risk 

events 

Initial Contract 

Value_ICV 

Cost Deviation 

FCV - ICV 

A01 2004 Hostel Niger 913 34 18,631,148.45 1,657,281.55 

A02 2011 Hotel Abuja 4457 65 1,046,041,530.38 422,669,563.62 

A03 2009 Hospital Gombe 580 33 269,936,199.15 145,008,876.55 

A04 2013 Office Benue 642 26 72,525,775.35 4,951,432.50 

A05 2014 Office Abia 642 20 72,005,955.53 3,885,613.46 

A06 2013 Office Taraba 642 23 71,278,404.75 2,865,166.50 

A07 2011 Warehouse Kaduna 375 6 66,403,218.00 -525,210.00 

A08 2012 School Borno 1223 22 140,668,064.00 -14,875,431.00 

A09 2012 School Kaduna 2881 8 489,933,652.43 65,615,502.97 

A10 2008 School Gombe 1703 45 127,000,000.00 -3,399,206.48 

A11 2015 Car park Abuja 3081 19 523,881,350.58 -60,870,310.30 

A12 2014 Office Jigawa 655 23 75,346,244.40 -2,942.31 

A13 2015 Hostel Gombe 6646 42 600,600,000.00 -17,495,600.85 

A14 2015 Library Abuja 1840 16 207,388,304.81 -6,862,553.66 

A15 2015 Workshop Abuja 1422 5 198,899,132.52 -116,186.64 

A16 2015 Hostel Abuja 1845 15 227,092,280.15 -150,863.86 

B17 2010 House Abuja 1533 3 299,084,056.47 40,153,076.00 

B18 2010 House Abuja 1027 3 200,182,589.99 31,034,634.40 

B19 2010 House Abuja 1048 3 204,274,840.99 31,844,173.00 

B20 2010 House Abuja 1291 3 251,753,471.25 30,062,678.04 

B21 2010 House Abuja 616 3 120,108,325.35 32,477,705.00 

B22 2010 House Abuja 116 1 22,544,147.50 2,400,950.00 

B23 2010 House Abuja 61 1 11,839,600.00 3,475,900.00 

B24 2015 House Yobe 113 24 22,078,124.00 9,056,705.96 

B25 2014 House Abuja 683 5 30,744,958.83 0.00 

B26 2014 House Abuja 714 4 32,131,109.07 0.00 

B27 2014 House Abuja 711 8 31,977,000.00 0.00 

B28 2014 House Abuja 674 9 30,339,877.19 0.00 

B29 2014 House Abuja 693 8 31,188,504.90 0.00 

B30 2014 House Abuja 711 7 31,977,838.16 0.00 

B31 2014 House Abuja 728 8 32,801,010.00 0.00 

B32 2014 House Abuja 693 8 31,205,955.42 0.00 

B33 2014 House Abuja 717 5 32,272,686.60 0.00 

B34 2014 House Abuja 732 8 32,964,986.25 0.00 

B35 2014 House Abuja 716 7 32,226,417.56 0.00 

B36 2014 House Abuja 771 8 34,717,490.06 0.00 
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Proj 

Grp 

Nr 

Year 
Project 

Description 
Location GFA 

Number 

of risk 

events 

Initial Contract 

Value_ICV 

Cost Deviation 

FCV - ICV 

B37 2015 House Abuja 829 8 37,332,533.43 -1,901.74 

B38 2015 House Abuja 1010 8 45,453,135.09 -1,448.91 

B39 2015 House Abuja 979 8 44,073,555.82 0.00 

B40 2016 House Abuja 855 9 38,513,661.72 -709,530.67 

B41 2009 Hostel Gombe 1000 6 114,977,068.50 21,080,016.75 

B42 2010 Office Kaduna 257 5 11,580,313.50 -989,478.00 

B43 2010 Office Lagos 43 4 1,928,797.50 -31,920.00 

B44 2010 Warehouse Lagos 390 1 48,691,944.00 -1,239,000.00 

B45 2005 Office Jigawa 364 56 45,441,808.13 -4,606,171.12 

B46 2005 School Gombe 817 20 102,187,284.45 -2,852,173.94 

B47 2011 School Abuja 198 7 24,700,871.00 292,332.54 

B48 2015 Hospital Kano 154 13 6,950,359.50 -35,805.00 

C49 2008 Hospital Gombe 665 2 83,152,391.70 -450,000.00 

C50 2009 Hospital Gombe 672 6 84,024,366.30 37,689,114.75 

C51 2008 Hospital Gombe 501 5 62,620,489.05 -549,533.84 

C52 2012 House Kaduna 217 13 9,756,140.63 1,217,616.75 

C53 2012 House Kaduna 217 14 9,754,350.90 2,126,706.75 

C54 2010 Office Kaduna 79 10 3,534,426.00 748,282.50 

C55 2010 Office Kaduna 33 3 1,472,635.50 -183,067.50 

C56 2003 School Kano 341 42 42,572,165.75 1,703,485.23 

C57 2005 School Gombe 718 46 89,688,700.00 13,415,813.02 

C58 2005 School Gombe 561 26 70,152,600.00 -4,907,007.52 

C59 2005 School Gombe 497 20 62,148,450.00 -10,716,583.50 

C60 2005 School Gombe 461 28 57,597,750.00 -9,887,221.16 

C61 2005 School Gombe 1092 58 136,446,896.25 -7,734,350.77 

C62 2012 School Gombe 848 10 105,945,000.00 -2,260,788.60 

C63 2013 School Gombe 210 5 26,250,000.00 -767,181.45 

C64 2014 School Gombe 912 15 114,030,000.00 -11,809,425.60 

C65 2014 School Gombe 389 12 48,615,000.00 -783,102.60 

C66 2013 School Gombe 391 20 48,930,000.00 -796,823.05 

C67 2014 School Gombe 473 10 59,101,000.00 -11,531,486.05 

C68 2014 School Kano 2547 18 496,684,314.00 -3,919,513.50 

C69 2014 School Nasarawa 661 11 82,635,000.00 -1,362,255.30 
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Appendix E:  Cost changes and associated risk factors encountered in sampled 

projects 

Proj Grp Nr Risk label 
Risk 
sort 
code 

Cost 
category 

Cost sort 
code 

Risk type 
code 

Risk costs (Net) 
Initial Contract 

Sum_ICS 
Risk 

degree 

A01 R4-CLS 2 vs 5 1 -136,290.00 18631148.45 -0.7315169 

A01 R4-CLS 2 vs 5 1 -132,800.00 18631148.45 -0.7127848 

A01 R4-CLS 2 vs 5 1 -8,500.00 18631148.45 -0.0456225 

A01 R6-UNS 4 va 3 2 15,800.00 18631148.45 0.0848042 

A01 R10-CNV 5 ps 2 1 -56,738.91 18631148.45 -0.3045379 

A01 R10-CNV 5 ps 2 1 -13,552.00 18631148.45 -0.0727384 

A01 R10-CNV 5 ps 2 1 -5,918.00 18631148.45 -0.031764 

A01 R10-CNV 5 ps 2 1 -2,530.00 18631148.45 -0.0135794 

A01 R10-CNV 5 ps 2 2 43,720.00 18631148.45 0.2346608 

A01 R10-CNV 5 ps 2 2 61,472.00 18631148.45 0.3299421 

A01 R10-CNV 5 ps 2 2 188,358.00 18631148.45 1.0109844 

A01 R10-CNV 5 ps 2 2 276,908.00 18631148.45 1.4862637 

A01 R10-CNV 5 ps 2 2 527,490.00 18631148.45 2.8312264 

A01 R10-CNV 5 va 3 2 726.00 18631148.45 0.0038967 

A01 R10-CNV 5 va 3 2 2,640.00 18631148.45 0.0141698 

A01 R10-CNV 5 va 3 2 2,775.00 18631148.45 0.0148944 

A01 R10-CNV 5 va 3 2 9,120.00 18631148.45 0.0489503 

A01 R10-CNV 5 va 3 2 27,390.00 18631148.45 0.1470119 

A01 R10-CNV 5 va 3 2 58,500.00 18631148.45 0.3139903 

A01 R10-CNV 5 va 3 2 61,425.00 18631148.45 0.3296898 

A01 R10-CNV 5 va 3 2 90,720.00 18631148.45 0.4869265 

A01 R10-CNV 5 va 3 2 92,882.00 18631148.45 0.4985307 

A01 R10-CNV 5 va 3 2 93,120.00 18631148.45 0.4998082 

A01 R10-CNV 5 va 3 2 108,000.00 18631148.45 0.5796744 

A01 R10-CNV 5 va 3 2 168,000.00 18631148.45 0.9017158 

A01 R13-CNE 6 pq 1 1 -307,115.00 18631148.45 -1.6483954 

A01 R13-CNE 6 pq 1 1 -31,641.00 18631148.45 -0.1698285 

A01 R13-CNE 6 pq 1 1 -12,300.00 18631148.45 -0.0660185 

A01 R13-CNE 6 pq 1 2 236,210.00 18631148.45 1.2678231 

A01 R13-CNE 6 pq 1 2 274,341.00 18631148.45 1.4724857 

A01 R13-CNE 6 pq 1 2 470,990.00 18631148.45 2.5279708 

A01 R13-CNE 6 pq 1 2 522,317.00 18631148.45 2.8034611 

A01 R13-CNE 6 vo 4 1 -52,000.00 18631148.45 -0.2791025 

A01 R13-CNE 6 vo 4 1 -29,040.00 18631148.45 -0.155868 

A02 R4-CLS 2 va 3 2 21,000.00 1046041530 0.0020076 

A02 R4-CLS 2 va 3 2 21,000.00 1046041530 0.0020076 

A02 R4-CLS 2 va 3 2 29,340.00 1046041530 0.0028049 

A02 R4-CLS 2 va 3 2 68,000.00 1046041530 0.0065007 

A02 R4-CLS 2 va 3 2 75,000.00 1046041530 0.0071699 

A02 R4-CLS 2 va 3 2 76,000.00 1046041530 0.0072655 

A02 R4-CLS 2 va 3 2 92,750.00 1046041530 0.0088668 

A02 R4-CLS 2 va 3 2 92,800.00 1046041530 0.0088715 

A02 R4-CLS 2 va 3 2 95,000.00 1046041530 0.0090819 

A02 R4-CLS 2 va 3 2 100,000.00 1046041530 0.0095598 

A02 R4-CLS 2 va 3 2 120,000.00 1046041530 0.0114718 

A02 R4-CLS 2 va 3 2 125,100.00 1046041530 0.0119594 

A02 R4-CLS 2 va 3 2 132,600.00 1046041530 0.0126764 

A02 R4-CLS 2 va 3 2 132,600.00 1046041530 0.0126764 

A02 R4-CLS 2 va 3 2 150,000.00 1046041530 0.0143398 

A02 R4-CLS 2 va 3 2 152,000.00 1046041530 0.014531 

A02 R4-CLS 2 va 3 2 178,800.00 1046041530 0.017093 

A02 R4-CLS 2 va 3 2 185,500.00 1046041530 0.0177335 
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Proj Grp Nr Risk label 
Risk 
sort 
code 

