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Abstract—This paper describes a wind turbine (WT) condition
monitoring technique that uses the measurement of stator current
and rotational speed to derive a fault detection signal. The
detection algorithm uses a Kalman filter (KF) to extract and track
the strength of particular frequency components, characteristic
of faults in the stator current signal. This has been done by
an extensive simulation studies to develop an on-line detection
and monitoring of mechanical faults in permanent magnet
synchronous generators (PMSGs), recentlly used in modern
variable-speed WTs. The model is developed and validated with
operational data of five 2.5MW turbines were recorded by the
supervisory control and data acquisition (SCADA) system over
the period of 1 year. The simulation results show that the KF
algorithm can provide a reliable indication of the presence of
a fault with low computational times, from director indirect-
drive fixed- or variable-speed WTs. The proposed algorithm
can indicate the severity of the fault, where in contrast with
traditional methods, they failed to extract the fault features
from non-stationary current measurements, due to variable-speed
operating conditions of WTs.

Index Terms—Wind turbine, Generator, Condition monitoring,
Current Signature, Fault signature, Fault detection, Diagnosis.

I. INTRODUCTION

Wind energy has been one of the fastest growing power
sources in the world over the last two decades. The worldwide
wind capacity reached 392.927 GW by the end of June 2015,
out of which 21.678 GW were added in the first six months
of 2015 [1]. The cost of operations and maintenance (OM)
has been shown to be anything between 15% and 35% of the
cost of energy from wind [2], and there is a great demand to
reduce OM cost. The goal can be reached by detecting and
identifying the fault of WTs in early stage which gives the
operator sufficient time to make more informed maintenance
decision. Traditionally, WTs condition monitoring method
is supervised using vibration analysis but measuring such
mechanical quantities is often expensive. Indeed, vibration
sensors such as piezoelectric accelerometers and associated
load amplifier are often expensive. Moreover, the ability of a
clear detection of mechanical faults by vibration measurements
potentially depends in the sensor locations [3]. For example,
accelerometers need to be mounted near to each possible faulty
component of the WT. The technique is also not ideally suited
to all WT types and faults [4]. It has been reported in a
recent reliability survey [5] that WT electrical components
have a higher failure rate than the mechanical components.
As the measurement of stator currents are already available

for control purposes which means no additional sensors or
data acquisition devices are needed [6], so the detection based
on the measurement of stator currents would be beneficial
and could be more comprehensive, simpler, and cheaper than
other techniques. However, there are challenges in using
current measurements for WT condition monitoring and fault
detection. First, it is a challenge to extract WT fault signatures
from non-stationary current measurements, due to variable-
speed operating conditions of WTs [7]. Moreover, the useful
information in current measurements for WT usually has a low
signal to noise ratio, and thus very difficult to extract without
a dedicated signal processing [8].

Generally, the majority of WT condition monitoring and
fault diagnosis techniques have employed the Fourier Trans-
form (FT) to detect a fault from the stator current [9]. The
limitations of the direct application of the Fourier transform
methods, and their inability to localize a signal in both the
time and frequency domains, was realized very early on in
the development of radar and sonar detection. Thus, a number
of more advanced time-frequency analysis techniques were
developed in recent years in order to extract fault signatures
from the monitored signal. Among these newly developed
methods, the short time Fourier transform (STFT) also known
as windowed Fourier transform which has been widely used
to compute the spectrogram from time signal which shows the
spectral density of a signal varying with time [10]. Although
the STFT can be used for analyzing transient signals using a
time-frequency representation, it fails to give detailed infor-
mation of the fault level because the STFT can only analyze
the signal with a fixed sized window for all frequencies,
which leads to poor frequency resolution. Wavelet transform is
another well-known method for feature extraction in the area
of fault detection and diagnosis [11]. Unlike the STFT with a
fixed window function, the wavelet transform involves a varied
time-frequency window and can provide good localization
property in both the time and frequency domain, but it suffers
from inevitable issues of low resolution, interference terms,
border distortion, and energy leakage [12].

The KF algorithm is a relatively new method for time-
frequency analysis that is able to track the instantaneous am-
plitude and frequency of nonlinear and non-stationary signals
[13]. Unlike, short-time Fourier transform and wavelet trans-
form, the KF is based on an adaptive algorithm and does not
use any windowing technique. Therefore, no prior knowledge



of the signal is required to implement the KF. Consequently,
the trade-off between time and frequency resolutions is less
controversial and can be used for real-time frequency tracking.
Recently, the KF has been found to be powerful and successful
in condition monitoring of permanent magnet synchronous
machines operating under various speed and load conditions
[14], and in detection of half- as well as full broken single rotor
bar fault of a squirrel-cage induction machine under various
loading conditions and speeds using stator current data [15].
This paper is a continuation of the preliminary investigation
into the protection of PMSG-based WTs presented in [7]. The
current work investigates the application of the KF to detect
mechanical failures in WTs using generator stator current
signals. Successful utilization of stator currents represents a
cost-effective, non-intrusive condition monitoring and fault di-
agnosis technique for retrofitting existing condition monitoring
methods for WTs. To verify the effectiveness of the proposed
algorithm, a WT simulation model is developed and validated
with operational data of five 2.5MW turbines were recorded by
the SCADA system over the period of 1 year. The simulation
results demonstrate that the proposed method is effective in
detecting mechanical faults in a variable speed machine.

