
978-1-7281-5467-1/20/$31.00 ©2020 IEEE

Comparative Analysis of Classical and Post-

quantum Digital Signature Algorithms used in

Bitcoin Transactions

1Noel, Moses Dogonyaro

Cyber Security Science Department

Federal University of Technology,

Minna, Nigeria
 moses.noel@futminna.edu.ng

2Waziri, Onomza Victor

Cyber Security Science Department

Federal University of Technology,

Minna, Nigeria

victor.waziri@futminna.edu.ng

4Ojeniyi, Adebayo Joseph

Cyber Security Science Department

Federal University of Technology,

Minna, Nigeria
ojeniyia@futminna.edu.ng

3Abdulhamid, Muhammad Shafii

Cyber Secuiryt Science Department

Federal University of Technology,

Minna, Nigeria
shafii.abdulhamid@futminna.edu.ng

5Okoro, Malvis Ugonna

Cyber Security Science Department

Federal University of Technology,

Minna, Nigeria

malvisokoro@gmail.com

Abstract - The use of public key cryptosystems ranges from

securely encrypting bitcoin transactions and creating digital

signatures for non-repudiation. The cryptographic systems

security of public key depends on the complexity in solving

mathematical problems. Quantum computers pose a threat to

the current day algorithms used. This research presents

analysis of two Hash-based Signature Schemes (MSS and W-

OTS) and provides a comparative analysis of them. The

comparisons are based on their efficiency as regards to their

key generation, signature generation and verification time.

These algorithms are compared with two classical algorithms

(RSA and ECDSA) used in bitcoin transaction security. The

results as shown in table II indicates that RSA key generation

takes 0.2012s, signature generation takes 0.0778s and signature

verification is 0.0040s. ECDSA key generation is 0.1378s,

signature generation takes 0.0187s, and verification time for

the signature is 0.0164s. The W-OTS key generation is 0.002s.

To generate a signature in W-OTS, it takes 0.001s and

verification time for the signature is 0.0002s. Lastly MSS Key

generation, signature generation and verification has high

values which are 16.290s, 17.474s, and 13.494s respectively.

Based on the results, W-OTS is recommended for bitcoin

transaction security because of its efficiency and ability to

resist quantum computer attacks on the bitcoin network.

Index Terms – Post-Quantum Cryptography, Security,

Hash-based Signatures,

Cryptocurrency

I. INTRODUCTION

Information and Communication Technology has
transformed the way businesses are been carried out.
Computers and computing devices are been developed to be
smarter and intelligent nowadays. In the same vein,
networks are growing rapidly such that people are connected
globally which makes communication easier and convenient
for doing business. These developments led to the
emergence of many online shopping websites such as e-bay.
Other digital money transfer intermediaries such as Paypal
have also emerged.

Bitcoin is an electronic currency that is been used today
in online business. Bitcoin is a peer-to-peer (p2p) network
that is manage by all the peers in the network and controlled
by nobody [9]. Bitcoin cryptocurreny does not require a
third party agent (such as a central authority) for its

regulation. Due to its assumed privacy and anonymity,
bitcoin is widely accepted digital currency. Its security relies
on the application of cryptography [3]. The algorithm used
by bitcoin is the Rivest Shamir Adleman (RSA) and the
Elliptic Curve Digital Signature Algorithms (ECDSA).

In a p2p network, digital signatures play a very
important role in making sure the transactions from the
sender and the receiver are well secure. This is achieved by
numerous methods such as time-stamping of trusted
transactions in the bitcoin ecosystem. This protocol is
efficient using classical algorithms installed on them.
Research work done by [8] proved that Shor quantum
algorithm is capable of breaking the security elements of
ECDSA and RSA in polynomial time using large quantum
computer machines. The insecurity in these algorithms
prompt for urgent research on the best post quantum
algorithm that could resist quantum attacks on the bitcoin
network and other devices that uses ECDSA and RSA
algorithms [5]. The idea of hash-based digital signature
algorithms came onboard. This research considered two
hash-based signature schemes- Winternitz One-Time
Signature (W-OTS) and Merkle Signature Scheme (MSS),
then compared them with ECDSA and RSA in terms of key
generation time, signature generation time and signature
verification time respectively [7].

