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The application of game theory could provide revolution-
ary solutions to the military tasks of sensor and resource man-
agement. In abstract, games can be thought of as a series
of strategic decisions, in which a player’s action at any point
is determined in the context of alternatives available to other
players. They can be cooperative or adversarial. Crucially,
players are often required to make decisions in the absence of
communication with, or knowledge of, other player’s strategies.
This has obvious parallels with scenarios where own forces must
maximise an outcome but are unable to communicate (e.g. co-
operative identification of a target), or where the unpredictable
actions of an adversary cannot be well-modelled (e.g. mitiga-
tion of RF spectrum denial techniques).

Game theory provides a formal mathematical framework
for analysing conflict and cooperation between intelligent ra-
tional decision makers. An important concept in game theory
is Nash equilibrium [30], [31], a balanced state in a game where
no player has any incentive to deviate from their chosen strat-
egy after considering all of their opponent’s potential strategies.
This means that at the Nash equilibrium, no player can ben-
efit by unilaterally deviating from their strategy. Practically,
decisions can be made which, while not optimal, will have a
predictable impact.
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Table 4.1: Simple cooperative sensor game payoffs. Rows give actions
available to sensor 1 and columns actions for sensor 2. Each pair of
numbers give the rewards for (sensor 1, sensor 2).

Sensor 2 observes
Target 1 Target 2

Sensor 1 observes
Target 1
Target 2

(10,10)
(4,1)

(1,4)
(5,5)

A pair of toy examples which demonstrate, in small part,
this power and nuance are provided by the following simple
games. They involve two illuminating sensors, who cannot
communicate with one another, tasked with detecting two tar-
gets in a scene. One target is high value, the other less so. In
the first instance it is presumed that if both sensors go after the
same target then their cooperative illumination will increase
the chances of detection, since bi-static or MIMO techniques
can be used (see e.g. chapter 3). If only one sensor points at
a target, the chances of detection for that target are reduced.
This game is summarised in table 4.1 using arbitrary payoffs1.
Target 1 is higher value than target 2. In this instance there are
a pair of Nash equilibria, where both sensors point at the same
target. Although observing target 2 is sub-optimal, no benefit
would be derived by either sensor unilaterally altering its strat-
egy. It’s worth noting that the ‘socially optimal’ outcome isn’t
always an equilibrium state. This can be seen by way of a sec-
ond example where sensors interfere with each other, reducing
the benefit of observing the same target. This is enumerated
in table 4.2 simply by reducing the joint reward for observing
the same target2

It is evident from table 4.2 that the socially optimal out-

1This is a variant of the canonical coordination game, stag hunt.
2Based on the prisoner’s dilemma
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Table 4.2: Simple interfering sensor game payoffs. Rows give actions
available to sensor 1 and columns actions for sensor 2. Each pair of
numbers give the rewards for (sensor 1, sensor 2).

Sensor 2 observes
Target 1 Target 2

Sensor 1 observes
Target 1
Target 2

(3,3)
(4,1)

(1,4)
(2,2)

come is for both sensors to observe target 1. This is not an equi-
librium state, however. Only where both sensors observe target
2 will no player derive benefit by switching to observe target
1. This is the only Nash equilibrium in this game. Therefore,
regardless of the other player’s action, a player in this game
should observe target 2 even though mutual cooperation would
provide a better utility for both players. This is the best out-
come for each player given that they do not know what the
other will do. The power of game theory is that it provides
principled methods to arrive at such equilibria and so derive
beneficial strategies in the absence of communication.

4.3.1 Exploiting game theory for defence

Game theoretic ideas have applications in radar, where wave-
forms can be chosen for a particular purpose (e.g. to max-
imise the detection of a target). These choices must often be
made in the absence of communication with allies or in the
presence of adversaries. This concept has its most potent ex-
ample in radar jamming, an adversarial game where players
seek to minimise their detectability or maximise their chances
of detecting an adversary. Wider applicability is possible in
multi-function radar, adaptive beamforming, passive bi-static
or multi-static design under uncertainty, imperfect sensor mea-
surements and radar clutter. These applications are all relevant
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to the DE&S Future Combat Air System (FCAS) programme
where decisions on individual sensing options will need to be
made autonomously and in the presence of adversaries.

