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Abstract  
The analysis and optimum design of steel elastic trusses are carried out using a computer 
aided programme written in MATLAB. Karush-Kuhn-Tucker (KKT) conditions were 
employed and a mathematical model was developed. The adopted numerical solution 
technique used was finite element method. Since the aim of this computer aided analysis and 
optimum design is to provide, with due regard to economy, a structure capable of fulfilling its 
intended use and sustaining  the specified loads for it intended life, the axial forces and nodal 
displacements in the members and nodes were calculated respectively. Then, the compressive 
members were subjected to compressive stress and buckling load constraints while the tensile 
members were subjected to tensile stress resistance and the nodal displacement were 
subjected to maximum allowable displacement based on BS5950. The comparison of the 
algorithm with existing methods in the literature using a benchmark 10-bar truss shows the 
advantage of this approach.   
 
Keywords: Structural optimization, finite element analysis, augmented Lagrangian (modified 
objective function), Karush-Kuhn-Tucker Conditions. 

Introduction  
An increase in urbanization is putting more pressure on the use of construction materials for 
the provision of structural facilities including buildings (residential, industrial, and 
communal), bridges and dams. Steel, unlike concrete, timber and ceramics is essentially a 
manufactured structural material. By implication, therefore, it is a lot more expensive to 
produce than most other structural materials. The cost of production in terms of capital, 
human efforts and time investment logically calls for optimal use. Optimization in general, 
entails the process of achieving the ‘best’ out of a number of candidate’s options available as 
solution to a given problem. In the context of this research, optimization procedure is applied 
in achieving trusses of minimum weight/volume that will satisfy strength conditions and 
other prevailing constraints.  

Over the past decades, considerable progress has been achieved in the optimum design of 
structural members via mathematical programming methods such as the Lagrangian 
multipliers method, convex programming, linear programming, and sequential unconstrained 
minimization techniques and evolutionary algorithms.  While for the structural optimization 
methodology in general and the weight/volume optimization approach in particular, to be 
embraced by the structural engineering community, for instance (Fan et al., 2005; Ercan and 
Gregory, 2007), the focus of future research should be on complex structures such as trusses 
subjected to the actual constraints of commonly used design codes rather than structures 
subjected to non-realistic constraints.   

Though design of steel structure has undergone considerable change in method over time, its 
philosophy still focuses on safety and economy as the driving force. Economy in design can 
be achieved through an optimization procedure by aiming at providing, structures capable of 
fulfilling intended functions and sustaining the specified loads for their intended lives (BS 
5950-1; 2000) to achieve the most efficient and effective structure that will satisfy the chosen 
criteria. The increasing demand on engineers to lower production cost to withstand global 
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competition has prompted them to look for various methods of decision making, such as 
optimization methods, to design and produce products and systems both economically and 
efficiently. 

 Structural optimization techniques are effective tools that can be used to obtain lightweight, 
low-cost and high performance structures. Optimum design of truss structures has been 
widely studied by many researchers as they represent a common and complex category of 
engineering structures. According to (Silih et al., 2010; Thong and Liu, 2001), the size and 
topology optimization of truss structures is a mixed variable optimization problem, which 
deals simultaneously with discrete and continuous design variables. Such problems are 
usually non-convex by nature and, therefore, must be solved by appropriate optimization 
methods. Topology optimization studies are usually based on the assumption of an initial 
ground structure that contains all possible joints and members. While most of conventional 
mathematical optimization methods are suited and developed for continuous design variables 
(e.g. Hajirasouliha et al. 2011; Rajeev and Krishnamoorthy, 1992), in practice many 
structural design variables are chosen based on discrete values due to manufacturing 
constraints. Zhang et al. (2013) presented a comprehensive study on discrete optimization 
using generalized shape function-based parameterization. 

Hasançebi (2007) used a different method for optimization of truss bridges by combining 
various variable-wise versions of adaptive evolution strategies under a common optimization 
routine. They carried out size and shape optimizations by using discrete and continuous 
evolution strategies, respectively. Ant System algorithm is another method that is used by 
Luh and Lin (2008) to find optimal truss structures for achieving minimum weight under 
stress, deflection, and kinematic stability constraints. The results of their study indicated that 
multiple truss topologies with almost equal overall weight can be found concurrently as the 
number of members in the ground structure increases. Dede et al. (2011) combined GA with 
value and binary encoding for continuous and discrete optimization of trusses to minimize 
structural weight based on stress and displacement constraints. They showed that the value 
encoding method requires less computer memory and computational time to achieve 
optimum solutions. 