II. KALMAN FILTER FOR FAULT DETECTION AND
TRACKING

A system whose physical process can be mathematically
modelled as it changes or evolves over time is known as a
dynamical system. In making inference for such a system,
two models are usually considered, a state model and a mea-
surement model. The problem of fault detection and tracking
using electrical signals from a WT can be related to dynamical
systems. This is so due to the fact that the operating state of
a WT changes or evolves over time depending on whether the
machine is operating at below the rated wind speed or above
the rated, whether a fault occurs or not, whether the fault is
transient or permanent and so on. The two dynamical system
models mentioned above are used with the KF and applied to
our problem.

The Kalman filter (KF) can be thought of as a sequential
minimum mean square error (MMSE) estimator of a given
signal (for example, electrical signals from a WT that is
embedded in noise, where the signal is characterized by a
state model [16]. The state and measurement models used in
our problem are described next.

A. State Model

The state model is otherwise known as the state evolution
model. In our problem, it describes the motion model of a
given frequency profile, i.e. how the amplitude of a frequency
changes from an observation time % to next k 4 1.

x, =Fxi_1 +vg (1

where Xx; denote a normal state with dimension dx; and
xi = [f, A]T, where f and A denote frequency and amplitude
respectively. £ = 1,2,... is the time instant of the discrete
model. F is a dx; matrix that define the linear function and is

known as state transition matrix. v; is a dx; zero mean and
an independent and identically distributed (i.i.d.) process noise
vector with a dxg covariance matrix Q..

B. Measurement Model

The measurement model maps the normal state from the
state space onto the observation space. In our problem, it is
given as:

z;, = Hx;, + ng 2

where z;, denote the measurement received at time k£, H is a
matrix that define the transformation function and is known
as the transformation matrix. ny is a zero mean and an i.i.d.
measurement noise vector with covariance matrix Cy.

In order to implement the KF in our fault detection and
tracking problem, we assume that both the state and measure-
ment models are linear and Gaussian as evident from (1) and
(2). Following this assumption, we formulate the KF algorithm
for our problem thus:

Xpik—1 = FXp 151 3)
Myji—1 = Qp + FMy_q 1 F" 4
Xpk = Xpjp—1 + Kg(—€x) &)
Xp_1|k—1 = Xk (6)
My, = My p—1 — KpgHM 1 (7
where
€L =X — Zi (8)
Py = HMy ;. H' + Cy ©)

K; = M, H'P;! (10)
where z;, is the signal from the WT, and x;, is the expected
normal state. € denote the measurement innovation and P
is covariance of the innovation term e, with K being the
Kalman gain. For a matrix B, BT is its transpose. Equations
(3) and (4) are the KF prediction equations and (5) and (7)
are the update equations.

Notice in (5) that the Kalman gain, K is multiplied by
the negative of the innovation term, €. This is because in
our approach, we are interested in detecting whether a given
normal state, X, = [f, A]” changes due to fault by tracking xy.
When a fault occurs, it will be captured by the KF algorithm
and both the fault frequency, f and amplitude, A as well as
the time & of the fault can be observed. The Implementation of
the KF algorithm for fault detection and tracking is discussed
next.

C. Implementation

At time k, observed time series electrical signals obtained
from the WT are converted to the frequency domain through
Fourier transform. Various known and expected fault frequen-
cies are selected along with their acceptable normal operating
amplitudes to form the normal state vector, X! = [f,, AT,



where n = 1,--- ;N and N is the number of frequency-
amplitude pair selected for monitoring. N banks of KF al-
gorithms using (3) to (7) are deployed to perform the fault
detection and tracking.

The fault detection and tracking for the n-th frequency-
amplitude pair is captured in XZI  of eqn. (5). A 2D plot of the
amplitude, A,, of the n-th frequency-amplitude pair against
time, (i.e. k) from the tracked normal state, X}, can easily
be used to visualize the fault profile of the n-th frequency-
amplitude pair having frequency, f,. A rise in amplitude from
the normal state indicates the occurrence of a fault (of which
the fault frequency, amplitude and time of occurrence are
contained in XZ\k)' If this fault is transient, the observed rise
will eventually fall and if the fault is permanent or fixed, the
rise will remain constant or increase further depending on the
severity of the fault.

III. SIMULATION

In order to verify the performance of the fault detection
and tracking algorithm, a general model for representation of
variable speed WTs was implemented in MATLAB/Simulink,
including wind speed, rotor, pitch control system, drivetrain
and generator model [7]. The model has been developed to
facilitate the investigation of condition monitoring and effec-
tive algorithm development for fault detection. The measured
wind speed data recorded by 2.5MW WT SCADA system has
been used as model input to validate the response of the WT
model. Figure 1 shows the response of the model to measured
generator speed. It is clear the model is in good agreement
with the measured data.
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Fig. 1: Example of model validation considering generator
speed.