Cost 
category 

Cost sort 
code 

Risk type 
code 

Risk costs (Net) 
Initial Contract 

Sum_ICS 
Risk 

degree 

A02 R4-CLS 2 va 3 2 209,300.00 1046041530 0.0200088 

A02 R4-CLS 2 va 3 2 215,000.00 1046041530 0.0205537 

A02 R4-CLS 2 va 3 2 216,000.00 1046041530 0.0206493 

A02 R4-CLS 2 va 3 2 275,000.00 1046041530 0.0262896 

A02 R4-CLS 2 va 3 2 289,800.00 1046041530 0.0277044 

A02 R4-CLS 2 va 3 2 375,000.00 1046041530 0.0358494 

A02 R4-CLS 2 va 3 2 394,000.00 1046041530 0.0376658 

A02 R4-CLS 2 va 3 2 474,950.00 1046041530 0.0454045 

A02 R4-CLS 2 va 3 2 494,190.00 1046041530 0.0472438 

A02 R4-CLS 2 va 3 2 524,250.00 1046041530 0.0501175 

A02 R4-CLS 2 va 3 2 540,000.00 1046041530 0.0516232 

A02 R4-CLS 2 va 3 2 570,000.00 1046041530 0.0544911 

A02 R4-CLS 2 va 3 2 600,000.00 1046041530 0.0573591 

A02 R4-CLS 2 va 3 2 607,500.00 1046041530 0.0580761 

A02 R4-CLS 2 va 3 2 650,000.00 1046041530 0.062139 

A02 R4-CLS 2 va 3 2 750,000.00 1046041530 0.0716989 

A02 R4-CLS 2 va 3 2 800,000.00 1046041530 0.0764788 

A02 R4-CLS 2 va 3 2 912,000.00 1046041530 0.0871858 

A02 R4-CLS 2 va 3 2 1,120,000.00 1046041530 0.1070703 

A02 R4-CLS 2 va 3 2 1,600,000.00 1046041530 0.1529576 

A02 R4-CLS 2 va 3 2 1,759,300.00 1046041530 0.1681864 

A02 R4-CLS 2 va 3 2 2,281,910.00 1046041530 0.2181472 

A02 R4-CLS 2 va 3 2 2,500,000.00 1046041530 0.2389962 

A02 R4-CLS 2 va 3 2 5,700,000.00 1046041530 0.5449114 

A02 R4-CLS 2 va 3 2 7,018,036.00 1046041530 0.6709137 

A02 R4-CLS 2 va 3 2 10,658,000.00 1046041530 1.0188888 

A02 R4-CLS 2 va 3 2 14,817,500.00 1046041530 1.4165308 

A02 R4-CLS 2 va 3 2 50,515,500.00 1046041530 4.829206 

A02 R5-CND 3 va 3 2 75,000.00 1046041530 0.0071699 

A02 R5-CND 3 vs 5 2 316,800.00 1046041530 0.0302856 

A02 R5-CND 3 vs 5 2 331,248.00 1046041530 0.0316668 

A02 R5-CND 3 vs 5 2 1,158,000.00 1046041530 0.1107031 

A02 R5-CND 3 vs 5 2 1,258,632.00 1046041530 0.1203233 

A02 R5-CND 3 vs 5 2 1,285,800.00 1046041530 0.1229205 

A02 R5-CND 3 vs 5 2 1,474,380.00 1046041530 0.1409485 

A02 R5-CND 3 vs 5 2 2,153,388.00 1046041530 0.2058607 

A02 R5-CND 3 vs 5 2 2,680,320.00 1046041530 0.2562346 

A02 R5-CND 3 vs 5 2 2,734,638.00 1046041530 0.2614273 

A02 R5-CND 3 vs 5 2 3,438,552.00 1046041530 0.3287204 

A02 R5-CND 3 vs 5 2 3,477,006.00 1046041530 0.3323966 

A02 R5-CND 3 vs 5 2 3,560,904.00 1046041530 0.3404171 

A02 R5-CND 3 vs 5 2 4,623,000.00 1046041530 0.4419519 

A02 R5-CND 3 vs 5 2 7,586,181.60 1046041530 0.7252276 

A02 R5-CND 3 vs 5 2 9,271,200.00 1046041530 0.8863128 

A02 R5-CND 3 vs 5 2 9,458,712.00 1046041530 0.9042387 

A02 R15-UNE 7 va 3 2 104,191,280.00 1046041530 9.96053 

A02 R15-UNE 7 va 3 2 114,253,346.02 1046041530 10.922448 

A03 R3-CLV 1 va 3 2 135,223,230.62 269936199.2 50.094515 

A03 R4-CLS 2 vo 4 1 -1,219,000.00 269936199.2 -0.4515882 

A03 R4-CLS 2 vo 4 1 -400,453.88 269936199.2 -0.1483513 

A03 R4-CLS 2 vo 4 1 -325,653.46 269936199.2 -0.1206409 

A03 R4-CLS 2 vo 4 1 -325,653.46 269936199.2 -0.1206409 

A03 R4-CLS 2 vo 4 1 -314,410.39 269936199.2 -0.1164758 

A03 R4-CLS 2 vo 4 1 -303,910.42 269936199.2 -0.112586 

A03 R4-CLS 2 vo 4 1 -275,961.65 269936199.2 -0.1022322 

A03 R4-CLS 2 vo 4 1 -266,711.54 269936199.2 -0.0988054 
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Proj Grp Nr Risk label 
Risk 
sort 
code 

Cost 
category 

Cost sort 
code 

Risk type 
code 

Risk costs (Net) 
Initial Contract 

Sum_ICS 
Risk 

degree 

A03 R4-CLS 2 vo 4 1 -248,970.00 269936199.2 -0.0922329 

A03 R4-CLS 2 vo 4 1 -187,988.70 269936199.2 -0.0696419 

A03 R4-CLS 2 vo 4 1 -187,988.70 269936199.2 -0.0696419 

A03 R4-CLS 2 vo 4 1 -187,625.28 269936199.2 -0.0695073 

A03 R4-CLS 2 vo 4 1 -75,000.00 269936199.2 -0.0277843 

A03 R5-CND 3 va 3 2 175,000.00 269936199.2 0.0648301 

A03 R5-CND 3 va 3 2 270,000.00 269936199.2 0.1000236 

A03 R5-CND 3 va 3 2 375,050.00 269936199.2 0.1389402 

A03 R5-CND 3 va 3 2 499,200.00 269936199.2 0.1849326 

A03 R5-CND 3 va 3 2 529,660.00 269936199.2 0.1962167 

A03 R5-CND 3 va 3 2 805,500.00 269936199.2 0.2984038 

A03 R5-CND 3 va 3 2 835,543.00 269936199.2 0.3095335 

A03 R5-CND 3 va 3 2 957,894.00 269936199.2 0.3548594 

A03 R5-CND 3 va 3 2 1,867,500.00 269936199.2 0.6918301 

A03 R5-CND 3 va 3 2 2,295,808.00 269936199.2 0.8505002 

A03 R5-CND 3 va 3 2 8,200,000.00 269936199.2 3.0377549 

A03 R5-CND 3 vo 4 1 -8,442,215.00 269936199.2 -3.1274853 

A03 R5-CND 3 vo 4 1 -4,690,000.00 269936199.2 -1.7374476 

A03 R5-CND 3 vo 4 1 -3,657,213.00 269936199.2 -1.3548435 

A03 R5-CND 3 vo 4 1 -1,624,750.00 269936199.2 -0.6019015 

A03 R6-UNS 4 ps 2 1 -4,700,000.00 269936199.2 -1.7411522 

A03 R10-CNV 5 ps 2 1 -2,000,000.00 269936199.2 -0.7409158 

A03 R10-CNV 5 ps 2 1 -1,500,000.00 269936199.2 -0.5556869 

A03 R13-CNE 6 pq 1 2 36,725,049.64 269936199.2 13.605085 

A04 R5-CND 3 va 3 2 140,400.00 72525775.35 0.1935863 

A04 R5-CND 3 va 3 2 151,250.00 72525775.35 0.2085465 

A04 R5-CND 3 va 3 2 214,800.00 72525775.35 0.2961706 

A04 R5-CND 3 va 3 2 255,000.00 72525775.35 0.3515991 

A04 R5-CND 3 va 3 2 439,200.00 72525775.35 0.6055778 

A04 R5-CND 3 va 3 2 2,139,400.00 72525775.35 2.9498478 

A04 R10-CNV 5 ps 2 1 -300,000.00 72525775.35 -0.413646 

A04 R10-CNV 5 ps 2 1 -150,000.00 72525775.35 -0.206823 

A04 R10-CNV 5 ps 2 1 -100,000.00 72525775.35 -0.137882 

A04 R10-CNV 5 ps 2 2 0.00 72525775.35 0 

A04 R10-CNV 5 ps 2 2 0.00 72525775.35 0 

A04 R10-CNV 5 ps 2 2 210,000.00 72525775.35 0.2895522 

A04 R10-CNV 5 ps 2 2 490,900.00 72525775.35 0.6768628 

A04 R13-CNE 6 pq 1 1 -520,800.00 72525775.35 -0.7180895 

A04 R13-CNE 6 pq 1 1 -195,000.00 72525775.35 -0.2688699 

A04 R13-CNE 6 pq 1 1 -148,800.00 72525775.35 -0.2051684 

A04 R13-CNE 6 pq 1 1 -60,000.00 72525775.35 -0.0827292 

A04 R13-CNE 6 pq 1 1 -30,000.00 72525775.35 -0.0413646 

A04 R13-CNE 6 pq 1 1 -30,000.00 72525775.35 -0.0413646 

A04 R13-CNE 6 pq 1 1 -25,200.00 72525775.35 -0.0347463 

A04 R13-CNE 6 pq 1 1 -14,000.00 72525775.35 -0.0193035 

A04 R13-CNE 6 pq 1 1 -10,000.00 72525775.35 -0.0137882 

A04 R13-CNE 6 pq 1 2 37,000.00 72525775.35 0.0510163 

A04 R13-CNE 6 pq 1 2 120,000.00 72525775.35 0.1654584 

A04 R13-CNE 6 pq 1 2 331,500.00 72525775.35 0.4570789 

A04 R15-UNE 7 ps 2 2 2,415,000.00 72525775.35 3.3298506 

A05 R5-CND 3 va 3 2 70,200.00 72005955.53 0.0974919 

A05 R5-CND 3 va 3 2 110,000.00 72005955.53 0.1527651 

A05 R5-CND 3 va 3 2 113,092.00 72005955.53 0.1570592 

A05 R5-CND 3 va 3 2 237,050.00 72005955.53 0.3292089 

A05 R5-CND 3 va 3 2 255,000.00 72005955.53 0.3541374 

A05 R5-CND 3 va 3 2 410,400.00 72005955.53 0.5699529 
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A05 R6-UNS 4 va 3 2 103,600.00 72005955.53 0.143877 

A05 R10-CNV 5 ps 2 1 -375,000.00 72005955.53 -0.5207903 

A05 R10-CNV 5 ps 2 1 -300,000.00 72005955.53 -0.4166322 

A05 R10-CNV 5 ps 2 1 -250,000.00 72005955.53 -0.3471935 

A05 R10-CNV 5 ps 2 1 -178,850.00 72005955.53 -0.2483822 

A05 R10-CNV 5 ps 2 1 -150,000.00 72005955.53 -0.2083161 

A05 R10-CNV 5 ps 2 1 -100,000.00 72005955.53 -0.1388774 

A05 R10-CNV 5 ps 2 2 224,910.00 72005955.53 0.3123492 

A05 R13-CNE 6 pq 1 1 -195,000.00 72005955.53 -0.2708109 

A05 R13-CNE 6 pq 1 1 -45,000.00 72005955.53 -0.0624948 

A05 R13-CNE 6 pq 1 2 16,650.00 72005955.53 0.0231231 

A05 R13-CNE 6 pq 1 2 219,375.00 72005955.53 0.3046623 

A05 R13-CNE 6 pq 1 2 331,500.00 72005955.53 0.4603786 

A05 R13-CNE 6 pq 1 2 4,024,100.00 72005955.53 5.5885655 

A06 R5-CND 3 va 3 2 140,400.00 71278404.75 0.1969741 

A06 R5-CND 3 va 3 2 255,000.00 71278404.75 0.3577521 

A06 R5-CND 3 va 3 2 292,500.00 71278404.75 0.4103627 

A06 R5-CND 3 va 3 2 5,073,105.00 71278404.75 7.11731 

A06 R10-CNV 5 ps 2 1 -300,000.00 71278404.75 -0.4208848 

A06 R10-CNV 5 ps 2 1 -150,000.00 71278404.75 -0.2104424 

A06 R10-CNV 5 ps 2 1 -100,000.00 71278404.75 -0.1402949 

A06 R10-CNV 5 ps 2 2 0.00 71278404.75 0 

A06 R10-CNV 5 ps 2 2 0.00 71278404.75 0 

A06 R10-CNV 5 ps 2 2 14,850.00 71278404.75 0.0208338 

A06 R10-CNV 5 ps 2 2 210,000.00 71278404.75 0.2946194 

A06 R13-CNE 6 pq 1 1 -615,000.00 71278404.75 -0.8628139 

A06 R13-CNE 6 pq 1 1 -574,000.00 71278404.75 -0.805293 

A06 R13-CNE 6 pq 1 1 -409,500.00 71278404.75 -0.5745078 

A06 R13-CNE 6 pq 1 1 -297,600.00 71278404.75 -0.4175178 

A06 R13-CNE 6 pq 1 1 -195,000.00 71278404.75 -0.2735751 

A06 R13-CNE 6 pq 1 1 -114,800.00 71278404.75 -0.1610586 

A06 R13-CNE 6 pq 1 1 -85,200.00 71278404.75 -0.1195313 

A06 R13-CNE 6 pq 1 1 -74,400.00 71278404.75 -0.1043794 

A06 R13-CNE 6 pq 1 2 40,000.00 71278404.75 0.056118 

A06 R13-CNE 6 pq 1 2 67,500.00 71278404.75 0.0946991 

A06 R13-CNE 6 pq 1 2 219,375.00 71278404.75 0.307772 

A06 R13-CNE 6 pq 1 2 331,500.00 71278404.75 0.4650777 

A07 R4-CLS 2 va 3 2 64,800.00 66403218 0.0975856 

A07 R4-CLS 2 va 3 2 176,000.00 66403218 0.2650474 

A07 R4-CLS 2 va 3 2 273,000.00 66403218 0.4111247 

A07 R13-CNE 6 pq 1 1 -105,000.00 66403218 -0.1581249 

A07 R13-CNE 6 pq 1 1 -35,000.00 66403218 -0.0527083 

A07 R13-CNE 6 pq 1 2 126,000.00 66403218 0.1897498 

A08 R10-CNV 5 ps 2 1 -839,500.00 140,668,064.00 -0.596795 

A08 R10-CNV 5 ps 2 1 -50,000.00 140,668,064.00 -0.0355447 

A08 R10-CNV 5 ps 2 2 0.00 140,668,064.00 0 

A08 R10-CNV 5 ps 2 2 0.00 140,668,064.00 0 

A08 R10-CNV 5 ps 2 2 0.00 140,668,064.00 0 

A08 R10-CNV 5 ps 2 2 0.00 140,668,064.00 0 

A08 R13-CNE 6 pq 1 1 -5,515,920.00 140,668,064.00 -3.9212312 

A08 R13-CNE 6 pq 1 1 -1,862,400.00 140,668,064.00 -1.3239679 

A08 R13-CNE 6 pq 1 1 -351,000.00 140,668,064.00 -0.2495236 

A08 R13-CNE 6 pq 1 2 40,000.00 140,668,064.00 0.0284357 

A08 R13-CNE 6 pq 1 2 324,150.00 140,668,064.00 0.2304361 

A08 R13-CNE 6 pq 1 2 3,467,350.00 140,668,064.00 2.4649163 

A08 R15-UNE 7 va 3 2 180,000.00 140,668,064.00 0.1279608 
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A08 R15-UNE 7 va 3 2 1,203,650.00 140,668,064.00 0.8556669 

