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Introduction
The assessment of the dynamics and regime of a particular 
hydrologic phenomenon is imperative, especially the time-
based characteristics. Time-based characteristics of hydrologic 
data are of great significance in the planning, designing, and 
operation of water systems. This significance is informed more 
largely due to the variability and oscillatory behavior of hydro-
logic sequences. Therefore, against this backdrop, according to 
Ahaneku and Otache,1 as noted by Kottegoda,2 the lack of 
complete understanding of the physical processes involved 
and the consequent uncertainties in the magnitudes and fre-
quencies of future events highlight the importance of time 
series analysis. Thus, the main objective of any time series 
analysis is to understand the mechanism that generates the 
data and also, but not necessarily, to produce likely future 
sequences over a short period of time.1 This is usually not 
without taking cognizance of the appurtenant uncertainty 
resulting from spatiotemporal variability of hydrologic pro-
cesses. The analysis of time series is essential for building 
mathematical models to generate synthetic hydrologic records, 
to forecast hydrologic events, to detect intrinsic stochastic 
characteristics of hydrologic variables, as well as to fill missing 
and extend records (Ahaneku and Otache, 2014).1

River is a natural stream of water flowing in a channel to the 
sea or to the lake or joining another river, and the area drained 

by a river and its tributaries is called river basin. There are 2 
major rivers in Nigeria: River Niger and River Benue. River 
Niger and its tributaries have great potential for the socioeco-
nomic transformation of the West African subregion, includ-
ing Nigeria. Kainji hydropower dam is situated along the Niger 
River; a dam is a barrier built across a water body to hold back 
the flow of water, thereby creating a large body or pool of water 
called reservoir. Dams can be classified according to the pur-
pose for which they are meant and also according to the mate-
rials used in constructing them, such as concrete and earth fill. 
The functions of dam include regulation of the river flow and 
controlling the water release in accordance with the electricity 
production or irrigation requirement. Despite the usefulness of 
dams, they usually have significant impact on economy, geol-
ogy, environment, hydrology, and meteorological variables.

The probability distribution is a hydrologic tool most 
widely used in flood estimation and prediction. The impor-
tance of reservoir inflow analysis at any hydropower dam to 
our daily life makes it imperative that the appropriate proba-
bility distribution model be established to determine the dis-
charge into the reservoir. According to Olukanni and Salami,3 
Larry and Murray4 stated that the choice of the probability 
distribution model is almost arbitrary as no physical basis is 
available to rationalize the use of any particular function. In 
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general, the search for a proper distribution function has been 
the subject of several studies. Salami5 studied the flow along 
the Asa River and established probability distribution models 
for the prediction of the annual flow regime. For minimum 
and maximum flows, log-Pearson type III (LP3) and Gumbel 
extreme value type I (EVI), respectively, were recommended. 
Salami6 considered flood levels at 4 gauging stations along the 
River Niger, below the Jebba hydropower dam. The maximum 
and minimum flood level data were fitted with 4 probability 
models and compared graphically with the observed data. The 
EVI distribution fits the data best, and it was used to predict 
flood levels with return periods of 10, 50, and 100 years. 
Olukanni and Salami reported that Onoz and Bayazit7 dealt 
with the probability distribution of largest available flood 
sample with the aim of determining the distribution that best 
fits the observed flood. According to Olukanni and Salami,3 
the Water Resources Council of the Unite States conducted a 
study with the objective of developing a uniform technique of 
determining flood frequency. The work applied the available 
methods to flood records at 10 stations in various parts of the 
United States. Record length varied and 5 methods were used, 
namely, Gamma, EVI, log-Gumbel, log-normal (LN), and 
LP3 distributions. However, no statistical test was applied to 
determine the goodness of fit; instead, flood discharge for 
various return periods (2-50 years) was obtained from the 
probability plot and was compared with the corresponding 
values from the 5 hypothesized distributions. Among these 
methods, the LP3 distribution was preferred for common use 
and for being capable of fitting skewed data. Salaudeen and 
Yusuff8 reported that LN, LP3, EVI distributions for the flood 
data from 108 stations in Italy. Statistical tests such as χ2, 
Kolmogrov-Smirnov, and probability plot correlation coeffi-
cient were applied, and the best fitting distribution was found 
to be LN by the χ2 test, whereas EVI and LP3 were found to 
be the best by the other test. According to Olukanni and 
Salami,3 estimated 1000-year floods at 300 stations in the 
United States with 4 different models (LN, Gamma, log-
Gumbel, and LP3). Log-normal and LP3 came close to repro-
ducing the expected exceedances and were concluded to be the 
best. Vogel et al9 explored the suitability of various models 
applied to the flood flow data at 38 sites in the Southwest 
United States. The probability distribution models adopted 
include N, LN, EVI, and LP3, which were compared graphi-
cally with the observed data. Ajayi et al10 estimated the occur-
rence of flood events and its frequency at the lower Niger 
basin, Nigeria, using hydrologic data, including river dis-
charges, runoff records, and meteorologic data from different 
gauging stations within the basin. The data collected were 
subjected to various statistical analyses and plotting position, 
and probability distributions were determined. The results 
showed that various plotting positions and probability distri-
butions could be used to fit the available discharge records of 
the River Niger. The EVI distribution was the best of the 