Game theory can also be used for resource allocation and
detection in sensor networks. Here, tactics to dynamically op-
timise detection performance in a network where nodes (adver-
sarial or coalition) are unaware of each other’s strategies, but
react to each other’s actions, must be derived.

UDRC researchers have used game theory for analysing in-
teraction of sensors in a network and to develop distributed
resource allocation techniques. As in the toy examples, the so-
cially optimal outcome can be obtained if there is cooperation
between sensors, and in these cases, a centralised resource allo-
cation based on convex optimisation3 will provide this solution.
However, a centralised approach to resource allocation may not
be desirable or feasible if there is no communication between
sensors or if the communication links are intermittent or inse-
cure. The UDRC work therefore focussed on autonomous de-
centralised resource allocation schemes and used game theory
as the means to address these problems. As has been seen, the
game-theoretic method may not necessarily provide the glob-
ally optimal solution. It is designed, however, to provide a ro-
bust solution. In addition to resource allocation techniques, the
UDRC team also developed game-theoretic methods for sensor
detection-to-track association for multi-target tracking. This
problem is a combinatorial optimisation problem (c.f. §4.2).
Game theory was shown, by UDRC researchers, to provide an
efficient method to solve this problem and to outperform many
other methods in terms of computational complexity [32], [33].

3Optimisation of a so-called convex function, where there is a single
maximum or minimum
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Game theoretic resource allocation techniques

UDRC researchers developed distributed resource allocation al-
gorithms using methods based on so-called potential games4.
These were tested on waveform allocation problems and showed
improved performance measured in terms of signal to distur-
bance ratio compared to benchmark techniques [34], [35]. The
uniqueness of an equilibrium was proved in [34] for a scenario
where allied, non-communicating radars aim to select optimal
waveforms by maximising signal to disturbance ratio. This
demonstrated sensors interacting strategically without the need
to exchange any information. To quantify the performance, a
sensor network consisting of three groups of radars was sim-
ulated. The radars within the same group could coordinate
their waveform allocation, but they could not communicate
with radars in other groups.

The UDRC has also developed power allocation techniques
for distributed sensors [36], [37]. The researchers performed
extensive Nash equilibrium analysis to demonstrate existence
and uniqueness of equilibrium power allocation. This rigor-
ous mathematical analysis demonstrated that an active sensor
could use signals transmitted by others in the same group as
signals of opportunity [38]. Hence, without explicit coordi-
nation, certain sensors need not illuminate targets but could
act purely passively, thus deriving military benefit through
resource saving and maintaining covertness. Specifically, in
the case when exactly n radars in a group of M achieve the
desired signal-to-interference-plus-noise ratio (SINR), then at
least M −n radars in that cluster remain inactive. The sensors
that are inactive are determined only by the target and clutter
characteristics, and are independent of the actions of the other
groups and the corresponding clutter. This observation leads
to the conclusion that the identity of the illuminating source is
not part of the game. This observation was key for the proof of

4This is a game in which the incentive of each player can be expressed
by the same mathematical function.
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Nash equilibrium [38]. UDRC researchers showed that at the
Nash equilibrium one of the radars in each group opts to re-
main silent, i.e. zero transmission power, but uses signal from
the other radar in that group as the signal of opportunity to
obtain the desired SINR for target detection [39].

Multiple sensors and multiple targets

Beamforming techniques for two-dimensional phased-MIMO ar-
rays have been developed in [40], [41]. The UDRC further ex-
tended the power allocation and beamforming methods for a
sensor network with multiple targets, consisting of both surveil-
lance and tracking sensors using non-cooperative, partially co-
operative and Stackelberg game5 methods [42]. The primary
objective of each player is to minimise its transmission power
while attaining an optimal beamforming strategy and satisfy-
ing a certain detection criterion for each of the targets. Initially,
UDRC researchers considered a strategic non-cooperative game,
where there is no communication between the various players.
Here each sensor selfishly determines its optimal beam and
power allocation. This was refined into a more coordinated
game incorporating a pricing mechanism. Introducing a price
in the utility determination for each player enforced a minimi-
sation in the interference induced in other sensors and increased
the social utility of the system. Subsequently, the UDRC team
formulated a Stackelberg game by adding a surveillance sensor
to the system model, which played the role of the leader, with
the remaining sensors as followers. The leader applied a pricing
policy for interference charged to the followers aiming at maxi-
mizing its profit while keeping the incoming interference under
a certain threshold. The proof of the existence and uniqueness
of the Nash equilibrium for each scenario was also presented in
[42].