Rotor eccentricity in a variable speed WT with a permanent
magnet synchronous generator (PMSG) is used as an illustra-
tive example to investigate the use of the KF algorithm with
the aim of developing knowledge based fault detection method
for performing online fault detection in variable speed WTs.
During rotor eccentricity, certain sideband harmonics around
the fundamental frequency in the machine current signal occur
and their amplitude increases proportionally with the fault
level. It was experimentally proven [6] that rotor eccentricity
faults actually give rise to a sequence of such sidebands given
by:

fe= <1iml>.ff (11)
p

Where f. and f; are the rotor fault and fundamental
frequency components, respectively, k, is an integer (k,=1,
2,3, ...) and p is the number of pole pairs. In order to observe
the excitation of sideband harmonics, known as fault signature
frequencies, due to the fault, the model was run at constant
sub-synchronous, synchronous and super-synchronous speeds,
respectively. Figure 2 shows the stator current spectra for the
faulty machine operating at three operational points under
faulty rotor conditions. One can notice components with fre-
quencies at 60 Hz and 40 Hz, which are intentionally simulated
to be present in the spectra as a dynamic eccentricity. Other
spectral components given by the Equation (11) are generated
by the fault. However, it is clear that the fault signature
frequencies are not consistent across the results. This is mainly
because the fundamental frequency in PMSGs is proportional
to the rotational speed so that the fault signature frequencies
are shifted respect to the rotational speed value, which means
that the current signals acquired from the generator terminals
of the WTs are always non-stationary.
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(c) constant super-synchronous speed

Fig. 2: Stator current spectra for the healthy PMSG at three
operational points.

Generally, WTs based PMSGs operate in variable-speed
conditions owing to varying wind speeds. As a consequence,
the fault signature frequencies are buried in wide-band dom-
inant frequency components (i.e. harmonics due to variable
rotational speeds) of the current signal that are irrelevant to
the fault as shown in Figure 3. To solve this problem, the Kf



algorithm is employed to track the magnitude of the lower
fault signature frequency (LFSF) and upper fault signature
frequency (UFSF),given by the Equation (11), over time form
the non-stationary generator current signal.

%‘“%HWWWWM i oo ‘

|
0 50 100 150 200 250 300 350 400
Frequency (Hz)

Fig. 3: Stator current spectra for the faulty PMSG at variable
speed.

IV. FAULT FEATURE EXTRACTION

A novel algorithm is developed to employ the KF for
extracting the fault features among other wide-band dominant
frequency components of the current signal that are irrelevant
to the fault due to variable rotational speeds. To solve this
problem, a non-stationary current signal which recorded for
300 seconds is firstly splitted into 2 second intervals leading
to 150 data sets. The data sets are transformed to frequency
domain using the Fast Fourier Transform (FFT) algorithm.
The period of two seconds is chosen as the shortest possi-
ble interval with a sufficient resolution frequency domain to
capture all frequency components of interest. Secondly, the
fault-related features are then extracted from the FFT spectrum
of the converted stationary current signal to reconstruct a new
signal for quantitative health condition evaluation of the WT.
After completing the previous steps, the 150 data sets have
been applied to the KF algorithm at variable speeds at different
fault conditions as follow:

o Permanent fault with a fixed level during the entire time
simulation,

o Transient fault during the time period from 50sec to 100
sec,

e Variable fault level increasing linearly and proportionally
with time simulation,

A process is developed to extract the maximum magnitude
of particular frequency among fault signature frequencies for
each data set. Then the magnitude of the frequencies of interest
has been tracked over time as shown in Figure 5. By doing
so, it is possible to create simple graphs tracking the fault
signature frequencies over time as shown in Figure 5. The
results can be visually inspected to verify the presence of the
fault in question as well as to identify its severity. The KF
algorithm innovatively explores the impacts of faults on stator
current signatures, in the sense of variations in time domain
over frequency ranges, rather than the changes at a specific
frequency or several specific frequencies. The proposed algo-
rithm is especially useful for cases where no specific frequency
components are available in the measured signals, or when
the characteristic frequencies are non-stationary, and thus not
directly observable.
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Fig. 4: Extracting the magnitude of the fault signature frequen-
cies over time at different fault conditions.
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Fig. 5: Tracking the fault signature frequencies over time at

different fault conditions.

V. CONCLUSION

The KF-based algorithm is capable of detecting mechanical
faults based on time-frequency analysis by tracking the in-
stantaneous amplitude and frequency from the current signal.
It can be directly applied to the nonlinear and non-stationary
signals, without prepossessing to convert the characteristics
frequencies to corresponding constant values. It overcomes
the drawbacks of traditional frequency-based fault detection
techniques that particular characteristic frequencies related to
the faults should be pre-acquired.
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