The research is organized in this order: part II
summarizes related literatures; part III, IV, V, and VI
analyzed the working mechanisms of the selected
algorithms. Part VII explained the system implementation;
part VIII discussed the results, while part IX is the
conclusion. The references cited are also listed.

II. REVIEW OF RELATED LITERATURES

Several research works have been done recently on the
need to identify an alternative algorithm suitable for use in
the post quantum algorithm. “Ref [3]” compared and
analyzed three classical encryption algorithms (RSA, DSA
and ECDSA). The comparison was in terms of key
generation, signature generation and verification. The results
showed that RSA algorithm has some weakness in terms of
processing speed; DSA takes large amounts of CPU time,
battery power, and memory computing resources. Similar
research by [8] compared RSA, ECDSA, and BLISS-B used

mailto:moses.noel@futminna.edu.ng
mailto:victor.waziri@futminna.edu.ng
mailto:ojeniyia@futminna.edu.ng
mailto:shafii.abdulhamid@futminna.edu.ng
mailto:malvisokoro@gmail.com

in public key infrastructure. The results showed that BLISS-
B performs better and more efficient than the others. “Ref
[2]” research work was on anonymous authentication based
on RSA encryption. The outcome of the research showed
that signature verification time was minimal, while breach
of confidentiality was a major challenge. “Ref [6]” designed
and implemented a topological Quantum Error correction
method. The authors introduced a new class of
cryptographic algorithm to be used by classical computers
that can mitigate the computational power exhibited by
quantum computers. However, the security analysis of the
proposed algorithm was its resistance against physical
attacks. In the same vein [1] introduced a Named Data
Network (NDN) with the use of RSA and ECDSA digital
signature schemes and compare their performance in the
NDN networks. ECDSA was considered to be the best
algorithm and it provided an optimal time for signing.
Authors showed that key length and efficiency plays a very
important role in signature generation.

III. RSA CRYPTO SYSTEM

The RSA uses arithmetic modular principle to digitally

carry out the signature of a message. RSA algorithms [3]

have the following four stages: key generation, key

distribution, signature generation, and signature checks. The

three fundamental principles behind RSA can be found as

entries for e, d and n so it could be really hard to find d.

Although when e and n or even m are identified to have an

integrated exponentiation for all entries m (with 0 ≤ m < n):

).(mod)(nmm de  This modular congruity is

defined by the triple bar (≡). Consequently, in some

processes, the instructions of both exponentiations can be

altered and the expression can be written as:

)(mod)(nmm ed 

RSA key generation process

The following are the steps in creating RSA algorithm:

Stage 1. Select two (2) distinctive prime numbers p and q

that are divisible by itself and only one

State 1. Due to safety resolutions, the two prime numbers p

and q would be selected indiscriminately, but it

should be comparable in size, with a few digits in

length.

Stage 2. Determine n equal to p * q

Stage 3. For general and secret keys, n will be used for

eigenvalues. The size is the key dimension, usually

expressed in bits. The n component of the

encryption key is made known to the public.

Stage 4. Determine λ(n), and ‘λ’ which means Carmichael's

totient

function.

i. Subsequently n equal to p * q, λ(n) equal to

lcm(λ(p),λ(q)), hence p and q are indivisible by 2,

λ(p) equal to φ(p) equal to (p – 1) and similarly

λ(q) equal to (q – 1). Hence λ(n) equal to lcm(p −

1, q−1).

ii. λ(n) remains undisclosed.

Stage 5. Select a figure in such way that 1 < e < λ(n) and

greatest common divisor (e, λ(n)) equal to 1; which

means, e and λ(n) are mutually prime.
i. e with a brief bit size and a miniscule large volume,

the first and most common value selected for e is 216 + 1

equal to 65,537. The lowest (and firmest) conceivable
significance for e is 3. Nevertheless, in some cases; this low
quality of e has proved to be less safe.

ii. e is set out as a fragment of the general key.

Stage 6. Define d as d ≡ e−1 (mod λ(n)); d is the

modular reverse multiplication of e mod λ(n).

i. That implies, overcome d in the calculation d * e ≡
1 (mod λ(n)). d could be calculated proficiently by means of
the extended euclidean algorithm.

ii. d as the secret key exhibitor is made confidential.