A08 R15-UNE 7 vo 4 1 -2,601,550.00 140,668,064.00 -1.8494248 

A08 R15-UNE 7 vo 4 1 -778,500.00 140,668,064.00 -0.5534305 

A08 R15-UNE 7 vs 5 1 -4,755,020.00 140,668,064.00 -3.3803124 

A08 R15-UNE 7 vs 5 1 -351,000.00 140,668,064.00 -0.2495236 

A08 R15-UNE 7 vs 5 1 -140,000.00 140,668,064.00 -0.0995251 

A08 R15-UNE 7 vs 5 1 -18,000.00 140,668,064.00 -0.0127961 

A08 R15-UNE 7 vs 5 2 432,500.00 140,668,064.00 0.3074614 

A08 R15-UNE 7 vs 5 2 434,700.00 140,668,064.00 0.3090254 

A09 R3-CLV 1 va 3 2 2,643,800.00 489,933,652.43 0.5396241 

A09 R3-CLV 1 vs 5 2 9,294,700.00 489,933,652.43 1.8971344 

A09 R4-CLS 2 va 3 2 331,425.00 489,933,652.43 0.0676469 

A09 R10-CNV 5 ps 2 1 -5,500,133.70 489,933,652.43 -1.1226283 

A09 R10-CNV 5 ps 2 1 -304,120.00 489,933,652.43 -0.0620737 

A09 R10-CNV 5 ps 2 2 0.00 489,933,652.43 0 

A09 R10-CNV 5 ps 2 2 60,042,965.00 489,933,652.43 12.255326 

A09 R13-CNE 6 pq 1 1 -893,133.33 489,933,652.43 -0.1822968 

A10 R3-CLV 1 va 3 2 117,330.00 127000000 0.0923858 

A10 R3-CLV 1 va 3 2 249,980.26 127000000 0.1968349 

A10 R3-CLV 1 va 3 2 1,108,000.00 127000000 0.8724409 

A10 R3-CLV 1 va 3 2 1,300,000.00 127000000 1.023622 

A10 R5-CND 3 va 3 2 38,316.00 127000000 0.0301701 

A10 R5-CND 3 va 3 2 111,800.00 127000000 0.0880315 

A10 R5-CND 3 va 3 2 280,768.00 127000000 0.2210772 

A10 R5-CND 3 va 3 2 1,040,000.00 127000000 0.8188976 

A10 R5-CND 3 va 3 2 1,693,490.00 127000000 1.3334567 

A10 R10-CNV 5 ps 2 1 -1,823,290.00 127000000 -1.4356614 

A10 R10-CNV 5 ps 2 1 -830,750.00 127000000 -0.6541339 

A10 R10-CNV 5 ps 2 1 -642,945.00 127000000 -0.5062559 

A10 R10-CNV 5 ps 2 1 -359,000.00 127000000 -0.2826772 

A10 R10-CNV 5 ps 2 1 -34,400.00 127000000 -0.0270866 

A10 R10-CNV 5 ps 2 1 -22,245.00 127000000 -0.0175157 

A10 R10-CNV 5 ps 2 2 28,100.00 127000000 0.022126 

A10 R10-CNV 5 ps 2 2 188,516.00 127000000 0.1484378 

A10 R10-CNV 5 ps 2 2 258,614.00 127000000 0.2036331 

A10 R10-CNV 5 ps 2 2 1,526,310.00 127000000 1.2018189 

A10 R13-CNE 6 pq 1 1 -1,308,500.00 127000000 -1.030315 

A10 R13-CNE 6 pq 1 1 -976,855.00 127000000 -0.7691772 

A10 R13-CNE 6 pq 1 1 -900,130.00 127000000 -0.7087638 

A10 R13-CNE 6 pq 1 1 -841,500.00 127000000 -0.6625984 

A10 R13-CNE 6 pq 1 1 -730,080.00 127000000 -0.5748661 

A10 R13-CNE 6 pq 1 1 -405,250.00 127000000 -0.3190945 

A10 R13-CNE 6 pq 1 1 -404,255.00 127000000 -0.318311 

A10 R13-CNE 6 pq 1 1 -231,580.00 127000000 -0.1823465 

A10 R13-CNE 6 pq 1 1 -144,450.00 127000000 -0.1137402 

A10 R13-CNE 6 pq 1 1 -108,150.00 127000000 -0.0851575 

A10 R13-CNE 6 pq 1 1 -41,760.00 127000000 -0.0328819 

A10 R13-CNE 6 pq 1 1 -40,000.00 127000000 -0.0314961 

A10 R13-CNE 6 pq 1 1 -35,825.00 127000000 -0.0282087 

A10 R13-CNE 6 pq 1 1 -7,234.00 127000000 -0.0056961 

A10 R13-CNE 6 pq 1 2 18,550.00 127000000 0.0146063 

A10 R13-CNE 6 pq 1 2 23,700.00 127000000 0.0186614 

A10 R13-CNE 6 pq 1 2 30,740.00 127000000 0.0242047 

A10 R13-CNE 6 pq 1 2 32,450.00 127000000 0.0255512 

A10 R13-CNE 6 pq 1 2 43,225.00 127000000 0.0340354 

A10 R13-CNE 6 pq 1 2 205,220.00 127000000 0.1615906 
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A10 R13-CNE 6 pq 1 2 214,500.00 127000000 0.1688976 

A10 R13-CNE 6 pq 1 2 284,400.00 127000000 0.223937 

A10 R13-CNE 6 pq 1 2 662,122.50 127000000 0.5213563 

A10 R13-CNE 6 pq 1 2 1,421,585.00 127000000 1.1193583 

A10 R13-CNE 6 pq 1 2 2,741,498.00 127000000 2.1586598 

A10 R13-CNE 6 pq 1 2 3,357,886.00 127000000 2.6440047 

A11 R4-CLS 2 va 3 2 300,000.00 523,881,350.58 0.0572649 

A11 R4-CLS 2 va 3 2 1,273,700.00 523,881,350.58 0.2431276 

A11 R4-CLS 2 va 3 2 3,528,600.00 523,881,350.58 0.6735495 

A11 R4-CLS 2 vs 5 1 -4,883,400.00 523,881,350.58 -0.9321576 

A11 R4-CLS 2 vs 5 1 -750,300.00 523,881,350.58 -0.1432195 

A11 R10-CNV 5 ps 2 1 -200,000.00 523,881,350.58 -0.0381766 

A11 R10-CNV 5 ps 2 1 -80,000.00 523,881,350.58 -0.0152706 

A11 R10-CNV 5 ps 2 2 398,996.00 523,881,350.58 0.0761615 

A11 R13-CNE 6 pq 1 1 -39,262,128.75 523,881,350.58 -7.4944696 

A11 R13-CNE 6 pq 1 1 -262,800.00 523,881,350.58 -0.050164 

A11 R13-CNE 6 pq 1 1 -54,953.00 523,881,350.58 -0.0104896 

A11 R13-CNE 6 pq 1 2 187,761.00 523,881,350.58 0.0358404 

A11 R13-CNE 6 pq 1 2 8,498,275.00 523,881,350.58 1.6221755 

A11 R13-CNE 6 va 3 2 303,750.00 523,881,350.58 0.0579807 

A11 R13-CNE 6 va 3 2 842,000.00 523,881,350.58 0.1607234 

A11 R13-CNE 6 va 3 2 1,087,500.00 523,881,350.58 0.2075852 

A11 R13-CNE 6 va 3 2 1,318,856.00 523,881,350.58 0.2517471 

A11 R13-CNE 6 va 3 2 6,934,400.00 523,881,350.58 1.3236585 

A11 R13-CNE 6 vs 5 2 9,708,900.00 523,881,350.58 1.8532631 

A12 R3-CLV 1 va 3 2 230,000.00 75,346,244.40 0.3052574 

A12 R4-CLS 2 va 3 2 14,080.00 75,346,244.40 0.0186871 

A12 R4-CLS 2 va 3 2 150,000.00 75,346,244.40 0.1990809 

A12 R4-CLS 2 va 3 2 170,000.00 75,346,244.40 0.225625 

A12 R4-CLS 2 va 3 2 400,000.00 75,346,244.40 0.5308825 

A12 R10-CNV 5 pq 1 1 -260,950.00 75,346,244.40 -0.3463344 

A12 R10-CNV 5 pq 1 1 -183,936.00 75,346,244.40 -0.244121 

A12 R10-CNV 5 pq 1 1 -110,400.00 75,346,244.40 -0.1465236 

A12 R10-CNV 5 pq 1 1 -50,544.00 75,346,244.40 -0.0670823 

A12 R10-CNV 5 pq 1 2 25,800.00 75,346,244.40 0.0342419 

A12 R10-CNV 5 pq 1 2 333,200.00 75,346,244.40 0.4422251 

A12 R10-CNV 5 pq 1 2 375,440.00 75,346,244.40 0.4982863 

A12 R10-CNV 5 pq 1 2 435,160.00 75,346,244.40 0.577547 

A12 R10-CNV 5 pq 1 2 652,400.00 75,346,244.40 0.8658693 

A12 R10-CNV 5 pq 1 2 764,000.00 75,346,244.40 1.0139855 

A12 R10-CNV 5 pq 1 2 772,280.00 75,346,244.40 1.0249748 

A12 R10-CNV 5 pq 1 2 796,480.00 75,346,244.40 1.0570932 

A12 R10-CNV 5 pq 1 2 813,195.00 75,346,244.40 1.0792774 

A12 R10-CNV 5 pq 1 2 969,000.00 75,346,244.40 1.2860628 

A12 R10-CNV 5 ps 2 1 -1,700,000.00 75,346,244.40 -2.2562505 

A12 R10-CNV 5 ps 2 1 -1,500,000.00 75,346,244.40 -1.9908092 

A12 R10-CNV 5 ps 2 1 -361,522.00 75,346,244.40 -0.4798142 

A12 R10-CNV 5 ps 2 1 -97,148.00 75,346,244.40 -0.1289354 

A13 R5-CND 3 va 3 2 56,000.00 600,600,000.00 0.009324 

A13 R5-CND 3 va 3 2 80,000.00 600,600,000.00 0.01332 

A13 R5-CND 3 va 3 2 650,000.00 600,600,000.00 0.1082251 

A13 R5-CND 3 va 3 2 676,500.00 600,600,000.00 0.1126374 

A13 R5-CND 3 va 3 2 2,205,400.00 600,600,000.00 0.3671995 

A13 R5-CND 3 va 3 2 4,477,200.00 600,600,000.00 0.7454545 

A13 R5-CND 3 va 3 2 4,840,000.00 600,600,000.00 0.8058608 

A13 R5-CND 3 va 3 2 6,363,450.00 600,600,000.00 1.0595155 
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A13 R10-CNV 5 pq 1 1 -9,577,100.00 600,600,000.00 -1.5945887 