applied models for peak average reservoir inflow and peak dis-
charge at the River Kaduna (Wuya gauging station). The LN 
distribution best predicted the peak runoff discharge of 
River Niger (Lokoja gauging station) and peak discharge at 
Baro gauging station. The predicted models that compared 
favorably with the observed values are considered the best 
distribution models. Busari et al (2013)11 evaluated best-fit 
probability distribution models for the prediction of rain-
fall and runoff volume in Tagwai Dam, Minna, Nigeria. 
The N distribution model was found most appropriate for 
the prediction of yearly maximum daily rainfall of 131.21 
mm, and the Log-Gumbel distribution model was the 
most appropriate for the prediction of yearly maximum 
daily runoff of 1124.73 m3/s. According to Chowdhury 
and Stedinger,12 various probability distribution models 
were fitted to the peak reservoir inflows, and the suitable 
model was selected based on the goodness-of-fit tests. The 
Gumbel (EVI) probability distribution model was found 
to be appropriate for Kainji. The objective of this article, 
similar to any modeling research, is to obtain synthetic 
sequences of stream flow with the same statistical properties 
as the historic ones.

To this end, stochastic characteristics of the inflows were 
analyzed. Three methods of probability distribution analysis 
for the prediction of mean reservoir inflow at Kainji hydro-
power dam in Nigeria were applied, ie, LN, N, and Gumbel. 
This study could serve as a guide to the responsible institutions 
and dam managers in determining available flow that will gen-
erate maximum discharge for hydropower dams and prevent 
flood waters overtopping the dam, thereby causing subsequent 
release of a flood wave and averting loss of life and properties.12 
The information can also be a valuable tool for preventive flood 
forecasting.

Materials and Methods
The study area

Geographically, Kainji Hydroelectric Dam is located in New 
Bussa town, now headquarter of Borgu local government area 
of Niger State, Nigeria (Figure 1). The lake is created behind 
the dam and span between latitude 9° 8′ to 10° 7′ N and 
between longitude 4° 5′ to 4° 7′ E with reference point 9.54 
N and 4.38 E northwest of the Federal Capital Territory 
(Abuja).13