 This paper aims to develop an efficient computer aided approach using KKT condition to 
optimize truss structures using both continuous and discrete design variables. To achieve a 
good convergence, Augmented Lagrangian function was introduced and the inequality 
constraints were effectively converted to equality constraint using slack variable. The method 
proposed work more effectively for continuous optimization of truss structure. The cross-
sectional areas of the members are selected as design variables. The efficiency of the 
proposed methods to obtain reliable optimum solutions is investigated through simple 
investigation of the KKT conditions.     

1. Optimization Methodology 

1.1. Objective Function 
There are several criteria for optimum design of truss structures including weight, volume, 
cost, displacements, maximum stresses, bucking strength, vibration frequencies, or any 
combination of these parameters. In this study, the objective function is to minimize the 
volume of the structure, as shown in Equation (1): 



2018 INTERNATIONAL CONFERENCE PROCEEDINGS: FACULTY OF ENGINEERING, UNIZIK 

Subject to the following constraints:  
    

 
 After introducing m positive, slack variables, set 

 
Lagrangian function (modified objective function): 

 
where m is the number of truss structural members, L is the length of each truss member, and 
A is the cross-sectional area of the members. During optimization process, Ai can either be 
continuous, chosen to be random number within a set region or can be discrete values 
extracting from cross-section types available in the market. The Augmented Lagrangian 
method is applied for solving the constrained optimization problem. To allow non-linear 
constraints, Karush-Kuhn-Tucker (KKT) conditions are utilized. Therefore, to minimize the 
objective function, the following KKT conditions equation should be satisfied: 

 
1.2. Constraint handling 
In this study, the constraints were member stress, nodal displacement, and buckling strength. 
In connection with member stress, the stress resulting from design load combinations should 
be within allowable limits, according to the materials used. In this study, a number of penalty 
functions were determined with regard to allowable tension and compressive stress of the 
truss members. For instance, the inequality constraints were normalized and a slack variable 
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introduced to each of the constraints. This automatically scales the constraint making it easier 
to be handled. Equations (1) to (5) illustrate the application of the scale factor and the 
slackness property of the inequality constraints:  

where the ith member can be under tension or compression, P1i(A, X) is the penalty function 

value for the stress, are the member stress and allowable stress, respectively. In 
this study, FE analysis was used to calculate the member stress and nodal deflection of the 
truss structure in the optimization process. Similar to the stress constraints, if any one of the 
displacement constraints is not satisfied, a penalty function for the vertical displacement is 
assigned to the related chromosome by using Equation (3): 

where  is the penalty value of the active nodal displacement,  is the displacement 

in the direction of the degree of freedom, and  is the allowable displacement in the 
direction of the degree of freedom. In general, the failure of a truss structure could be due to 
failure of a structural component, material failure or structural instability. In this study, 
tubular hollow sections were used for all truss members with outer width (D), mean diameter 
(dm), inner width (c) and sectional thickness (t). The buckling strength of each member was 
calculated based on the derivation according to the equation:  

, where the first term corresponds to Classes 1, 2 and 3 of the Eurocode 3 (2010) cross 
sections, while the second term is for Class 4 sections. Also, A is the reduction factor of the 

relevant buckling mode, A is the gross area,  is the reduced effective area, and  is 
the partial safety factor for buckling resistance calculations. For members under compression, 
the value of x should be determined for the appropriate non-dimensional slenderness ratio  
from the relevant buckling curve, according to Eqn (6): 
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Where the first term is applied for Class 1, 2 or 3 and the second term is applied for Class 4 
cross sections. Pcr is the elastic critical bucking load based on the gross cross-sectional 

properties, .The imperfection factor, , depends on the cross-section type. In 
this study,  was considered to be 0.49. Based on Eurocode 3 (2010), for  less than or equal 
to 0.2, buckling effects can be ignored.  
 