A13 R10-CNV 5 pq 1 1 -8,342,500.00 600,600,000.00 -1.3890276 

A13 R10-CNV 5 pq 1 1 -7,821,600.00 600,600,000.00 -1.3022977 

A13 R10-CNV 5 pq 1 1 -6,170,000.00 600,600,000.00 -1.027306 

A13 R10-CNV 5 pq 1 1 -3,778,200.00 600,600,000.00 -0.6290709 

A13 R10-CNV 5 pq 1 1 -3,685,500.00 600,600,000.00 -0.6136364 

A13 R10-CNV 5 pq 1 1 -3,669,450.00 600,600,000.00 -0.610964 

A13 R10-CNV 5 pq 1 1 -3,245,500.00 600,600,000.00 -0.5403763 

A13 R10-CNV 5 pq 1 1 -2,908,540.00 600,600,000.00 -0.4842724 

A13 R10-CNV 5 pq 1 1 -1,228,500.00 600,600,000.00 -0.2045455 

A13 R10-CNV 5 pq 1 1 -976,500.00 600,600,000.00 -0.1625874 

A13 R10-CNV 5 pq 1 1 -761,800.00 600,600,000.00 -0.1268398 

A13 R10-CNV 5 pq 1 1 -543,600.00 600,600,000.00 -0.0905095 

A13 R10-CNV 5 pq 1 1 -434,000.00 600,600,000.00 -0.0722611 

A13 R10-CNV 5 pq 1 1 -184,200.00 600,600,000.00 -0.0306693 

A13 R10-CNV 5 pq 1 1 -12,400.00 600,600,000.00 -0.0020646 

A13 R10-CNV 5 pq 1 2 171,000.00 600,600,000.00 0.0284715 

A13 R10-CNV 5 pq 1 2 174,000.00 600,600,000.00 0.028971 

A13 R10-CNV 5 pq 1 2 302,400.00 600,600,000.00 0.0503497 

A13 R10-CNV 5 pq 1 2 488,400.00 600,600,000.00 0.0813187 

A13 R10-CNV 5 pq 1 2 575,000.00 600,600,000.00 0.0957376 

A13 R10-CNV 5 pq 1 2 581,275.00 600,600,000.00 0.0967824 

A13 R10-CNV 5 pq 1 2 766,500.00 600,600,000.00 0.1276224 

A13 R10-CNV 5 pq 1 2 793,500.00 600,600,000.00 0.1321179 

A13 R10-CNV 5 pq 1 2 1,404,475.00 600,600,000.00 0.2338453 

A13 R10-CNV 5 pq 1 2 1,829,100.00 600,600,000.00 0.3045455 

A13 R10-CNV 5 pq 1 2 1,830,000.00 600,600,000.00 0.3046953 

A13 R10-CNV 5 pq 1 2 2,051,502.00 600,600,000.00 0.3415754 

A13 R10-CNV 5 pq 1 2 2,210,000.00 600,600,000.00 0.3679654 

A13 R10-CNV 5 pq 1 2 2,505,000.00 600,600,000.00 0.4170829 

A13 R10-CNV 5 pq 1 2 2,697,400.00 600,600,000.00 0.4491175 

A13 R10-CNV 5 pq 1 2 4,076,145.00 600,600,000.00 0.6786788 

A13 R10-CNV 5 pq 1 2 4,180,166.00 600,600,000.00 0.6959983 

A13 R10-CNV 5 pq 1 2 5,692,500.00 600,600,000.00 0.9478022 

A14 R3-CLV 1 va 3 2 49,680.00 207,388,304.81 0.0239551 

A14 R3-CLV 1 va 3 2 80,550.00 207,388,304.81 0.0388402 

A14 R3-CLV 1 va 3 2 369,335.00 207,388,304.81 0.1780886 

A14 R3-CLV 1 va 3 2 386,900.00 207,388,304.81 0.1865583 

A14 R3-CLV 1 va 3 2 600,800.00 207,388,304.81 0.2896981 

A14 R3-CLV 1 va 3 2 3,327,205.27 207,388,304.81 1.604336 

A14 R4-CLS 2 vo 4 1 -5,000,000.00 207,388,304.81 -2.4109363 

A14 R4-CLS 2 vo 4 1 -4,040,000.00 207,388,304.81 -1.9480366 

A14 R4-CLS 2 vo 4 1 -760,150.00 207,388,304.81 -0.3665347 

A14 R4-CLS 2 vo 4 1 -380,000.00 207,388,304.81 -0.1832312 

A14 R5-CND 3 pq 1 2 4,397,607.94 207,388,304.81 2.1204706 

A14 R10-CNV 5 ps 2 1 -6,737,559.00 207,388,304.81 -3.2487652 

A14 R10-CNV 5 ps 2 1 -2,744,500.00 207,388,304.81 -1.323363 

A14 R10-CNV 5 ps 2 1 -217,620.00 207,388,304.81 -0.1049336 

A14 R10-CNV 5 ps 2 1 -124,212.60 207,388,304.81 -0.0598937 

A14 R10-CNV 5 ps 2 2 1,756,198.00 207,388,304.81 0.8468163 

A15 R4-CLS 2 va 3 2 3,690,000.00 198,899,132.52 1.8552117 

A15 R4-CLS 2 vo 4 1 -1,137,600.00 198,899,132.52 -0.5719482 

A15 R4-CLS 2 vs 5 2 5,161,656.06 198,899,132.52 2.5951124 

A15 R5-CND 3 pq 1 1 -218,510.00 198,899,132.52 -0.1098597 

A15 R13-CNE 6 pq 1 2 1,693,800.00 198,899,132.52 0.8515874 

A16 R4-CLS 2 va 3 2 60,000.00 227,092,280.15 0.026421 
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A16 R4-CLS 2 va 3 2 72,000.00 227,092,280.15 0.0317052 

A16 R4-CLS 2 va 3 2 91,122.00 227,092,280.15 0.0401255 

A16 R4-CLS 2 vs 5 1 -437,250.00 227,092,280.15 -0.1925429 

A16 R4-CLS 2 vs 5 2 585,956.00 227,092,280.15 0.2580255 

A16 R4-CLS 2 vs 5 2 736,000.23 227,092,280.15 0.3240974 

A16 R4-CLS 2 vs 5 2 1,545,666.90 227,092,280.15 0.6806338 

A16 R5-CND 3 pq 1 1 -1,200,000.00 227,092,280.15 -0.5284195 

A16 R5-CND 3 va 3 2 6,000.00 227,092,280.15 0.0026421 

A16 R5-CND 3 va 3 2 30,000.00 227,092,280.15 0.0132105 

A16 R5-CND 3 va 3 2 232,625.00 227,092,280.15 0.1024363 

A16 R5-CND 3 va 3 2 234,300.00 227,092,280.15 0.1031739 

A16 R5-CND 3 va 3 2 460,000.00 227,092,280.15 0.2025608 

A16 R5-CND 3 va 3 2 483,600.00 227,092,280.15 0.2129531 

A16 R5-CND 3 va 3 2 6,072,300.00 227,092,280.15 2.673935 

B17 R4-CLS 2 va 3 2 10,079,030.00 299,084,056.47 3.3699657 

B17 R15-UNE 7 va 3 2 14,352,000.00 299,084,056.47 4.798651 

B17 R15-UNE 7 va 3 2 15,722,046.00 299,084,056.47 5.2567316 

B18 R4-CLS 2 va 3 2 2,318,100.00 200,182,589.99 1.1579928 

B18 R4-CLS 2 va 3 2 15,013,694.40 200,182,589.99 7.5000001 

B18 R15-UNE 7 va 3 2 13,702,840.00 200,182,589.99 6.8451707 

B19 R4-CLS 2 va 3 2 2,820,620.00 204,274,840.99 1.3807966 

B19 R4-CLS 2 va 3 2 15,320,613.00 204,274,840.99 7.5 

B19 R15-UNE 7 va 3 2 13,702,940.00 204,274,840.99 6.7080899 

B20 R4-CLS 2 va 3 2 2,547,095.00 251,753,471.25 1.0117418 

B20 R4-CLS 2 va 3 2 17,622,743.04 251,753,471.25 7 

B20 R15-UNE 7 va 3 2 9,892,840.00 251,753,471.25 3.9295744 

B21 R4-CLS 2 va 3 2 10,809,749.16 120,108,325.35 8.9999999 

B21 R4-CLS 2 va 3 2 18,842,601.00 120,108,325.35 15.688006 

B21 R15-UNE 7 va 3 2 2,825,354.84 120,108,325.35 2.3523389 

B22 R4-CLS 2 va 3 2 2,400,950.00 22,544,147.50 10.649992 

B23 R4-CLS 2 va 3 2 3,475,900.00 11,839,600.00 29.358255 

B24 R3-CLV 1 va 3 2 40,500.00 22,078,124.00 0.1834395 

B24 R3-CLV 1 va 3 2 40,500.00 22,078,124.00 0.1834395 

B24 R3-CLV 1 va 3 2 80,100.00 22,078,124.00 0.3628026 

B24 R3-CLV 1 va 3 2 80,100.00 22,078,124.00 0.3628026 

B24 R3-CLV 1 va 3 2 251,640.00 22,078,124.00 1.1397708 

B24 R3-CLV 1 va 3 2 251,640.00 22,078,124.00 1.1397708 

B24 R3-CLV 1 va 3 2 647,500.00 22,078,124.00 2.9327673 

B24 R3-CLV 1 va 3 2 647,500.00 22,078,124.00 2.9327673 

B24 R10-CNV 5 ps 2 2 376,000.00 22,078,124.00 1.7030432 

B24 R10-CNV 5 ps 2 2 376,000.00 22,078,124.00 1.7030432 

B24 R10-CNV 5 ps 2 2 426,510.00 22,078,124.00 1.9318217 

B24 R10-CNV 5 ps 2 2 426,510.00 22,078,124.00 1.9318217 

B24 R13-CNE 6 pq 1 1 -250,100.00 22,078,124.00 -1.1327955 

B24 R13-CNE 6 pq 1 1 -250,100.00 22,078,124.00 -1.1327955 

B24 R13-CNE 6 pq 1 2 10,600.00 22,078,124.00 0.0480113 

B24 R13-CNE 6 pq 1 2 10,600.00 22,078,124.00 0.0480113 

B24 R13-CNE 6 pq 1 2 54,500.00 22,078,124.00 0.2468507 

B24 R13-CNE 6 pq 1 2 54,500.00 22,078,124.00 0.2468507 

B24 R13-CNE 6 pq 1 2 575,020.00 22,078,124.00 2.6044785 

B24 R13-CNE 6 pq 1 2 575,020.00 22,078,124.00 2.6044785 

B24 R13-CNE 6 pq 1 2 734,210.00 22,078,124.00 3.325509 

B24 R13-CNE 6 pq 1 2 734,210.00 22,078,124.00 3.325509 

B24 R13-CNE 6 pq 1 2 1,236,545.00 22,078,124.00 5.6007702 

B24 R13-CNE 6 pq 1 2 1,236,545.00 22,078,124.00 5.6007702 

B25 R6-UNS 4 pq 1 1 -119,855.00 30,744,958.83 -0.3898363 



225 
 

Proj Grp Nr Risk label 
Risk 
sort 
code 

Cost 
category 

Cost sort 
code 

Risk type 
code 

Risk costs (Net) 
Initial Contract 

Sum_ICS 
Risk 

degree 

B25 R13-CNE 6 va 3 2 33,630.00 30,744,958.83 0.1093838 

B25 R13-CNE 6 va 3 2 130,625.00 30,744,958.83 0.4248664 

B25 R13-CNE 6 va 3 2 172,980.00 30,744,958.83 0.5626288 

B25 R13-CNE 6 va 3 2 496,120.00 30,744,958.83 1.6136629 

B26 R6-UNS 4 pq 1 1 -185,182.90 32,131,109.07 -0.5763352 

B26 R13-CNE 6 va 3 2 118,750.00 32,131,109.07 0.3695795 

B26 R13-CNE 6 va 3 2 152,531.00 32,131,109.07 0.4747144 

B26 R13-CNE 6 va 3 2 605,300.00 32,131,109.07 1.8838441 

B27 R6-UNS 4 pq 1 1 -147,490.00 31,977,000.00 -0.4612378 

B27 R10-CNV 5 ps 2 1 -222,100.00 31,977,000.00 -0.6945617 

B27 R10-CNV 5 ps 2 2 80,460.00 31,977,000.00 0.2516184 

B27 R10-CNV 5 ps 2 2 223,580.00 31,977,000.00 0.69919 

B27 R13-CNE 6 va 3 2 35,725.00 31,977,000.00 0.1117209 

B27 R13-CNE 6 va 3 2 142,500.00 31,977,000.00 0.4456328 

B27 R13-CNE 6 va 3 2 160,950.00 31,977,000.00 0.5033305 

B27 R13-CNE 6 va 3 2 563,008.00 31,977,000.00 1.7606655 

B28 R3-CLV 1 vo 4 1 -1,500.00 30,339,877.19 -0.004944 

B28 R6-UNS 4 pq 1 1 -165,630.00 30,339,877.19 -0.5459152 

B28 R10-CNV 5 ps 2 1 -28,100.00 30,339,877.19 -0.0926174 

B28 R10-CNV 5 ps 2 2 87,910.00 30,339,877.19 0.2897507 

B28 R10-CNV 5 ps 2 2 298,060.00 30,339,877.19 0.9824034 

B28 R13-CNE 6 va 3 2 53,600.00 30,339,877.19 0.1766652 

B28 R13-CNE 6 va 3 2 118,750.00 30,339,877.19 0.3913991 

B28 R13-CNE 6 va 3 2 151,200.00 30,339,877.19 0.498354 

B28 R13-CNE 6 va 3 2 558,640.00 30,339,877.19 1.8412731 

B29 R6-UNS 4 pq 1 1 -184,125.50 31,188,504.90 -0.5903633 

B29 R10-CNV 5 ps 2 1 -185,100.00 31,188,504.90 -0.5934879 

B29 R10-CNV 5 ps 2 2 201,470.00 31,188,504.90 0.6459752 

B29 R10-CNV 5 ps 2 2 257,210.00 31,188,504.90 0.8246949 

B29 R13-CNE 6 va 3 2 41,929.00 31,188,504.90 0.1344374 

B29 R13-CNE 6 va 3 2 130,625.00 31,188,504.90 0.4188242 

B29 R13-CNE 6 va 3 2 149,984.00 31,188,504.90 0.4808951 

B29 R13-CNE 6 va 3 2 529,339.00 31,188,504.90 1.6972247 

B30 R6-UNS 4 pq 1 1 -373,050.00 31,977,838.16 -1.1665892 

B30 R10-CNV 5 ps 2 1 -0.04 31,977,838.16 -1.251E-07 

B30 R10-CNV 5 ps 2 2 570.00 31,977,838.16 0.0017825 

B30 R13-CNE 6 va 3 2 20,550.00 31,977,838.16 0.0642633 

B30 R13-CNE 6 va 3 2 130,625.00 31,977,838.16 0.408486 

B30 R13-CNE 6 va 3 2 134,850.00 31,977,838.16 0.4216983 

B30 R13-CNE 6 va 3 2 478,881.44 31,977,838.16 1.4975416 

B31 R6-UNS 4 pq 1 1 -191,560.00 32,801,010.00 -0.5840064 

B31 R10-CNV 5 ps 2 1 -190,800.00 32,801,010.00 -0.5816894 

B31 R10-CNV 5 ps 2 2 94,600.00 32,801,010.00 0.2884058 

B31 R10-CNV 5 ps 2 2 254,080.00 32,801,010.00 0.7746103 

B31 R13-CNE 6 va 3 2 52,990.00 32,801,010.00 0.1615499 

B31 R13-CNE 6 va 3 2 142,500.00 32,801,010.00 0.4344378 

B31 R13-CNE 6 va 3 2 176,400.00 32,801,010.00 0.5377883 

B31 R13-CNE 6 va 3 2 603,660.00 32,801,010.00 1.8403702 

B32 R6-UNS 4 pq 1 1 -181,440.00 31,205,955.42 -0.5814275 

B32 R10-CNV 5 ps 2 1 -181,400.00 31,205,955.42 -0.5812993 

B32 R10-CNV 5 ps 2 2 81,730.00 31,205,955.42 0.2619051 

B32 R10-CNV 5 ps 2 2 238,880.00 31,205,955.42 0.7654949 

B32 R13-CNE 6 va 3 2 44,100.00 31,205,955.42 0.1413192 

B32 R13-CNE 6 va 3 2 142,500.00 31,205,955.42 0.4566436 

B32 R13-CNE 6 va 3 2 173,720.00 31,205,955.42 0.5566886 

B32 R13-CNE 6 va 3 2 518,500.00 31,205,955.42 1.6615418 
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B33 R6-UNS 4 pq 1 1 -510,510.00 32,272,686.60 -1.581864 