The general key contains mod n and the general
(encoding) advocate e. Hence, secret key contains the secret
(decoding) advocate d, and must be made confidential. p, q,
and λ(n) necessity must be made private since d can be
computed with them. In addition, after d is determined they
can all be discarded.

a). RSA key distribution process

Let’s assume that Charlie wishes to send a message to
Eve. The dual agreed on RSA algorithm application. Eve's
general key must be made known to Charlie in order to
provide the cipher text to encode the information; also Eve
can use her secret key to decode the information. To assist
Charlie transmit his encoded information, Eve transmits her
public-key (pk) to Charlie through a dependable, but not
always hidden path. Eve's secret key (n) is certainly not
disseminated.

b). RSA encoding scheme process
Afterward Charlie acquires Eve's public-key, he could

then transmit his information to Eve. In order to achieve
that, Charlie changes the text (plaintext) into a digit text in
such a way that 0 ≤ m < n by using a padding mechanism
regarded as a redundant standard negotiated upon. He then
uses Eve's general key e to measure the ciphertext.

(mod)
e

c m n

Even if the number is large, this can be achieved with

modular exponentiation reasonable speed. Charlie now

sends ciphertext to Eve.

c). RSA decryption process
Eve uses her private key expected value d by

calculation to retrieve message from the ciphertext

() (mod)
d e

c m d m n  assumed message, Eve could retrieve

the original information by applying the reverse padding

mechanism.

IV. ECDSA CRYPTOSYSTEM

A. ECDSA key generation
Assuming Eve wishes to transmit an authorized text to

Charlie. Firstly, Charlie and Eve have to reach an agreement
on some specified factors (such as CURVE, H, M). Apart
from the curve and also the field equation, there is a need
for a base point of prime number that is required for H.

TABLE I. ELLIPTIC CURVE PARAMETERS

Parameter Meaning

CURVE Area and calculation of the elliptic curve

H Elliptic curve unit point. A premise on the curve

which produces a large prime order group subset m

M Integral order of H, which implies the component

status

The order M of the unit point H, shall be prime. Certainly,

it is assumed that each number that is not zero in the circle

/ nZ Z are continuous, such that / nZ Z needs to be a sector. It

denotes that M is a necessity to be a prime.

Eve generates a pair of key, that contains a secret key

number d A arbitrarily, and carefully chosen at

interval [1, 1]n  ; and a general key curve point QA equal to

dAxG .The variable x is used to indicate the point of elliptic

curve multiplication by a scalar [5].

B. ECDSA signature generation
To encrypt a message, Eve follow the following

procedures.

i. Compute e HASH(m) (Here, HASH is a

cryptographic hash function, like SHA2, that

transforms the output to a whole).

ii. Let's have Z as Ln leftmost bits of e, where; Ln

is the bit size of the circle order n. (Note: Z may

be bigger than n, but not smaller).

iii. Choose a random integral k from cryptographic

hash [1, 1]n  .

iv. Determine the circle point (x1, y1equal toK x G)

v. Determine 1mod .; 0r equal to x n if r equal to repeat

step iii

vi. Determine
1

(mod . 0
)

s equal toK r d n if s equal to
A


Z

repeat step iii

i. The pair is signed(r,s). Also (r, -smod n)it is

authorized for use.

C. ECDSA Signature Verification
To authenticate the signature of Eve, Charlie must have

a duplicate of its public key
A

Q . Charlie can validate that

A
Q is an effective point on the curve point as:

 Confirm that
A

Q is not equal to the unit element

0 , and its synchronizes, else valid.

 Confirm that
A

Q falls within the curve.

 Confirm that 0n xQ equal to
A

Afterwards, Charlie takes these steps:

 Attest that r and s are digits in [1, n-1] .

Otherwise, the signature is not accepted.

 Compute, e equal to HASH (m), Where HASH

is used in signature generation for the same

purpose.

 Let’s have Z to be the L
n

leftmost bits of e .

 Compute
8 1

1 modu equal to n


Z and

8 12 modu equal to r ulosn .

 Compute the circle points

(1, 1) 1x 2xx y equal to u G u Q
A

 .If (1, 1) 0x y equal to ,

the signature is therefore invalid.

 The signature is true only when 1(mod)r x n , else

invalid.