1.3. Augmented Lagrangian KKT Conditions for continuous optimization approach 
ALKKT was proposed for solving nonlinear optimization of truss structures with nonlinear 
constraints. This method helps to avoid conducting extensive numerical calculations to find 
the appropriate value for the penalty function coefficient. In this way, each constraint is 
separately allocated to its own adjusted penalty function coefficient. The advantage of using 
ALKKT is to include a set of Lagrange Multipliers, instead of a single coefficient penalty 
function. The fitness function and nonlinear constraint functions are combined by using the 
Lagrangian and the penalty parameters for a sequence of sub-problems. Subsequently, each 
sub-problem is solved by using genetic algorithm. The algorithm starts by setting an initial 
value for the penalty parameter (i.e. initial penalty). The sub-problem formulation in (6) can 
also be   defined by Equation (16): 

    
Where m is the number of nonlinear inequality constraints. The components i of the vector  
are known as Lagrange multiplier estimates, the elements si of the vector s are nonnegative 
shifts. 
 
1.5. Procedure for obtaining the optimum solution 
Fig. 1 shows the flow chart of the proposed optimization methods. It is very important in any 
structural analysis and design to select a mathematical model that adequately simulates the 
response of the structure. The accuracy of assumptions made here determine the accuracy of 
the model as a true representation of the structure. It is assumed in this study, the loads from 
traffic and the bridge deck are applied at the nodes. The truss is then analysis as a plane truss 
instead of space truss. There is also tremendous advantage in the simplification since it is 
much easier to handle plane trusses compared to space trusses. A viable optimization model 
is formulated and the results obtained from the analysis are then inputted into the 
optimization model. The model is enacted with specific interest on the members’ stresses and 
nodal displacements since the constraint is already built in the model. Various cases of the 
Karush-Kuhn-Tucker conditions (KKT) were considered. After each case was examined, its 
validity is checked based on the feasible direction and nonnegative criteria of the KKT 
conditions. The optimum design is reached when all the KKT conditions were satisfied and 
also, the prevailing criteria are met.  
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Fig. 1: Proposed Flowchart Optimization Algorithm Using KKT Conditions  

2 Case study example 
The performance of the proposed method is tested with a typical truss shown in Fig. 2 and the 
node/element identification with the magnitude of loads at the nodes as follows: 
Load and other fixed parameters: 

 
It is worthy of note that, P is uniformly distributed load (UDL) converted to act at the nodes 
KEL is the knife edge load applied at the mid-span of the truss. 
 
  The results are as tabulated in Table1. 
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Fig. 2: Geometry of the truss structure with member and node identification 
 

2.1. Size optimization using continuous cross-sectional areas. 

From the optimization method proposed a computer programme written in MATLAB 
programming language as in section 3.16, the areas of truss members were obtained and the 
result was as tabulated as shown in Table 1. With the areas of individual truss elements 
known, the volume of the truss was calculated with the aid of equation (1.0) to be 
1639119.175mm3 and 1739100mm3 that is, weight of truss is 12890kg  and 13676.4kg for 
continuous and discrete variables of area respectively. This is the optimal solution of the 
bridge truss optimization problem, hence, the values of Lagrange multipliers,  are all 
positive, that is, 209.339, 3879.245, 46.778 and 567.298 for  respectively. 
This has offered a designer an option to even decide whether the steel truss should be 
fabricated on not.  

Table 1: Result of Optimized Area of Members for continuous and discrete  

Member Length(cm) Area of continuous 
Section (cm2) 

Area of discrete 
section (cm2) 

1 425 225.2296    247 

2 425 118.8457  125 
3 425 215.8450    222 
4 425 118.8457 125 
5 425 225.2296    247 
6 425 118.8457 125 
7 425 215.8450 222 
8 425 118.8457 125 
9 425 225.2296    247 
10 425 118.8457 125 
11 425 215.8450  222 
12 425 118.8457 125 
13 425 225.2296    247 
14 425 118.8457 125 
15 425 215.8450  222 
16 425 118.8457 125 
17 425 225.2296    247 
18 425 118.8457 125 
19 425 215.8450    222 
20 425 118.8457 125 
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21 425 225.2296    247 
22 425 118.8457 125 
23 425 118.8457 125  

Volume (mm^3)                                        1639119.175 1739100 

 

2.2 Comparison of the Proposed ALKKT Optimization Method with Previous Works   
in Literatures. 

The performance of the proposed optimization method is tested for the benchmark 10-bar 
cantilever truss shown in Fig. 3. The results are compared with several other research studies 
using continuous design variables. The continuous variables were presented by the KKT 
cases as in-built in the programme coding. The objective function is to minimize total volume 
or equivalently, the cross-sectional areas of the truss members subject to design constraints. 
The lower and upper limits of the cross-section areas vary between 0.645  and 64.516cm

2  
respectively.  