B33 R13-CNE 6 va 3 2 49,546.26 32,272,686.60 0.1535238 

B33 R13-CNE 6 va 3 2 142,500.00 32,272,686.60 0.4415499 

B33 R13-CNE 6 va 3 2 214,120.00 32,272,686.60 0.6634713 

B33 R13-CNE 6 va 3 2 654,229.00 32,272,686.60 2.027191 

B34 R6-UNS 4 pq 1 1 -156,590.00 32,964,986.25 -0.4750192 

B34 R10-CNV 5 ps 2 1 -211,150.00 32,964,986.25 -0.6405281 

B34 R10-CNV 5 ps 2 2 171,030.00 32,964,986.25 0.5188232 

B34 R10-CNV 5 ps 2 2 323,850.00 32,964,986.25 0.982406 

B34 R13-CNE 6 va 3 2 53,600.00 32,964,986.25 0.1625968 

B34 R13-CNE 6 va 3 2 118,750.00 32,964,986.25 0.3602307 

B34 R13-CNE 6 va 3 2 151,200.00 32,964,986.25 0.4586685 

B34 R13-CNE 6 va 3 2 558,640.00 32,964,986.25 1.6946465 

B35 R6-UNS 4 pq 1 2 19,508.00 32,226,417.56 0.0605342 

B35 R10-CNV 5 ps 2 1 -12,100.08 32,226,417.56 -0.0375471 

B35 R10-CNV 5 ps 2 2 162,760.00 32,226,417.56 0.5050515 

B35 R13-CNE 6 va 3 2 27,505.00 32,226,417.56 0.0853492 

B35 R13-CNE 6 va 3 2 142,500.00 32,226,417.56 0.4421838 

B35 R13-CNE 6 va 3 2 172,200.00 32,226,417.56 0.5343442 

B35 R13-CNE 6 va 3 2 624,642.00 32,226,417.56 1.9382918 

B36 R6-UNS 4 pq 1 1 -271,490.00 34,717,490.06 -0.7819978 

B36 R10-CNV 5 ps 2 1 -187,100.00 34,717,490.06 -0.5389214 

B36 R10-CNV 5 ps 2 2 112,320.00 34,717,490.06 0.3235257 

B36 R10-CNV 5 ps 2 2 299,820.00 34,717,490.06 0.8635993 

B36 R13-CNE 6 va 3 2 54,400.00 34,717,490.06 0.1566934 

B36 R13-CNE 6 va 3 2 154,375.00 34,717,490.06 0.4446606 

B36 R13-CNE 6 va 3 2 234,440.00 34,717,490.06 0.6752792 

B36 R13-CNE 6 va 3 2 743,250.00 34,717,490.06 2.1408518 

B37 R3-CLV 1 vs 5 2 80,226.50 37,332,533.43 0.214897 

B37 R4-CLS 2 vs 5 2 465,500.00 37,332,533.43 1.2469017 

B37 R6-UNS 4 pq 1 1 -881,680.00 37,332,533.43 -2.3616935 

B37 R10-CNV 5 va 3 2 90,000.00 37,332,533.43 0.2410766 

B37 R10-CNV 5 va 3 2 197,500.00 37,332,533.43 0.5290292 

B37 R10-CNV 5 va 3 2 202,500.00 37,332,533.43 0.5424223 

B37 R10-CNV 5 va 3 2 330,000.00 37,332,533.43 0.8839475 

B37 R13-CNE 6 vs 5 2 248,640.00 37,332,533.43 0.6660143 

B38 R3-CLV 1 vs 5 2 85,111.80 45,453,135.09 0.1872518 

B38 R4-CLS 2 vs 5 2 594,720.00 45,453,135.09 1.3084246 

B38 R6-UNS 4 pq 1 1 -1,108,932.00 45,453,135.09 -2.4397261 

B38 R10-CNV 5 va 3 2 108,000.00 45,453,135.09 0.2376074 

B38 R10-CNV 5 va 3 2 237,000.00 45,453,135.09 0.5214162 

B38 R10-CNV 5 va 3 2 243,000.00 45,453,135.09 0.5346166 

B38 R10-CNV 5 va 3 2 396,000.00 45,453,135.09 0.871227 

B38 R13-CNE 6 vs 5 2 374,400.00 45,453,135.09 0.8237056 

B39 R3-CLV 1 vs 5 2 1,013,791.80 44,073,555.82 2.3002269 

B39 R4-CLS 2 vs 5 2 526,800.00 44,073,555.82 1.1952746 

B39 R6-UNS 4 pq 1 1 -1,889,910.00 44,073,555.82 -4.2880815 

B39 R10-CNV 5 va 3 2 108,000.00 44,073,555.82 0.2450449 

B39 R10-CNV 5 va 3 2 237,000.00 44,073,555.82 0.5377374 

B39 R10-CNV 5 va 3 2 243,000.00 44,073,555.82 0.551351 

B39 R10-CNV 5 va 3 2 396,000.00 44,073,555.82 0.898498 

B39 R13-CNE 6 vs 5 2 298,368.00 44,073,555.82 0.6769774 

B40 R3-CLV 1 vo 4 1 -320,000.00 38,513,661.72 -0.830874 

B40 R3-CLV 1 vs 5 2 130,826.50 38,513,661.72 0.3396886 

B40 R4-CLS 2 vs 5 2 505,000.00 38,513,661.72 1.311223 

B40 R6-UNS 4 pq 1 1 -538,735.00 38,513,661.72 -1.3988153 
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B40 R10-CNV 5 va 3 2 90,000.00 38,513,661.72 0.2336833 

B40 R10-CNV 5 va 3 2 197,500.00 38,513,661.72 0.512805 

B40 R10-CNV 5 va 3 2 202,500.00 38,513,661.72 0.5257875 

B40 R10-CNV 5 va 3 2 330,000.00 38,513,661.72 0.8568388 

B40 R13-CNE 6 vs 5 2 192,000.00 38,513,661.72 0.4985244 

B41 R3-CLV 1 va 3 2 21,080,016.75 114,977,068.50 18.334105 

B41 R4-CLS 2 va 3 2 380,000.00 114,977,068.50 0.3305007 

B41 R4-CLS 2 va 3 2 1,032,890.00 114,977,068.50 0.8983444 

B41 R4-CLS 2 va 3 2 1,250,000.00 114,977,068.50 1.0871733 

B41 R4-CLS 2 vo 4 1 -1,057,890.00 114,977,068.50 -0.9200878 

B41 R10-CNV 5 ps 2 2 395,000.00 114,977,068.50 0.3435468 

B42 R4-CLS 2 va 3 2 25,872.00 11,580,313.50 0.2234136 

B42 R10-CNV 5 ps 2 1 -400,000.00 11,580,313.50 -3.4541379 

B42 R10-CNV 5 ps 2 1 -20,000.00 11,580,313.50 -0.1727069 

B42 R13-CNE 6 pq 1 1 -46,000.00 11,580,313.50 -0.3972259 

B42 R13-CNE 6 pq 1 1 -21,000.00 11,580,313.50 -0.1813422 

B43 R4-CLS 2 va 3 2 6,300.00 1,928,797.50 0.3266284 

B43 R10-CNV 5 ps 2 1 -323,000.00 1,928,797.50 -16.746185 

B43 R13-CNE 6 pq 1 2 56,000.00 1,928,797.50 2.9033634 

B43 R13-CNE 6 pq 1 2 57,600.00 1,928,797.50 2.9863166 

B44 R3-CLV 1 pq 1 1 -180,000.00 48,691,944.00 -0.369671 

B45 R4-CLS 2 va 3 2 1,580.00 45,441,808.13 0.003477 

B45 R4-CLS 2 va 3 2 6,938.00 45,441,808.13 0.0152679 

B45 R4-CLS 2 va 3 2 8,140.00 45,441,808.13 0.017913 

B45 R4-CLS 2 va 3 2 8,700.00 45,441,808.13 0.0191454 

B45 R4-CLS 2 va 3 2 15,000.00 45,441,808.13 0.0330092 

B45 R4-CLS 2 va 3 2 98,520.00 45,441,808.13 0.2168048 

B45 R4-CLS 2 va 3 2 99,000.00 45,441,808.13 0.217861 

B45 R4-CLS 2 va 3 2 157,650.00 45,441,808.13 0.3469272 

B45 R4-CLS 2 va 3 2 201,312.50 45,441,808.13 0.4430116 

B45 R5-CND 3 vs 5 1 -2,317,860.00 45,441,808.13 -5.1007213 

B45 R5-CND 3 vs 5 1 -1,600.00 45,441,808.13 -0.003521 

B45 R5-CND 3 vs 5 2 42,540.00 45,441,808.13 0.0936142 

B45 R5-CND 3 vs 5 2 250,100.00 45,441,808.13 0.5503742 

B45 R5-CND 3 vs 5 2 352,176.00 45,441,808.13 0.7750044 

B45 R5-CND 3 vs 5 2 817,759.00 45,441,808.13 1.7995741 

B45 R6-UNS 4 pq 1 1 -202,601.00 45,441,808.13 -0.4458471 

B45 R6-UNS 4 ps 2 1 -77,000.00 45,441,808.13 -0.1694475 

B45 R10-CNV 5 ps 2 1 -3,186,000.00 45,441,808.13 -7.0111647 

B45 R10-CNV 5 ps 2 1 -1,203,600.00 45,441,808.13 -2.6486622 

B45 R10-CNV 5 ps 2 1 -137,025.00 45,441,808.13 -0.3015395 

B45 R10-CNV 5 ps 2 1 -70,875.00 45,441,808.13 -0.1559687 

B45 R10-CNV 5 ps 2 1 -55,000.00 45,441,808.13 -0.1210339 

B45 R10-CNV 5 ps 2 2 117,525.00 45,441,808.13 0.2586275 

B45 R13-CNE 6 pq 1 1 -1,037,108.00 45,441,808.13 -2.2822771 

B45 R13-CNE 6 pq 1 1 -809,586.25 45,441,808.13 -1.781589 

B45 R13-CNE 6 pq 1 1 -351,310.00 45,441,808.13 -0.7730986 

B45 R13-CNE 6 pq 1 1 -295,740.00 45,441,808.13 -0.6508104 

B45 R13-CNE 6 pq 1 1 -135,280.00 45,441,808.13 -0.2976994 

B45 R13-CNE 6 pq 1 1 -100,310.00 45,441,808.13 -0.2207439 

B45 R13-CNE 6 pq 1 1 -66,152.00 45,441,808.13 -0.1455752 

B45 R13-CNE 6 pq 1 1 -65,320.00 45,441,808.13 -0.1437443 

B45 R13-CNE 6 pq 1 1 -64,700.00 45,441,808.13 -0.1423799 

B45 R13-CNE 6 pq 1 1 -39,600.00 45,441,808.13 -0.0871444 

B45 R13-CNE 6 pq 1 1 -35,541.00 45,441,808.13 -0.0782121 

B45 R13-CNE 6 pq 1 1 -19,500.00 45,441,808.13 -0.042912 
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B45 R13-CNE 6 pq 1 1 -15,600.00 45,441,808.13 -0.0343296 