5A Stackelberg game is a type of leader-follower game; a game in which
one player (the leader) makes a move which is observed by the other players
(followers) who then react to this move.
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Robust waveform design for cognitive radars

The UDRC team developed robust waveform techniques for
multi-static cognitive radars in a signal-dependent clutter en-
vironment [43], [44]. In cognitive radar design second order
statistics related to clutter are often assumed to be known.
This is unrealistic, as exact knowledge of the clutter param-
eters is difficult to obtain in practical scenarios. Hence this
work addressed waveform design in the presence of uncertainty
in the clutter environment, and developed both worst-case and
probabilistic robust waveform design techniques. As existing
methods in the literature are over-conservative and generic,
UDRC researchers proposed a new approach which directly in-
corporated uncertainty in the radar cross-section and Doppler
parameters of the clutter. Using appropriate (Taylor series)
approximations, a clutter-specific stochastic optimisation was
made that, while maximising the SINR of a particular radar,
was able to ensure the other radars in the network reliably
achieve a desired SINR [45].

Game theoretic data association for multi-target

tracking

UDRC researchers developed a game theoretic approach to
solve the data association problem for a varying number of
targets in multi-target tracking scenarios [32], [33]. This algo-
rithm used a filtering method to generate initial track hypothe-
ses. The game theoretic method was then used to perform tar-
get to track association. The use of a game theory allows for
computationally tractable data association in very complicated
scenarios.

The UDRC team developed two tracking methods based on
sequential Monte Carlo methods to produce state estimates of
multiple targets [47], [48]. A further innovative multi-target
tracking algorithm was developed, allowing multiple extended
targets to be tracked [49]. This is particularly useful for tar-
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Figure 4.8: Results of game-theoretic data association. Solid black lines
(visible beneath the coloured lines) represent the true flight paths on
the range and radial velocity maps obtained from a live flight tracker
[46]. The coloured lines denote the output of the tracker and the game-
theoretic data association method.

gets with irregular shapes or extensions which produce multiple
detections per scan.

To obtain target to track associations the problem of data
association was formulated as a game between multiple and
varying numbers of tracks (the players). To exercise the method,
a passive radar experiment was devised. Aeroplanes were de-
tected using signals of opportunity (TV transmitters) together
with a low-cost antenna and an SDR to capture the signals.
The UDRC technique achieved good target to track association
in [33]. Figure 4.8 shows results obtained from the experiment.
Notice that there are a total of six targets throughout the dura-
tion of the experiment. Three of the targets (cyan, green, red)
have a U-like trajectory in range correspond to targets moving
in a straight line past the closest point to the passive radar
receiver. Zero (radial) velocity (bottom graph) corresponds to
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when targets are closest in range to the transmit-receive set-up.
The other three targets have irregular trajectories indicating
targets moving away after having taken off, or taking position
to land at a local airport. The range and radial velocities of
the true flight path (black) and the target-state-estimate after
game-theoretic data association (GTDA: coloured) are shown.
These results demonstrate that the proposed GTDA technique
is able to properly associate the target state estimates of dif-
ferent targets with their corresponding tracks [32].

4.3.2 Enabling contract on temporal anomaly
detection

Researchers at Loughborough participated in and won the tem-
poral anomaly detection challenge set during the anomaly de-
tection workshop in 2014 (see table 1.6). They were subse-
quently contracted to develop that submission further in col-
laboration with Dstl’s Counter Terrorism and Security Divi-
sion. Their solution used model-based spectral estimation and
machine learning methods to automatically detect anomalies in
temporal data. The new methods employed various statistical
measures, including higher-order statistics based on support
vector machines, to detect anomalies without any prior knowl-
edge of their characteristics (i.e. in the absence of any sig-
natures). The techniques proposed by the UDRC researchers
were able to determine the start and end times of the anomalies
(as required) and their frequencies with the desired accuracy.
The algorithms demonstrated the ability to detect anomalies in
low-to-moderate SNR environments, and when the underlying
frequency of the signal drifted.
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