 

Fig. 3: Geometry of the Benchmark 10-bar Truss 

2.2.1 Sizing Optimization Using Continuous Cross-sectional Areas  

In this section, size optimization was conducted to determine the optimal cross-sectional area 
of each element with KKT conditions cases as presented in the programme code. In this 
study, mild steel was used in the truss members. To take into account the nonlinear 
constraints applied to the structure, Lagrange Multipliers with slack variables were utilized. 
Table 2 shows the comparison of size optimization results with those of other research 
studies. The result of this study for minimum displacement is shown in the present work 
column. It should be noted that some of the studies, for instance, Romero et al. 2004 and 
Burton (2004), did not consider without due regards to displacement constraints in the 
optimization process, therefore, obtained a relatively higher deflection. 
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Table 4.5 Comparison of the continuous size optimization results with other references 
(maximum deflection=16.688cm) 

Area Auer  
(2006) 

Romero 
et al. 

(2004) 

Burton 
(2004) 

Haftka 
Gurdal 
(1982) 

de Souza 
and 
Fonseca 
(2008) 

Noii et 

al. (2017) 
Present 
work 

A1 0.645 0.645 0.645 0.645 0.645 0.645 0.645 
A2 0.645 0.645 0.645 0.645 0.645 1.419 0.645 
A3 0.751 0.645 0.903 0.903 0.839 1.710 1.551
A4 35.878 35.928 23.742 23.742 24.903 36.161 37.214
A5 25.370 25.405 52.258 25.161 25.161 31.632 29.572
A6 0.645 0.645 0.645 0.645 0.645 0.645 0.645
A7 51.177 51.212 50.968 50.968 50.968 53.503 37.290 
A8 35.878 35.928 35.548 35.548 35.613 36.581 50.968 
A9 37.114 37.063 37.419 37.419 37.290 31.110 35.613 
A10 
Weight (kg) 

52.057 
722.765 

52.013 
722.647 

25.161 
679.251 

52.258 
679.251 

52.193 
682.783 

48.574 
732.118 

52.353 
741.261 

Max. Disp. 
(cm) 

18.288 18.288 22.067 20.574 20.274 17.597 16.688 

Max. Stress 
(MPa) 

172.368 172.372 352.463 258.372 246.562 215.582 247.084 

  

4.5.2 Sensitivity Analysis of 10-bar Truss Structure 
The response of the optimal area distribution to an adjustment of constraints (perturbation) 
for the 10-bar truss benchmark is performed. This is achieved by simultaneously increasing 
the cross-sectional area of members 7 and 9 (lowest and highest cross-sectional area). Figure 
4.2 presents the maximum nodal displacement of the truss structure with respect to the cross-
sectional area of the member 7 and 9, respectively. It is shown that the gradient of maximum 
displacement reaches the minimum value for cross-sectional area equal to 56.7cm2 and 
130.00cm2 in members 7 and 9, respectively. Maximum displacement at this point is 7 cm, 
which is around 33% above the optimum solutions shown in Table 4.5. The results also 
indicate that the maximum displacement is more sensitive to the variations in the cross-
sectional area of member 7 compared to member 9. Subsequently, maximum displacement 
corresponding to member 7 reaches the constant value earlier than member 9. 
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Figure 4.2 Maximum nodal displacement of the truss structure with respect to the cross-
sectional area of the member 7 and 9. 

Conclusion  

This study has developed a computer-aided analysis and optimum design of steel elastic 
trusses based on the Karush-Kuhn-Tucker (KKT) optimality criteria. The performance of the 
approach has been demonstrated by optimizing a 10-bar steel truss structure. The numerical 
example verified the feasibility of the developed algorithm, and indicated that the adopted 
method can significantly reduce the structural weight/volume and maximum deflection over 
the conventional design route. It has been shown that the optimal design solution for the 
warren truss bridge using discrete optimization results in 13% weight reduction compared 
with the traditional design while it also exhibits 12% and 23% less maximum node 
displacement and maximum member stress under the design load respectively. Sensitivity 
analysis was conducted to show the reliability of the proposed optimization method, which 
should prove useful in optimum design of large-scale truss structure.  
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