Hydrology of the Niger River system

The average rainfall at the headwaters of Niandan and Milo 
rivers at the source of the Niger at the Fouta Djallon Mountains 
in Guinea and its exit to the sea in Nigeria is 2200 mm. The 
river flow regime is characterized by 2 distinct flood periods 
occurring annually, namely, the white and black floods. The 
black flood derives its flow from the tributaries of the Niger 
outside Nigeria (flow lag October to May) and arrives at Kainji 
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Reservoir (Nigeria) in November and lasts until March at 
Jebba after attaining a peak rate of about 2000 m3/s in 
February.14 The white flood is a consequence of flows from 
local tributaries, especially the Sokoto-Rima and Malendo 
River systems. The white flood is heavily laden with silts and 
other suspended particles (flow lag June to September) and 
arrives Kainji in August in the pre-Kainji Dam River Niger 
having attained a peak rate of 4000 to 6000 m3/s in September 
to October in Jebba. The critical low flow period into the Kainji 
reservoir is March and July each year. The maximum capacity 
is 19 × 109 m3, minimum capacity is 3.5 × 109 m3, surface area 
is 1270 km2, length is 135 km, maximum width is 30 km, and 
maximum elevation (m a.s.l.) is 141.9 m.

Data collection

The reservoir inflow data for a total of 25 years (1990-2014) 
were collected from the hydrologic unit of Kainji hydropower 
station in Nigeria.

Data analysis and evaluation of probability 
distribution models

The mean inflow data were evaluated with 3 methods of prob-
ability distribution to determine the best probability distribu-
tion function for the inflows. The methods adopted were as 
follows: Gumbel EV1, LN, and N, respectively.

Gumbel (EV1).  According to Salami5 and Wilson,16 the Gum-
bel (EV1) distribution model is based on the probability that 
any of the events would equal or exceed a particular value hav-
ing return period (Tr) as given in equation (6).

The Gumbel distribution on the basis of equations (1) and 
(2) is given according to equation (3):

P e
e
YT

= − −
−

1 	 (1)

Y PT = − − −ln ln( ))( 1 	 (2)

Figure 1.  Location of Kainji Hydroelectric Dam.
Source: Salami.15

where P is the probability of occurrence of event, YT is the 
reduced variate, and ln is the natural log (Yusuf and Salami, 
2009)18:

Q Q YT av Tr
= + −( )σ 0 78 0 45. . 	 (3)

where Qav  is the average of all values of inflows, σ  is the 
standard deviation of the series, QTr

 is the inflow with return 
period Tr, and YT  is the reduced variate. The mean values and 
standard deviation of the inflows were determined using equa-
tions (4) and (5), respectively, as stated below:
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i
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=
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where x  is the measure of central tendency, n is the size of the 
sample, x  is the observed parameter, Σ is the summation sym-
bol, and N is the number of observations:

σ
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x
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−
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where σ p  is the standard deviation, x  is the observed param-
eter, µ is the mean, and n is the size of the sample.

The average monthly inflows were ranked based on the 
magnitude of the inflow and the return period computed using 
equation (6) as in the works of Yusuf and Salami (2009)18:

Tr
m

=
+N 1 	 (6)

where Tr is the return period, m is the series of events ranking, 
and N is the number of observations in the series. The probabil-
ity of occurrence of the inflow was computed using equation (7):

P
Tr

=
1 	 (7)

The reduced variate (YT) was computed as in equation (8); this 
is in accordance with the works of Yusuf and Salami (2009)18:

Y PT = − − −ln ln( )( )1 	 (8)

where YT is the reduced variate and P is the probability of 
occurrence of an event.

The values of the mean and standard deviation of the 
inflows obtained were substituted into the general Gumbel 
equation (9) to obtain a new Gumbel distribution (EV1) 
model (equation (9)) for the reservoir inflows. This equation 
is used to simulate the inflows of the reservoir and to deter-
mine its best fit:

Q yT T= +817 14 675 28. . 	 (9)
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The computed reduced variates YT obtained were then sub-
stituted into equation (9) to obtain the simulated values of 
inflow QT. This is to ascertain the fitness of the model and 
whether the data are significantly correct.17 The R2 and r values 
were used to determine the degree of correlation and linearity 
between the model prediction and the observed.