B45 R13-CNE 6 pq 1 1 -11,424.00 45,441,808.13 -0.0251398 

B45 R13-CNE 6 pq 1 1 -9,480.00 45,441,808.13 -0.0208618 

B45 R13-CNE 6 pq 1 1 -7,120.00 45,441,808.13 -0.0156684 

B45 R13-CNE 6 pq 1 2 8,535.00 45,441,808.13 0.0187823 

B45 R13-CNE 6 pq 1 2 9,250.00 45,441,808.13 0.0203557 

B45 R13-CNE 6 pq 1 2 14,555.00 45,441,808.13 0.03203 

B45 R13-CNE 6 pq 1 2 29,827.00 45,441,808.13 0.0656378 

B45 R13-CNE 6 pq 1 2 31,080.00 45,441,808.13 0.0683952 

B45 R13-CNE 6 pq 1 2 44,170.16 45,441,808.13 0.0972016 

B45 R13-CNE 6 pq 1 2 49,974.40 45,441,808.13 0.1099745 

B45 R13-CNE 6 pq 1 2 122,298.00 45,441,808.13 0.269131 

B45 R13-CNE 6 pq 1 2 158,820.00 45,441,808.13 0.3495019 

B45 R13-CNE 6 pq 1 2 279,510.00 45,441,808.13 0.6150944 

B45 R13-CNE 6 pq 1 2 315,400.00 45,441,808.13 0.6940745 

B45 R13-CNE 6 pq 1 2 479,570.00 45,441,808.13 1.0553497 

B45 R13-CNE 6 pq 1 2 711,100.00 45,441,808.13 1.5648585 

B45 R13-CNE 6 pq 1 2 1,061,572.00 45,441,808.13 2.336113 

B45 R15-UNE 7 va 3 2 15,000.00 45,441,808.13 0.0330092 

B45 R15-UNE 7 va 3 2 210,000.00 45,441,808.13 0.4621295 

B45 R15-UNE 7 va 3 2 348,000.00 45,441,808.13 0.7658146 

B46 R4-CLS 2 vs 5 1 -518,360.00 102,187,284.45 -0.5072647 

B46 R5-CND 3 va 3 2 189,322.00 102,187,284.45 0.1852696 

B46 R5-CND 3 va 3 2 327,722.00 102,187,284.45 0.3207072 

B46 R5-CND 3 va 3 2 341,819.00 102,187,284.45 0.3345025 

B46 R5-CND 3 va 3 2 416,827.00 102,187,284.45 0.407905 

B46 R5-CND 3 va 3 2 418,937.00 102,187,284.45 0.4099698 

B46 R5-CND 3 va 3 2 1,112,826.00 102,187,284.45 1.0890063 

B46 R5-CND 3 va 3 2 1,614,050.00 102,187,284.45 1.5795018 

B46 R5-CND 3 va 3 2 2,158,906.00 102,187,284.45 2.1126953 

B46 R5-CND 3 vo 4 1 -122,600.00 102,187,284.45 -0.1199758 

B46 R5-CND 3 vo 4 1 -83,600.00 102,187,284.45 -0.0818106 

B46 R5-CND 3 vo 4 1 -37,700.00 102,187,284.45 -0.036893 

B46 R5-CND 3 vo 4 1 -18,000.00 102,187,284.45 -0.0176147 

B46 R5-CND 3 vo 4 1 -11,988.00 102,187,284.45 -0.0117314 

B46 R10-CNV 5 ps 2 1 -1,516,060.00 102,187,284.45 -1.4836092 

B46 R10-CNV 5 ps 2 2 359,165.00 102,187,284.45 0.3514772 

B46 R13-CNE 6 pq 1 1 -843,375.00 102,187,284.45 -0.8253228 

B46 R13-CNE 6 pq 1 1 -653,750.00 102,187,284.45 -0.6397567 

B46 R13-CNE 6 pq 1 1 -198,740.00 102,187,284.45 -0.194486 

B46 R13-CNE 6 pq 1 1 -153,760.00 102,187,284.45 -0.1504688 

B47 R4-CLS 2 va 3 2 78,117.42 24,700,871.00 0.3162537 

B47 R4-CLS 2 va 3 2 101,010.48 24,700,871.00 0.4089349 

B47 R4-CLS 2 va 3 2 117,845.56 24,700,871.00 0.4770907 

B47 R4-CLS 2 va 3 2 292,754.95 24,700,871.00 1.1852009 

B47 R4-CLS 2 va 3 2 376,986.82 24,700,871.00 1.5262086 

B47 R6-UNS 4 pq 1 1 -521,926.19 24,700,871.00 -2.112987 

B47 R13-CNE 6 pq 1 1 -152,457.00 24,700,871.00 -0.6172131 

B48 R4-CLS 2 va 3 2 12,500.00 6,950,359.50 0.1798468 

B48 R4-CLS 2 va 3 2 15,000.00 6,950,359.50 0.2158162 

B48 R4-CLS 2 va 3 2 29,750.00 6,950,359.50 0.4280354 

B48 R4-CLS 2 va 3 2 62,400.00 6,950,359.50 0.8977953 

B48 R4-CLS 2 va 3 2 74,000.00 6,950,359.50 1.0646931 

B48 R4-CLS 2 va 3 2 88,000.00 6,950,359.50 1.2661216 

B48 R4-CLS 2 va 3 2 90,000.00 6,950,359.50 1.294897 

B48 R4-CLS 2 va 3 2 197,250.00 6,950,359.50 2.8379827 
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B48 R4-CLS 2 va 3 2 239,500.00 6,950,359.50 3.4458649 

B48 R4-CLS 2 va 3 2 500,000.00 6,950,359.50 7.1938725 

B48 R10-CNV 5 ps 2 1 -863,500.00 6,950,359.50 -12.423818 

B48 R13-CNE 6 pq 1 2 40,000.00 6,950,359.50 0.5755098 

B48 R13-CNE 6 pq 1 2 81,000.00 6,950,359.50 1.1654073 

C49 R4-CLS 2 va 3 2 550,000.00 83,152,391.70 0.6614362 

C49 R10-CNV 5 ps 2 1 -1,000,000.00 83,152,391.70 -1.2026112 

C50 R3-CLV 1 va 3 2 1,174,200.00 84,024,366.30 1.3974518 

C50 R3-CLV 1 va 3 2 1,662,485.00 84,024,366.30 1.9785749 

C50 R3-CLV 1 va 3 2 2,855,015.00 84,024,366.30 3.3978418 

C50 R3-CLV 1 va 3 2 4,300,425.00 84,024,366.30 5.1180689 

C50 R3-CLV 1 va 3 2 12,951,135.00 84,024,366.30 15.413547 

C50 R3-CLV 1 va 3 2 12,951,135.00 84,024,366.30 15.413547 

C51 R4-CLS 2 va 3 2 360,000.00 62,620,489.05 0.5748917 

C51 R10-CNV 5 ps 2 1 -1,910,000.00 62,620,489.05 -3.0501199 

C51 R13-CNE 6 pq 1 2 200,000.00 62,620,489.05 0.3193843 

C51 R13-CNE 6 pq 1 2 200,466.16 62,620,489.05 0.3201287 

C51 R13-CNE 6 pq 1 2 600,000.00 62,620,489.05 0.9581528 

C52 R4-CLS 2 va 3 2 6,000.00 9,756,140.63 0.0614997 

C52 R4-CLS 2 va 3 2 13,500.00 9,756,140.63 0.1383744 

C52 R4-CLS 2 va 3 2 21,900.00 9,756,140.63 0.224474 

C52 R4-CLS 2 va 3 2 24,000.00 9,756,140.63 0.2459989 

C52 R4-CLS 2 va 3 2 24,000.00 9,756,140.63 0.2459989 

C52 R4-CLS 2 va 3 2 54,000.00 9,756,140.63 0.5534976 

C52 R4-CLS 2 va 3 2 72,000.00 9,756,140.63 0.7379967 

C52 R4-CLS 2 va 3 2 84,000.00 9,756,140.63 0.8609962 

C52 R4-CLS 2 va 3 2 134,400.00 9,756,140.63 1.3775939 

C52 R10-CNV 5 ps 2 2 383,800.00 9,756,140.63 3.9339326 

C52 R10-CNV 5 ps 2 2 529,035.00 9,756,140.63 5.4225848 

C52 R13-CNE 6 pq 1 1 -78,000.00 9,756,140.63 -0.7994965 

C52 R13-CNE 6 pq 1 1 -9,000.00 9,756,140.63 -0.0922496 

C53 R4-CLS 2 va 3 2 6,000.00 9,754,350.90 0.061511 

C53 R4-CLS 2 va 3 2 13,500.00 9,754,350.90 0.1383998 

C53 R4-CLS 2 va 3 2 21,900.00 9,754,350.90 0.2245152 

C53 R4-CLS 2 va 3 2 24,000.00 9,754,350.90 0.246044 

C53 R4-CLS 2 va 3 2 24,000.00 9,754,350.90 0.246044 

C53 R4-CLS 2 va 3 2 54,000.00 9,754,350.90 0.5535991 

C53 R4-CLS 2 va 3 2 72,000.00 9,754,350.90 0.7381321 

C53 R4-CLS 2 va 3 2 84,000.00 9,754,350.90 0.8611542 

C53 R4-CLS 2 va 3 2 134,400.00 9,754,350.90 1.3778467 

C53 R4-CLS 2 va 3 2 845,800.00 9,754,350.90 8.6710024 

C53 R10-CNV 5 ps 2 2 383,800.00 9,754,350.90 3.9346544 

C53 R10-CNV 5 ps 2 2 529,035.00 9,754,350.90 5.4235797 

C53 R13-CNE 6 pq 1 1 -78,000.00 9,754,350.90 -0.7996432 

C53 R13-CNE 6 pq 1 1 -9,000.00 9,754,350.90 -0.0922665 

C54 R4-CLS 2 va 3 2 3,600.00 3,534,426.00 0.1018553 

C54 R4-CLS 2 va 3 2 15,000.00 3,534,426.00 0.4243971 

C54 R4-CLS 2 va 3 2 20,000.00 3,534,426.00 0.5658627 

C54 R4-CLS 2 va 3 2 20,800.00 3,534,426.00 0.5884973 

C54 R4-CLS 2 va 3 2 23,650.00 3,534,426.00 0.6691327 

C54 R4-CLS 2 va 3 2 70,000.00 3,534,426.00 1.9805196 

C54 R4-CLS 2 va 3 2 80,000.00 3,534,426.00 2.263451 

C54 R4-CLS 2 va 3 2 88,000.00 3,534,426.00 2.4897961 

C54 R4-CLS 2 va 3 2 205,000.00 3,534,426.00 5.8000931 

C54 R4-CLS 2 va 3 2 336,600.00 3,534,426.00 9.52347 

C55 R4-CLS 2 va 3 2 282,240.00 1,472,635.50 19.165639 



230 
 

Proj Grp Nr Risk label 
Risk 
sort 
code 

Cost 
category 

Cost sort 
code 

Risk type 
code 

Risk costs (Net) 
Initial Contract 

Sum_ICS 
Risk 

degree 

C55 R13-CNE 6 pq 1 1 -308,150.00 1,472,635.50 -20.925069 

C55 R13-CNE 6 pq 1 2 65,000.00 1,472,635.50 4.4138553 

C56 R4-CLS 2 va 3 2 3,500.00 42,572,165.75 0.0082213 

C56 R4-CLS 2 va 3 2 7,712.75 42,572,165.75 0.0181169 

C56 R4-CLS 2 va 3 2 8,720.75 42,572,165.75 0.0204846 

C56 R4-CLS 2 va 3 2 8,720.75 42,572,165.75 0.0204846 

C56 R4-CLS 2 va 3 2 24,000.00 42,572,165.75 0.0563749 

C56 R4-CLS 2 va 3 2 37,600.00 42,572,165.75 0.0883206 

C56 R4-CLS 2 va 3 2 40,000.00 42,572,165.75 0.0939581 

C56 R4-CLS 2 va 3 2 49,800.00 42,572,165.75 0.1169778 

C56 R4-CLS 2 va 3 2 86,400.00 42,572,165.75 0.2029495 

C56 R4-CLS 2 va 3 2 100,800.00 42,572,165.75 0.2367744 

C56 R4-CLS 2 va 3 2 187,200.00 42,572,165.75 0.4397239 

C56 R4-CLS 2 va 3 2 227,880.00 42,572,165.75 0.5352793 

C56 R4-CLS 2 va 3 2 294,685.00 42,572,165.75 0.6922011 

C56 R4-CLS 2 va 3 2 298,530.00 42,572,165.75 0.7012328 

C56 R4-CLS 2 va 3 2 375,183.00 42,572,165.75 0.8812871 

C56 R4-CLS 2 va 3 2 453,960.00 42,572,165.75 1.0663305 

C56 R4-CLS 2 va 3 2 579,750.00 42,572,165.75 1.3618053 

C56 R5-CND 3 vo 4 1 -800,000.00 42,572,165.75 -1.8791621 

C56 R10-CNV 5 ps 2 1 -90,755.80 42,572,165.75 -0.2131811 

C56 R10-CNV 5 ps 2 1 -23,100.00 42,572,165.75 -0.0542608 

C56 R10-CNV 5 ps 2 1 -20,000.00 42,572,165.75 -0.0469791 

C56 R10-CNV 5 ps 2 1 -2,000.00 42,572,165.75 -0.0046979 

C56 R10-CNV 5 ps 2 2 141,290.20 42,572,165.75 0.331884 

C56 R13-CNE 6 pq 1 1 -1,329,380.00 42,572,165.75 -3.1226506 

C56 R13-CNE 6 pq 1 1 -929,305.00 42,572,165.75 -2.1828934 

C56 R13-CNE 6 pq 1 1 -618,700.00 42,572,165.75 -1.453297 

C56 R13-CNE 6 pq 1 1 -295,865.00 42,572,165.75 -0.6949729 

C56 R13-CNE 6 pq 1 1 -274,115.00 42,572,165.75 -0.6438831 

C56 R13-CNE 6 pq 1 1 -139,185.00 42,572,165.75 -0.326939 

C56 R13-CNE 6 pq 1 1 -30,300.00 42,572,165.75 -0.0711733 

C56 R13-CNE 6 pq 1 1 -17,375.00 42,572,165.75 -0.0408131 

C56 R13-CNE 6 pq 1 1 -12,500.00 42,572,165.75 -0.0293619 

C56 R13-CNE 6 pq 1 1 -12,500.00 42,572,165.75 -0.0293619 

C56 R13-CNE 6 pq 1 1 -3,300.00 42,572,165.75 -0.0077515 

C56 R13-CNE 6 pq 1 1 -570.00 42,572,165.75 -0.0013389 

C56 R13-CNE 6 pq 1 2 27,600.00 42,572,165.75 0.0648311 

C56 R13-CNE 6 pq 1 2 36,260.00 42,572,165.75 0.085173 

C56 R13-CNE 6 pq 1 2 45,825.00 42,572,165.75 0.1076408 

C56 R13-CNE 6 pq 1 2 62,030.00 42,572,165.75 0.1457055 

C56 R13-CNE 6 pq 1 2 1,472,900.00 42,572,165.75 3.4597723 

C56 R13-CNE 6 pq 1 2 2,373,560.00 42,572,165.75 5.57538 

C56 R15-UNE 7 va 3 2 2,939,315.00 42,572,165.75 6.9043117 

C57 R4-CLS 2 va 3 2 17,365.00 89,688,700.00 0.0193614 

C57 R4-CLS 2 va 3 2 51,893.60 89,688,700.00 0.0578597 

C57 R4-CLS 2 va 3 2 83,880.00 89,688,700.00 0.0935235 

C57 R4-CLS 2 va 3 2 134,000.00 89,688,700.00 0.1494057 

C57 R4-CLS 2 va 3 2 180,250.00 89,688,700.00 0.2009729 

C57 R4-CLS 2 va 3 2 247,500.00 89,688,700.00 0.2759545 

C57 R4-CLS 2 va 3 2 502,000.00 89,688,700.00 0.5597138 

C57 R4-CLS 2 va 3 2 565,010.00 89,688,700.00 0.6299679 

C57 R4-CLS 2 va 3 2 679,215.00 89,688,700.00 0.7573028 

C57 R4-CLS 2 va 3 2 1,417,509.00 89,688,700.00 1.5804767 

C57 R10-CNV 5 ps 2 1 -2,220,000.00 89,688,700.00 -2.4752282 

C57 R10-CNV 5 ps 2 1 -1,876,400.00 89,688,700.00 -2.0921253 
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C57 R10-CNV 5 ps 2 1 -22,600.00 89,688,700.00 -0.0251983 