V. W-OTS KEY GENERATION PROCESS

Assuming G: {0, 1}∗ → G: {0, 1}s represent a function
that has cryptographic properties. At foremost, a factor w is

chosen, such that ,Nw is selected with t equal to

⌈s/w⌉+⌈(⌊log2 ⌈s/w⌉⌋ + 1 + w)/w⌉ is computed. The factor w
if chosen large value will decreases the size of the signature
but would rise processing period. Presently, t random
numbers X1, ..., Xt ∈ {0, 1}s are chosen. These arbitrary
numbers are the secret keys X equal to (X1||...||Xt).
Subsequent, in the next phase the general key ‘K’ is created
by calculating Ki equal to H2w−1(Xi) for i equal to 1, ..., t.

A. W-OTS encryption process
Let’s have m equal to m1, ..., ms ∈ {0, 1} remain the text

to be authorized as, X1, ..., Xt the secret id, w and t the
factors as defined in the key generation process. The text m
is divided into ⌈s/w⌉ chunks b1, ..., b⌈s/w⌉ of the size w. If
required, zeros from left are applied to the message.
Presently bi will be treated as the number encrypted by the
corresponding chunk and calculate the ciphertext

[/]
2

s w wD equal to bii   . The dual illustration of D is then

divided into ⌈(⌊log2 ⌈s/w⌉⌋ + 1 + w)/w⌉ blocks b⌈s/w⌉+1, ..., bt of
size w. D is amplified with the nulls from the leftward if
possible. bi is treated as the number encrypted by the chunk

bi and calculates
1

sig equal to Hbi (Xi) for i equal to 1, ..., t

with H0(Xi) equal to Xi. The signature (||... ||)
1

sig sig
t

of the

text is the combination of all
1

sig for i equal to 1, ..., t.

B. W-OTS decryption

To validate a signature, ' 'sig is equal to (||... ||)
1

sig sig
t

for a given text m is equal to {0, 1}s the factors ...,
1

b b
t

are

calculated initially. This is achieved during the generation of
signatures. For i equal to 1, ..., t,

' 2 1
()

1

w bi
sig equal to H sig

i

 
is designed.

2 1' 2 1
()(())

ww bi bi
sig H sig H X equal to H equal toY

i i i i

 

Therefore, if is equal to H
'

(||... ||)
i

sig sig
i t

) equals Y and

equal to H (||... ||)
1

Y Y
t

the signature is recognized else invalid.

W-OTS Size: The signature sig = (||...||)

comprises t chunks of . Every chunk has the size of an

outcome of hash function. The signature bit length | | is

| | = t∗s = ⌈s/w⌉+⌈(⌊log2 ⌈s/w⌉⌋ + 1 + w)/w⌉∗ s ≈ s/w.

Thus, the signature length is almost contrariwise relative to

the factor w. In every step of a Winternitz signature

algorithm, the impact of a parameter w is now observed.

Key generation time (): Throughout the key

generating period (t) arbitrary integers Xi has to be selected

and 2 1
()

w
H X

i

 need to be calculated thus, t ≈ s/w

values X
i

.Therefore;

1
/ * (2)* / *

w
gen s w hash s w rand

time time time


 

(2)* (1 /)*
w

o hash o w rand
time time

  is the time for one hash

processing and rand
time

is the time required to generate one

arbitrary integer number. Hence, the key generation time is

maximized in respect to the length of w.

Signature time ()Sig
time

: Creating a signature is such that:

(||... ||)
1

Sig sig sig
t

 , the worth of sig
i

has to be figured out

t ≈ s/w times. To create one ()
bi

sig H X
i i
 with 2 1

w
bi 

as normal 12 / 2 2 /1
wjw w wj

   hash processes has to be

carried out. This outputs the cost of signature signing.

*
/ *(2 2) /

w
Sig s w w hash

timetime
   =

2
*(2 2) / * (2)

w w
s w hash o

time
 

Verification time (ver
time

): In order to authenticate a

message, Sig
i
 has to be figured out t ≈ s/w times. To

compute one
2 1w bi

Sig H
i

 
 with bi <= − 1 as

usual
(1)

(2 / 2 2 /)1
w wj w wj


   hash processes has to be

carried out. Therefore, verification period is the same as the

signature period:
2

*2 2 / *
w

Ver Sig s w hash
time time time

   = (2)
w

o

From here, the optimum rate for factor w depends on the

accessible assets. If the signature system is quick enough,

we can reduce the signature duration to a minimum.