LN distribution.  The LN probability distribution was applied 
by first finding the seasonal mean of the inflow and then deter-
mining the log of the mean values and using equation (10) to 
evaluate the seasonal standard deviation of the inflows. The 
standard variable z was determined using equation (11), and 
the z values obtained were used to determine the K values from 
the probability distribution table:

σ =
−
−









∑ x x

n 1

2
	 (10)

The standard variable, ie, z values, was estimated using the 
relationship, as shown in equation (11):

z x
=

−log log µ
σ

	 (11)

where logx is the logarithm of the inflows and logµ is the sea-
sonal mean of the inflows (Zhou, 2000)20. The general rela-
tionship for the LN probability distribution (equation (12)) 
was then used as in the works of Yusuf and Salami (2009)18:

LogQ Q KT Q= +log logσ 	 (12)

where logQ  depicts the mean of the log of inflow.
The values of average mean of the log of the inflows and the 

standard deviation obtained were substituted into equation 
(12), and a new LN probability distribution model for the res-
ervoir inflows was obtained, as shown in equation (13):

LogQ KT T= +2 8764 0 5384. . 	 (13)

The obtained values of KT were then substituted into equa-
tion (13) to have the simulated values of the logQT. This was 
done to test the fitness of the LN distribution model.

Normal or Gaussian distribution.  The general relationship for the 
normal probability distribution is given in equation (14) (Busari 
et al, 2013)11. The normal probability distribution was deter-
mined by first finding the averages of the reservoir inflows and 
then determining the standard variable (z) using equation (15):

Q Q Kt AV= + σ 	 (14)

Z x
=

− µ
σ

	 (15)

The z values computed were used to obtain K values from 
normal probability distribution table. The values of the average 
inflow and standard deviation were substituted into equation 
(14) to obtain a new normal probability distribution model 
(equation (16)) for the reservoir inflows:

Q Kt = +1206 72 865 7371. . 	 (16)

The obtained K values were then substituted in equation 
(16) to obtain the simulated values of the inflow after which 
the observed and the simulated values of the inflows were plot-
ted to test the fitness of the developed normal probability dis-
tribution model.

Testing of the Probability Distribution Models
The acceptability and reliability of the developed probability 
distribution models were tested using statistical tests (goodness-
of-fit test), such as χ2, probability plot coefficient of correlation 
(r), coefficient of determination (R2), and standard error of esti-
mate (SEE). The equations, respectively, are presented below:

χ2 test

The expression for the analysis of χ2 is as given in equation (17):

χ2
2

1

=
−( )

=
∑

O e
e

j j

jj

N
	 (17)

where O is the observed flow, e is the predicted flow, N is the 
total frequency, and the level of confidence is 95%.

Probability plot coeff icient of correlation (r)

The following equation was adopted for the estimation of the 
probability plot coefficient of correlation (r):

r
Q Q

Q Q
est mean

obs mean

= ±
−( )
−

∑
∑

2

2( )
	 (18)

where Qest is the value of inflow estimated with the probability 
function, Qmean is the mean value of the observed inflow, and 
Qobs is the value of the observed inflow.

Coefficient of determination (R2)

According to Dibike and Solomatine (1999)21, the coefficient 
of determination (R2) is given as in equation (19). This is to 
determine the strength between the observed inflow and the 
predicted inflows:

R E E
E
o

O

2 =
− 	 (19)
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where E Q Qo i obs i meani
= −

=∑ ( )( ) ( )
2

1

N
and E=∑N

i (Qi(obs)–Qi(est))2

Qi(est) is the model output in the ith time period, Qi(obs) is the 
observed data in the same period, and Qi(mean) is the mean over 
the observed periods.

Standard error of estimate

The relationship in equation (20) was adopted in the estima-
tion of SEE:

SEE
N

=
−
−

1
2

2r 	 (20)

Results and Discussion
The results of the fitted probability functions, ie, Gumbel 
(EVI), LN, and N for the monthly inflow, are presented below.