C57 R10-CNV 5 ps 2 2 10,700,890.00 89,688,700.00 11.931146 

C57 R13-CNE 6 pq 1 1 -554,800.00 89,688,700.00 -0.6185841 

C57 R13-CNE 6 pq 1 1 -251,650.00 89,688,700.00 -0.2805816 

C57 R13-CNE 6 pq 1 1 -251,650.00 89,688,700.00 -0.2805816 

C57 R13-CNE 6 pq 1 1 -99,630.00 89,688,700.00 -0.1110842 

C57 R13-CNE 6 pq 1 1 -99,630.00 89,688,700.00 -0.1110842 

C57 R13-CNE 6 pq 1 1 -89,130.00 89,688,700.00 -0.0993771 

C57 R13-CNE 6 pq 1 1 -89,130.00 89,688,700.00 -0.0993771 

C57 R13-CNE 6 pq 1 1 -65,490.00 89,688,700.00 -0.0730192 

C57 R13-CNE 6 pq 1 1 -65,490.00 89,688,700.00 -0.0730192 

C57 R13-CNE 6 pq 1 1 -64,000.00 89,688,700.00 -0.0713579 

C57 R13-CNE 6 pq 1 1 -64,000.00 89,688,700.00 -0.0713579 

C57 R13-CNE 6 pq 1 1 -52,630.00 89,688,700.00 -0.0586807 

C57 R13-CNE 6 pq 1 1 -52,630.00 89,688,700.00 -0.0586807 

C57 R13-CNE 6 pq 1 2 11,700.00 89,688,700.00 0.0130451 

C57 R13-CNE 6 pq 1 2 11,700.00 89,688,700.00 0.0130451 

C57 R13-CNE 6 pq 1 2 18,000.00 89,688,700.00 0.0200694 

C57 R13-CNE 6 pq 1 2 18,000.00 89,688,700.00 0.0200694 

C57 R13-CNE 6 pq 1 2 34,200.00 89,688,700.00 0.0381319 

C57 R13-CNE 6 pq 1 2 34,200.00 89,688,700.00 0.0381319 

C57 R13-CNE 6 pq 1 2 95,590.00 89,688,700.00 0.1065798 

C57 R13-CNE 6 pq 1 2 95,590.00 89,688,700.00 0.1065798 

C57 R13-CNE 6 pq 1 2 180,677.50 89,688,700.00 0.2014496 

C57 R13-CNE 6 pq 1 2 180,677.50 89,688,700.00 0.2014496 

C57 R13-CNE 6 pq 1 2 194,982.50 89,688,700.00 0.2173992 

C57 R13-CNE 6 pq 1 2 194,982.50 89,688,700.00 0.2173992 

C57 R13-CNE 6 pq 1 2 301,970.00 89,688,700.00 0.3366868 

C57 R13-CNE 6 pq 1 2 665,500.00 89,688,700.00 0.742011 

C57 R13-CNE 6 pq 1 2 665,500.00 89,688,700.00 0.742011 

C57 R13-CNE 6 pq 1 2 1,152,955.00 89,688,700.00 1.2855075 

C57 R13-CNE 6 pq 1 2 1,152,955.00 89,688,700.00 1.2855075 

C57 R13-CNE 6 pq 1 2 1,152,955.00 89,688,700.00 1.2855075 

C57 R13-CNE 6 pq 1 2 1,152,955.00 89,688,700.00 1.2855075 

C58 R4-CLS 2 va 3 2 29,321.00 70,152,600.00 0.041796 

C58 R4-CLS 2 va 3 2 56,196.00 70,152,600.00 0.0801054 

C58 R4-CLS 2 va 3 2 59,940.00 70,152,600.00 0.0854423 

C58 R4-CLS 2 va 3 2 93,660.00 70,152,600.00 0.133509 

C58 R4-CLS 2 va 3 2 148,150.00 70,152,600.00 0.2111825 

C58 R4-CLS 2 va 3 2 351,743.00 70,152,600.00 0.501397 

C58 R4-CLS 2 va 3 2 424,080.00 70,152,600.00 0.6045107 

C58 R4-CLS 2 va 3 2 679,215.00 70,152,600.00 0.9681965 

C58 R4-CLS 2 va 3 2 680,114.50 70,152,600.00 0.9694787 

C58 R4-CLS 2 va 3 2 732,186.00 70,152,600.00 1.0437047 

C58 R4-CLS 2 va 3 2 815,500.00 70,152,600.00 1.1624658 

C58 R10-CNV 5 ps 2 1 -2,200,000.00 70,152,600.00 -3.1360206 

C58 R10-CNV 5 ps 2 1 -462,925.00 70,152,600.00 -0.6598829 

C58 R10-CNV 5 ps 2 1 -325,200.00 70,152,600.00 -0.4635609 

C58 R13-CNE 6 pq 1 1 -220,000.00 70,152,600.00 -0.3136021 

C58 R13-CNE 6 pq 1 1 -190,000.00 70,152,600.00 -0.2708381 

C58 R13-CNE 6 pq 1 1 -174,400.00 70,152,600.00 -0.2486009 

C58 R13-CNE 6 pq 1 1 -77,700.00 70,152,600.00 -0.1107585 

C58 R13-CNE 6 pq 1 1 -56,000.00 70,152,600.00 -0.079826 

C58 R13-CNE 6 pq 1 1 -26,000.00 70,152,600.00 -0.0370621 

C58 R13-CNE 6 pq 1 2 46,869.00 70,152,600.00 0.0668101 

C58 R13-CNE 6 pq 1 2 62,280.00 70,152,600.00 0.0887779 
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C58 R13-CNE 6 pq 1 2 134,924.00 70,152,600.00 0.1923293 

C58 R13-CNE 6 pq 1 2 136,421.50 70,152,600.00 0.1944639 

C58 R13-CNE 6 pq 1 2 421,962.00 70,152,600.00 0.6014916 

C58 R13-CNE 6 pq 1 2 686,322.50 70,152,600.00 0.978328 

C59 R4-CLS 2 va 3 2 59,940.00 62,148,450.00 0.0964465 

C59 R4-CLS 2 va 3 2 93,660.00 62,148,450.00 0.1507037 

C59 R4-CLS 2 va 3 2 124,880.00 62,148,450.00 0.2009382 

C59 R4-CLS 2 va 3 2 341,432.00 62,148,450.00 0.5493814 

C59 R4-CLS 2 va 3 2 407,550.00 62,148,450.00 0.6557686 

C59 R4-CLS 2 va 3 2 603,750.00 62,148,450.00 0.9714643 

C59 R4-CLS 2 va 3 2 679,215.00 62,148,450.00 1.0928913 

C59 R10-CNV 5 ps 2 1 -2,400,000.00 62,148,450.00 -3.8617214 

C59 R10-CNV 5 ps 2 1 -2,200,000.00 62,148,450.00 -3.5399113 

C59 R10-CNV 5 ps 2 1 -531,725.00 62,148,450.00 -0.8555724 

C59 R10-CNV 5 ps 2 1 -325,200.00 62,148,450.00 -0.5232633 

C59 R13-CNE 6 pq 1 1 -514,780.00 62,148,450.00 -0.8283071 

C59 R13-CNE 6 pq 1 1 -172,800.00 62,148,450.00 -0.2780439 

C59 R13-CNE 6 pq 1 1 -95,000.00 62,148,450.00 -0.1528598 

C59 R13-CNE 6 pq 1 1 -48,000.00 62,148,450.00 -0.0772344 

C59 R13-CNE 6 pq 1 1 -27,320.00 62,148,450.00 -0.0439593 

C59 R13-CNE 6 pq 1 1 -13,000.00 62,148,450.00 -0.0209177 

C59 R13-CNE 6 pq 1 2 123,000.00 62,148,450.00 0.1979132 

C59 R13-CNE 6 pq 1 2 162,652.38 62,148,450.00 0.2617159 

C59 R13-CNE 6 pq 1 2 927,618.00 62,148,450.00 1.4925843 

C60 R3-CLV 1 va 3 2 158,950.00 57,597,750.00 0.2759656 

C60 R3-CLV 1 va 3 2 191,250.00 57,597,750.00 0.3320442 

C60 R3-CLV 1 va 3 2 313,860.00 57,597,750.00 0.5449171 

C60 R3-CLV 1 va 3 2 363,390.00 57,597,750.00 0.6309101 

C60 R3-CLV 1 va 3 2 407,750.00 57,597,750.00 0.707927 

C60 R3-CLV 1 va 3 2 533,570.00 57,597,750.00 0.926373 

C60 R3-CLV 1 va 3 2 845,000.00 57,597,750.00 1.4670712 

C60 R3-CLV 1 va 3 2 1,208,550.00 57,597,750.00 2.098259 

C60 R10-CNV 5 ps 2 1 -1,123,690.00 57,597,750.00 -1.9509269 

C60 R10-CNV 5 ps 2 1 -1,047,282.00 57,597,750.00 -1.8182689 

C60 R10-CNV 5 ps 2 1 -800,000.00 57,597,750.00 -1.3889431 

C60 R10-CNV 5 ps 2 1 -800,000.00 57,597,750.00 -1.3889431 

C60 R10-CNV 5 ps 2 1 -730,847.00 57,597,750.00 -1.2688812 

C60 R10-CNV 5 ps 2 2 135,810.00 57,597,750.00 0.2357905 

C60 R13-CNE 6 pq 1 1 -1,631,794.00 57,597,750.00 -2.8330864 

C60 R13-CNE 6 pq 1 1 -1,251,905.00 57,597,750.00 -2.1735311 

C60 R13-CNE 6 pq 1 1 -465,000.00 57,597,750.00 -0.8073232 

C60 R13-CNE 6 pq 1 1 -172,900.00 57,597,750.00 -0.3001853 

C60 R13-CNE 6 pq 1 1 -61,600.00 57,597,750.00 -0.1069486 

C60 R13-CNE 6 pq 1 1 -59,250.00 57,597,750.00 -0.1028686 

C60 R13-CNE 6 pq 1 2 96,000.00 57,597,750.00 0.1666732 

C60 R13-CNE 6 pq 1 2 152,000.00 57,597,750.00 0.2638992 

C60 R13-CNE 6 pq 1 2 170,400.00 57,597,750.00 0.2958449 

C60 R13-CNE 6 pq 1 2 185,785.00 57,597,750.00 0.322556 

C60 R13-CNE 6 pq 1 2 298,350.00 57,597,750.00 0.517989 

C60 R13-CNE 6 pq 1 2 356,200.00 57,597,750.00 0.6184269 

C60 R13-CNE 6 pq 1 2 660,000.00 57,597,750.00 1.1458781 

C60 R13-CNE 6 pq 1 2 1,150,985.70 57,597,750.00 1.9983171 

C61 R3-CLV 1 va 3 2 1,074,450.00 136,446,896.25 0.7874492 

C61 R3-CLV 1 va 3 2 1,662,500.00 136,446,896.25 1.2184227 

C61 R3-CLV 1 va 3 2 3,060,785.00 136,446,896.25 2.243206 

C61 R10-CNV 5 ps 2 1 -2,250,000.00 136,446,896.25 -1.6489932 
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Sum_ICS 
Risk 