However, the time of signature rises exponentially while the

length of the signature drops linearly, and it is not a reason

to start again to pick a too high number value of w [4].

VI. MERKLE SIGNATURE SCHEME (MSS)

A. MSS key generation

Only a relatively small amount of text with one public

key can be encrypted with the Merkle Signature Scheme [4].

In order to show the number of texts to be received, there is

a need to have a power of two. Such that, N = . The first

phase of public key generation is the production of public

keys Xi and private keys Yi of One-Time Signatures. For

every general key Yi, with 1 ≤ i ≤ , a hash value hi =

H(Yi) is calculated. With these hash values Merkle binary

tree is built. The node of the tree is , whereby i represent

the level of the node. The node position is determined by the

space between the node and the leaf. Thus, a leaf of the tree

has level i = 0 and the root has level i = n. The nodes of one

level are numbered from the left to right, such that is to

the left of the node at level i. In the Merkle tree, the hash

values equals the leafs of a binary tree, such that =

. The hashing value of an inner node of the tree is given

as:

(||) (||)
1,0 0,0 0,1 2,0 1,0 1,1

a H a a and a H a a 

Therefore, a tree with 2
n

leafs and
1

2 1
n

 nodes is

constructed. The base of the tree is the pubkey of the

MSS.

B. MSS signature generation

In order to authenticate a text using the MSS, the

sender choses a key sets ()X Y
i i

, places the digital signature

by means of one-time signature scheme.

Foremost, the sender selects ()X Y
i i

key sets that has not

been used to other messages, and makes use of the one-time

signature scheme to authenticate the message, creating a

signature
'

sig and equivalent public key Y
i

.To verify to that

message, the recipient ()X Y
i i

has in detail one of the unique

key pairs, the sender merely embraces intermediary nodes of

the Merkle tree so that the recipient can confirm that

()
0,

h a
i i
 was used to determine the public key

,0
a

n
at the

root of the tree. The pathway in the hash tree and to the

root known as 1n  nodes, call them ,...,Ao An with

0 0, ()A a i H Y
i

  being a leaf and
,0

A a publickey
n n
 

being the root.

It is known that A
i

 is an offspring of
1

A
i

. To allow the

recipient, compute the next node
1

A
i

given the prior, other

offspring needs to be known as
1

A
i

, the sibling node of A
i

.

This node is called auth
i

, such that (||)
1

A H A auth
i i i




.

Thus, n nodes ,...,
0 1

auth auth
n

are desired.

,0
A a p

n n k
  from

0 0,
A a

i
 The nodes , ..., ,

0 1
auth auth Y

n i
and

the one-time signature sig generally comprises a signature

of using the MSS.

(|| || || ||,...,||)
0 1 1

sig sig Y auth auth auth
i n




.

Figure 1. MSS tree with height H=3 [4]

C. To verify MSS signature
The recipient recognizes the public key, the text, and the

signature as:

(|| || || ||,...,||).
0 1 1

Sig isequal to sig Y auth auth auth
i n




In the

beginning, the recipient confirms the one-time signature

(OTS) sig′ of text m. Assuming sig′ is the true signing of m,

the recipient calculates equal to H() by hashing the

pub-key of the OTS. In figure 1, j equal to 1,..., n − 1, the

nodes of of the path ‘A’ are calculated as:

(||)
1 1

A equal to H a b
j j j 

.

VII. SYSTEM IMPLEMENTATION AND TESTING

This section presents the findings of a comparative study

of four algorithms. The key sizes of ECDSA and RSA were

160, 224, 256, 1024, 2048, 302 and 4096 bits to determine

the timing for key generation, signature generation and

verification respectively. While the W-OTS and MSS

program codes where written in C# to record the key

generation time, signature generation and verification time

as well. All four algorithms have been implemented using

C-Sharp (C #).