The reservoir inflow data were evaluated using various 
probability distribution functions to determine the best fitting 
model; the mathematical representations of the evaluated 
probability functions are presented in Table 1. Also, for the 
purpose of theoretical determination of best-fit probability 
function, statistical tools (goodness-of-fit test) were adopted. 
The results of goodness-of-fit tests and best-fit models are pre-
sented in Table 2.

Figures 2 to 4 compare the average monthly inflow of 
Kainji Reservoir with the model-predicted inflow of the res-
ervoir. The distribution models are the EVI, LN, and N dis-
tribution. The inflow at Kainji Reservoir station has values of 
χ2, R2, r, and SEE as 0.0054, 0.99998, 0.95518, and 0.00876, 
respectively, for Gumbel distribution. From this result, the 
value of the ratio of calculated χ2 to the χ2 table is less than 
1, and the model gives the correlation coefficient (r) value of 
0.955518, R2 value of 0.99998, and SEE value of 0.00876 

Table 1.  Model equations for the probability distributions.

S. no Hydropower Dam Probability distribution Developed equation

1 Kainji Gumbel (EVI) Q yT T= +817 118 675 28. .

2 Log-normal Q KT T= +2 8764 0 5384. .

3 Normal Q Kt T= +1206 718 865 7371. .

Abbreviation: EVI, extreme value type I.
QT is the expected discharge associated with a particular probability of occurrence; YT is the reduced variate; KT is selected from the normal 
distribution table.

Table 2.  Results of goodness-of-fit tests and the selected best-fit model for the inflow.

S. No. Inflow Best-fit distribution model χ2 R2 r SEE

1 Gumbel 0.0054 0.99 0.96 0.00876

2 Log-normal 0.31 0.85 0.79 0.02

3 Normal 1376.39 0.68 0.75 0.056

SEE: standard error of estimate.

Figure 2.  Relationship between average observed inflows and Gumbel (EVI) simulated inflow.
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Table 3.  Inflow values (Gumbel distribution) with return periods.

Months Average inflow (m3/s) Return period (Tr) Probability of 
occurrence

Extreme value type I (EVI) 
simulated inflow (m3/s)

April 131.9457 2.60 .384615 558.6428

May 81.45882 1.85 .538462 181.0456

June 122.2636 1.44 .692308 393.7838

July 655.9912 1.30 .769231 847.8401

August 1862.457 1.08 .923077 1720.657

September 2743.942 1.18 .846154 2522.331

October 2030.267 1.63 .615385 2025.489

November 1548.73 4.33 .230769 1140.973

December 1708.727 13.0 .076923 1492.682

January 1617.771 6.50 .153846 1305.048

February 1334.489 2.16 .461538 990.8207

March 642.5718 3.25 .307692 706.1196

Figure 3.  Relationship between observed inflows and log-normal simulated inflow.

Figure 4.  Relationship between observed inflows and normal simulated inflow.
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which shows that the model is strong and there is a strong 
linearity between the observed and the predicted reservoir 
inflow. The same applies to the LN distribution except for N 
distribution where the χ2 value is greater than 1 (Table 2). 
Also, based on the graphical comparison (Figures 2-4), the 
EVI distribution model is a better fit than the other proba-
bility distribution models. Hence, EVI is the most appropri-
ate model for the reservoir inflow at Kainji Reservoir. The 
flow in the month of May is low as a result of incipient rain-
fall within the month. The margin between the observed and 
simulated data could be as a result of errors in course data 
taken (Table 3).

Conclusions
Owing to the purpose of identifying a more realistic mode-
ling scheme for the inflow series, assessment of the stochas-
tic characteristics was done to be able to understand the 
dynamics of monthly series. Sequel to this, various probabil-
ity distribution models were fitted to the reservoir inflow 
records to evaluate the model that is most appropriate for 
prediction at Kainji hydropower station in Nigeria. Three 
models were established for the hydropower station, and the 
most suitable model was selected based on the goodness-of-
fit tests. The EVI model was found to be appropriate for 
Kainji Reservoir.
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