degree 

C61 R10-CNV 5 ps 2 1 -1,750,690.00 136,446,896.25 -1.2830559 

C61 R10-CNV 5 ps 2 1 -300,000.00 136,446,896.25 -0.2198658 

C61 R10-CNV 5 ps 2 2 711,301.70 136,446,896.25 0.521303 

C61 R10-CNV 5 ps 2 2 2,001,718.95 136,446,896.25 1.4670315 

C61 R13-CNE 6 pq 1 1 -6,700,550.00 136,446,896.25 -4.9107383 

C61 R13-CNE 6 pq 1 1 -1,993,800.00 136,446,896.25 -1.4612278 

C61 R13-CNE 6 pq 1 1 -675,750.00 136,446,896.25 -0.4952476 

C61 R13-CNE 6 pq 1 1 -465,940.00 136,446,896.25 -0.3414808 

C61 R13-CNE 6 pq 1 1 -424,700.00 136,446,896.25 -0.3112566 

C61 R13-CNE 6 pq 1 1 -396,350.00 136,446,896.25 -0.2904793 

C61 R13-CNE 6 pq 1 1 -367,320.00 136,446,896.25 -0.2692036 

C61 R13-CNE 6 pq 1 1 -335,450.00 136,446,896.25 -0.2458466 

C61 R13-CNE 6 pq 1 1 -296,500.00 136,446,896.25 -0.2173007 

C61 R13-CNE 6 pq 1 1 -289,668.00 136,446,896.25 -0.2122936 

C61 R13-CNE 6 pq 1 1 -286,420.00 136,446,896.25 -0.2099132 

C61 R13-CNE 6 pq 1 1 -274,088.00 136,446,896.25 -0.2008752 

C61 R13-CNE 6 pq 1 1 -218,640.00 136,446,896.25 -0.1602382 

C61 R13-CNE 6 pq 1 1 -202,585.00 136,446,896.25 -0.1484717 

C61 R13-CNE 6 pq 1 1 -170,250.00 136,446,896.25 -0.1247738 

C61 R13-CNE 6 pq 1 1 -167,200.00 136,446,896.25 -0.1225385 

C61 R13-CNE 6 pq 1 1 -136,168.00 136,446,896.25 -0.0997956 

C61 R13-CNE 6 pq 1 1 -130,495.00 136,446,896.25 -0.0956379 

C61 R13-CNE 6 pq 1 1 -129,035.00 136,446,896.25 -0.0945679 

C61 R13-CNE 6 pq 1 1 -117,220.00 136,446,896.25 -0.0859089 

C61 R13-CNE 6 pq 1 1 -103,975.00 136,446,896.25 -0.0762018 

C61 R13-CNE 6 pq 1 1 -102,320.00 136,446,896.25 -0.0749889 

C61 R13-CNE 6 pq 1 1 -63,465.00 136,446,896.25 -0.0465126 

C61 R13-CNE 6 pq 1 1 -61,080.00 136,446,896.25 -0.0447647 

C61 R13-CNE 6 pq 1 1 -45,200.00 136,446,896.25 -0.0331264 

C61 R13-CNE 6 pq 1 1 -37,192.00 136,446,896.25 -0.0272575 

C61 R13-CNE 6 pq 1 1 -32,900.00 136,446,896.25 -0.0241119 

C61 R13-CNE 6 pq 1 1 -4,685.00 136,446,896.25 -0.0034336 

C61 R13-CNE 6 pq 1 2 0.00 136,446,896.25 0 

C61 R13-CNE 6 pq 1 2 10,695.00 136,446,896.25 0.0078382 

C61 R13-CNE 6 pq 1 2 27,300.00 136,446,896.25 0.0200078 

C61 R13-CNE 6 pq 1 2 53,302.50 136,446,896.25 0.0390646 

C61 R13-CNE 6 pq 1 2 60,720.00 136,446,896.25 0.0445008 

C61 R13-CNE 6 pq 1 2 76,877.50 136,446,896.25 0.0563424 

C61 R13-CNE 6 pq 1 2 86,640.00 136,446,896.25 0.0634972 

C61 R13-CNE 6 pq 1 2 96,700.00 136,446,896.25 0.0708701 

C61 R13-CNE 6 pq 1 2 96,700.00 136,446,896.25 0.0708701 

C61 R13-CNE 6 pq 1 2 128,200.00 136,446,896.25 0.093956 

C61 R13-CNE 6 pq 1 2 133,860.00 136,446,896.25 0.0981041 

C61 R13-CNE 6 pq 1 2 154,500.00 136,446,896.25 0.1132309 

C61 R13-CNE 6 pq 1 2 222,270.00 136,446,896.25 0.1628985 

C61 R13-CNE 6 pq 1 2 246,670.00 136,446,896.25 0.180781 

C61 R13-CNE 6 pq 1 2 281,245.00 136,446,896.25 0.2061205 

C61 R13-CNE 6 pq 1 2 285,090.00 136,446,896.25 0.2089384 

C61 R13-CNE 6 pq 1 2 862,020.00 136,446,896.25 0.6317623 

C61 R13-CNE 6 pq 1 2 969,135.00 136,446,896.25 0.7102653 

C61 R13-CNE 6 pq 1 2 1,328,095.50 136,446,896.25 0.9733424 

C61 R13-CNE 6 pq 1 2 1,890,880.00 136,446,896.25 1.3857992 

C61 R19-USD 8 va 3 2 2,115,250.00 136,446,896.25 1.5502368 

C61 R19-USD 8 va 3 2 6,930,676.50 136,446,896.25 5.0793948 

C62 R5-CND 3 va 3 2 495,000.00 105,945,000.00 0.4672236 

C62 R5-CND 3 va 3 2 20,887,390.00 105,945,000.00 19.715315 
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C62 R5-CND 3 vo 4 1 -11,000,000.00 105,945,000.00 -10.382746 

C62 R10-CNV 5 ps 2 1 -4,721,249.00 105,945,000.00 -4.4563207 

C62 R10-CNV 5 ps 2 1 -100,000.00 105,945,000.00 -0.0943886 

C62 R13-CNE 6 pq 1 1 -902,000.00 105,945,000.00 -0.8513852 

C62 R13-CNE 6 pq 1 1 -356,175.00 105,945,000.00 -0.3361886 

C62 R13-CNE 6 pq 1 2 392,100.00 105,945,000.00 0.3700977 

C62 R13-CNE 6 pq 1 2 1,362,060.00 105,945,000.00 1.2856293 

C62 R13-CNE 6 pq 1 2 3,849,010.00 105,945,000.00 3.6330266 

C63 R4-CLS 2 va 3 2 145,800.00 26,250,000.00 0.5554286 

C63 R4-CLS 2 va 3 2 5,108,651.00 26,250,000.00 19.461528 

C63 R10-CNV 5 ps 2 1 -2,100,000.00 26,250,000.00 -8 

C63 R10-CNV 5 ps 2 1 -341,100.00 26,250,000.00 -1.2994286 

C63 R13-CNE 6 pq 1 1 -44,000.00 26,250,000.00 -0.167619 

C64 R5-CND 3 va 3 2 956,832.00 114,030,000.00 0.8391055 

C64 R5-CND 3 va 3 2 7,297,655.00 114,030,000.00 6.3997676 

C64 R5-CND 3 va 3 2 10,639,300.00 114,030,000.00 9.330264 

C64 R5-CND 3 vo 4 2 360,700.00 114,030,000.00 0.3163203 

C64 R10-CNV 5 ps 2 1 -7,500,000.00 114,030,000.00 -6.5772165 

C64 R10-CNV 5 ps 2 1 -3,589,222.00 114,030,000.00 -3.147612 

C64 R10-CNV 5 ps 2 1 -550,000.00 114,030,000.00 -0.4823292 

C64 R10-CNV 5 ps 2 1 -130,000.00 114,030,000.00 -0.1140051 

C64 R10-CNV 5 ps 2 2 19,221,115.00 114,030,000.00 16.856191 

C64 R13-CNE 6 pq 1 1 -1,789,007.00 114,030,000.00 -1.5688915 

C64 R13-CNE 6 pq 1 1 -926,600.00 114,030,000.00 -0.8125932 

C64 R13-CNE 6 pq 1 1 -560,000.00 114,030,000.00 -0.4910988 

C64 R13-CNE 6 pq 1 1 -453,850.00 114,030,000.00 -0.3980093 

C64 R13-CNE 6 pq 1 2 282,200.00 114,030,000.00 0.2474787 

C64 R13-CNE 6 pq 1 2 1,214,920.00 114,030,000.00 1.0654389 

C65 R5-CND 3 va 3 2 368,500.00 48,615,000.00 0.7579965 

C65 R5-CND 3 va 3 2 484,550.00 48,615,000.00 0.9967088 

C65 R5-CND 3 va 3 2 780,000.00 48,615,000.00 1.6044431 

C65 R5-CND 3 va 3 2 1,098,000.00 48,615,000.00 2.2585622 

C65 R5-CND 3 va 3 2 1,250,000.00 48,615,000.00 2.5712229 

C65 R5-CND 3 va 3 2 1,665,325.00 48,615,000.00 3.4255374 

C65 R5-CND 3 va 3 2 6,294,240.00 48,615,000.00 12.947115 

C65 R10-CNV 5 ps 2 1 -4,172,887.00 48,615,000.00 -8.583538 

C65 R10-CNV 5 ps 2 1 -1,033,550.00 48,615,000.00 -2.1259899 

C65 R13-CNE 6 pq 1 1 -282,000.00 48,615,000.00 -0.5800679 

C65 R13-CNE 6 pq 1 1 -273,640.00 48,615,000.00 -0.5628715 

C65 R13-CNE 6 pq 1 2 575,650.00 48,615,000.00 1.1840996 

C66 R3-CLV 1 vo 4 1 -8,628,315.00 48,930,000.00 -17.633998 

C66 R3-CLV 1 vo 4 1 -7,417,414.00 48,930,000.00 -15.159236 

C66 R5-CND 3 va 3 2 66,750.00 48,930,000.00 0.1364194 

C66 R5-CND 3 va 3 2 122,200.00 48,930,000.00 0.2497445 

C66 R5-CND 3 va 3 2 181,500.00 48,930,000.00 0.3709381 

C66 R5-CND 3 va 3 2 774,743.00 48,930,000.00 1.5833701 

C66 R5-CND 3 va 3 2 782,032.00 48,930,000.00 1.5982669 

C66 R5-CND 3 va 3 2 876,000.00 48,930,000.00 1.7903127 

C66 R5-CND 3 va 3 2 1,892,900.00 48,930,000.00 3.8685878 

C66 R5-CND 3 va 3 2 1,998,000.00 48,930,000.00 4.0833844 

C66 R5-CND 3 va 3 2 2,469,935.00 48,930,000.00 5.047895 

C66 R5-CND 3 va 3 2 2,639,040.00 48,930,000.00 5.3935009 

C66 R5-CND 3 va 3 2 5,225,405.00 48,930,000.00 10.679348 

C66 R5-CND 3 va 3 2 6,984,163.00 48,930,000.00 14.273785 

C66 R10-CNV 5 ps 2 1 -870,000.00 48,930,000.00 -1.7780503 

C66 R10-CNV 5 ps 2 1 -797,999.10 48,930,000.00 -1.6308994 
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C66 R10-CNV 5 ps 2 1 -100,000.00 48,930,000.00 -0.2043736 

C66 R10-CNV 5 ps 2 2 66,500.00 48,930,000.00 0.1359084 

C66 R13-CNE 6 pq 1 2 8,976.00 48,930,000.00 0.0183446 

C66 R13-CNE 6 pq 1 2 367,500.00 48,930,000.00 0.751073 

C67 R3-CLV 1 vs 5 2 2,033,404.00 59,101,000.00 3.4405577 

C67 R5-CND 3 va 3 2 2,671,000.00 59,101,000.00 4.5193821 

C67 R5-CND 3 va 3 2 6,230,300.00 59,101,000.00 10.541784 

C67 R10-CNV 5 ps 2 1 -8,100,000.00 59,101,000.00 -13.705352 

C67 R10-CNV 5 ps 2 1 -1,491,150.00 59,101,000.00 -2.5230538 

C67 R10-CNV 5 ps 2 1 -50,000.00 59,101,000.00 -0.0846009 

C67 R13-CNE 6 pq 1 1 -1,976,355.00 59,101,000.00 -3.3440297 

C67 R13-CNE 6 pq 1 1 -560,000.00 59,101,000.00 -0.9475305 

C67 R13-CNE 6 pq 1 1 -453,850.00 59,101,000.00 -0.7679227 

C67 R13-CNE 6 pq 1 2 300,920.00 59,101,000.00 0.5091623 

C68 R3-CLV 1 va 3 2 2,687,500.00 496,684,314.00 0.5410882 

C68 R3-CLV 1 va 3 2 13,579,630.00 496,684,314.00 2.7340565 

C68 R3-CLV 1 va 3 2 15,559,042.50 496,684,314.00 3.1325818 

C68 R6-UNS 4 pq 1 2 224,495.00 496,684,314.00 0.0451987 

C68 R6-UNS 4 pq 1 2 327,915.00 496,684,314.00 0.0660208 

C68 R13-CNE 6 pq 1 1 -4,186,880.00 496,684,314.00 -0.842966 

C68 R13-CNE 6 pq 1 1 -4,140,180.00 496,684,314.00 -0.8335637 

C68 R13-CNE 6 pq 1 1 -3,932,140.50 496,684,314.00 -0.791678 

C68 R13-CNE 6 pq 1 1 -2,393,320.00 496,684,314.00 -0.4818594 

C68 R13-CNE 6 pq 1 1 -2,317,420.00 496,684,314.00 -0.4665781 

C68 R13-CNE 6 pq 1 1 -2,117,575.00 496,684,314.00 -0.4263422 

C68 R13-CNE 6 pq 1 1 -1,180,327.00 496,684,314.00 -0.2376413 

C68 R13-CNE 6 pq 1 1 -928,625.00 496,684,314.00 -0.1869648 

C68 R13-CNE 6 pq 1 1 -785,650.00 496,684,314.00 -0.1581789 

C68 R13-CNE 6 pq 1 2 636,875.00 496,684,314.00 0.1282253 

C68 R13-CNE 6 pq 1 2 940,920.00 496,684,314.00 0.1894402 

C68 R13-CNE 6 pq 1 2 1,254,770.00 496,684,314.00 0.2526293 

C68 R13-CNE 6 pq 1 2 3,016,100.00 496,684,314.00 0.6072469 

C69 R3-CLV 1 va 3 2 6,886,935.00 82,635,000.00 8.3341623 

C69 R3-CLV 1 vs 5 2 5,291,400.00 82,635,000.00 6.40334 

C69 R10-CNV 5 ps 2 1 -1,500,000.00 82,635,000.00 -1.8152115 

C69 R10-CNV 5 ps 2 1 -753,160.00 82,635,000.00 -0.9114298 

C69 R10-CNV 5 ps 2 1 -100,000.00 82,635,000.00 -0.1210141 

C69 R10-CNV 5 ps 2 2 297,440.00 82,635,000.00 0.3599443 

C69 R13-CNE 6 pq 1 1 -3,819,195.00 82,635,000.00 -4.6217644 

C69 R13-CNE 6 pq 1 1 -2,798,166.00 82,635,000.00 -3.3861753 

C69 R13-CNE 6 pq 1 1 -1,120,000.00 82,635,000.00 -1.3553579 

C69 R13-CNE 6 pq 1 2 349,200.00 82,635,000.00 0.4225812 

C69 R13-CNE 6 pq 1 2 468,100.00 82,635,000.00 0.566467 
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A01 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

A02 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

A03 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

A04 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

A05 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

A06 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

A07 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

A08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 

A09 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

A10 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

A11 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

A12 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

A13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

A14 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

A15 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

A16 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

B17 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

B18 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

B19 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

B20 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

B21 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

B22 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

B23 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

B24 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

B25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

B26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

B27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

B28 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
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B29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

B30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

B31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

B32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

B33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

B34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

B35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

B36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

B37 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

B38 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

B39 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

B40 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

B41 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

B42 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

B43 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

B44 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

B45 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 

B46 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

B47 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

B48 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C49 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C50 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C51 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C52 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C53 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C54 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C55 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C56 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

C57 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C58 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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C59 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C60 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C61 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

C62 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C63 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C64 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C65 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C66 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C67 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C68 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

C69 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Sum  0 0 31 4 9 1 0 12 3 7 3 0 14 5 2 36 0 13 1 5 2 44 5 0 0 0 1 9 0 1 18 2 2 0 0 0 0 1 0 0 
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