Hardware/Software requirements

Hp Labtop 15-Bs0xx with Intel (R) core i5-6006U CPU

with 2.50GHz processor; 4.0 GB of RAM

The software requirements include:

Windows 10.0 pro; Ms Visual studio .Net framework;

Programming language: C-sharp (C#). The choice of the

programming language is because of its flexibility.
Figure 2 is a sample screenshot of the comparative

analysis of the chosen algorithms (RSA, ECDSA, W-OTS
and MSS).

Figure 2. Graphical User Interface implementation of the four algorithms

VIII. DISCUSSION OF RESULTS

The results are shown in table II for the four algorithms.

TABLE II. TIME RECORDED

Algorithm Key

generation

time (seconds)

Sign generation

time (seconds)

Sign

verification

time (seconds)

RSA 0.2021 0.0778 0.0040

ECDSA 0.1378 0.0187 0.0164

W-OTS 0.002 0.001 0.0002

MSS 16.290 17.474 13.494

Fig. 3 is the bar chart of the results obtained during the

experiment for the four algorithms.

Figure 3. Bar Chart representing Time efficiency of all the algorithms

The results of the experiment are calculated and measured in

seconds (s). The results as shown in table II indicates that

RSA key generation takes 0.2012s, signature generation

takes 0.0778s and signature verification is 0.0040s. ECDSA

key generation is 0.1378s, signature generation takes

0.0187s, and verification time for the signature is 0.0164s.

The W-OTS key generation is 0.002s. To generate a

signature, it takes 0.001s and verification time for the

signature is 0.0002s. Lastly MSS key generation, signature

generation and verification has high values as compared

with RSA, ECDSA and W-OTS which are 16.290s, 17.474s,

and 13.494s respectively.

IX. CONCLUSION

From the research, security of ECDSA and RSA
depends on the complexity of solving mathematical
problems such as Discrete Logarithm Problem and Integer
Factorization Problem. While the Hash-based Signature
Schemes (HBSS) security depends on the hash function
used. HBSS are assumed to withstand computer quantum
attacks and unforgeable under chosen message attacks. The
results obtained are based on the time efficiency of the
algorithms selected. In all the parameters under
consideration, W-OTS performs better as shown in table II.
The security of W-OTS is from the property of the hash
function used, and can be recommended to secure bitcoin
transactions. Further research is recommended for other
HBSS and their variance. Comprehensive study of different
attacks on HBSS is also recommended.

REFERENCES
[1] A.A Imem, “Comparison and evaluation of digital signature

schemes employed in NDN network” arXiv preprint

arXiv:1508.00184, 2015

[2] A.D. Alrehily, A.F. Alotaibi, S.B. Almutairy, M.S. Alqhtani, and J.
Kar, “Conventional and improved digital signature scheme: A

comparative study,” Journal of Information Security, vol. 6 no.1

p.59 August, 2015
[3] A.H. Mansour, “Analysis of RSA Digital Signature Key Generation

using Strong Prime,” International Journal of Computer, vol. 24,

no.1, (pp. 28-36), 2017.
[4] D. Butin, “Hash-based signatures: State of play” IEEE security &

privacy, vol.15 no.4, (pp. 37-43) 2017.

[5] J. Breitner, & N. Heninger, “Biased nonce sense: Lattice attacks
against weak ECDSA signatures in cryptocurrencies”, In

International Conference on Financial Cryptography and Data

Security (pp. 3-20). Springer, Cham, (February, 2019).
 [6] F. Regazzoni, A. Fowler, and I. Polian, “Quantum era challenges

for classical computers,” In Proceedings of the 18th International

Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (pp. 173-178). ACM, (July, 2018).

[7] F. Pauls, R. Wittig, & G. Fettweis, “A Latency-Optimized Hash-

Based Digital Signature Accelerator for the Tactile Internet”, In
International Conference on Embedded Computer Systems (pp. 93-

106). Springer, Cham. (July, 2019)

 [8] P.W. Shor, “Algorithms for quantum computation: Discrete
logarithms and factoring,” In Proceedings of IEEE 35th annual

symposium on foundations of computer science pp. 124-134,

November, 1994.
[9] S. Nakamoto, “ Bitcoin: A peer-to-peer electronic cash system”,

Manubot 2019 . Download from: https://git.dhimmel.com/bitcoin-

whitepaper/

https://git.dhimmel.com/bitcoin-whitepaper/
https://git.dhimmel.com/bitcoin-whitepaper/

