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Abstract - The use of public key cryptosystems ranges from 

securely encrypting bitcoin transactions and creating digital 

signatures for non-repudiation. The cryptographic systems 

security of public key depends on the complexity in solving 

mathematical problems. Quantum computers pose a threat to 

the current day algorithms used. This research presents 

analysis of two Hash-based Signature Schemes (MSS and W-

OTS) and provides a comparative analysis of them. The 

comparisons are based on their efficiency as regards to their 

key generation, signature generation and verification time. 

These algorithms are compared with two classical algorithms 

(RSA and ECDSA) used in bitcoin transaction security. The 

results as shown in table II indicates that RSA key generation 

takes 0.2012s, signature generation takes 0.0778s and signature 

verification is 0.0040s. ECDSA key generation is 0.1378s, 

signature generation takes 0.0187s, and verification time for 

the signature is 0.0164s. The W-OTS key generation is 0.002s.  

To generate a signature in W-OTS, it takes 0.001s and 

verification time for the signature is 0.0002s. Lastly MSS Key 

generation, signature generation and verification has high 

values which are 16.290s, 17.474s, and 13.494s respectively. 

Based on the results, W-OTS is recommended for bitcoin 

transaction security because of its efficiency and ability to 

resist quantum computer attacks on the bitcoin network. 

 

Index Terms –  Post-Quantum Cryptography, Security, 

Hash-based Signatures,  

Cryptocurrency 

 

I. INTRODUCTION 

Information and Communication Technology has 
transformed the way businesses are been carried out. 
Computers and computing devices are been developed to be 
smarter and intelligent nowadays. In the same vein, 
networks are growing rapidly such that people are connected 
globally which makes communication easier and convenient 
for doing business. These developments led to the 
emergence of many online shopping websites such as e-bay. 
Other digital money transfer intermediaries such as Paypal 
have also emerged. 

Bitcoin is an electronic currency that is been used today 
in online business. Bitcoin is a peer-to-peer (p2p) network 
that is manage by all the peers in the network and controlled 
by nobody [9]. Bitcoin cryptocurreny does not require a 
third party agent (such as a central authority) for its 

regulation. Due to its assumed privacy and anonymity, 
bitcoin is widely accepted digital currency. Its security relies 
on the application of cryptography [3]. The algorithm used 
by bitcoin is the Rivest Shamir Adleman (RSA) and the 
Elliptic Curve Digital Signature Algorithms (ECDSA).  

In a p2p network, digital signatures play a very 
important role in making sure the transactions from the 
sender and the receiver are well secure. This is achieved by 
numerous methods such as time-stamping of trusted 
transactions in the bitcoin ecosystem. This protocol is 
efficient using classical algorithms installed on them. 
Research work done by [8] proved that Shor quantum 
algorithm is capable of breaking the security elements of 
ECDSA and RSA in polynomial time using large quantum 
computer machines. The insecurity in these algorithms 
prompt for urgent research on the best post quantum 
algorithm that could resist quantum attacks on the bitcoin 
network and other devices that uses ECDSA and RSA 
algorithms [5]. The idea of hash-based digital signature 
algorithms came onboard. This research considered two 
hash-based signature schemes- Winternitz One-Time 
Signature (W-OTS) and Merkle Signature Scheme (MSS), 
then compared them with ECDSA and RSA in terms of key 
generation time, signature generation time and signature 
verification time respectively [7]. 

The research is organized in this order: part II 
summarizes related literatures; part III, IV, V, and VI 
analyzed the working mechanisms of the selected 
algorithms. Part VII explained the system implementation; 
part VIII discussed the results, while part IX is the 
conclusion. The references cited are also listed.   

II. REVIEW OF RELATED LITERATURES 

Several research works have been done recently on the 
need to identify an alternative algorithm suitable for use in 
the post quantum algorithm. “Ref [3]” compared and 
analyzed three classical encryption algorithms (RSA, DSA 
and ECDSA). The comparison was in terms of key 
generation, signature generation and verification. The results 
showed that RSA algorithm has some weakness in terms of 
processing speed; DSA takes large amounts of CPU time, 
battery power, and memory computing resources. Similar 
research by [8] compared RSA, ECDSA, and BLISS-B used 
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in public key infrastructure. The results showed that BLISS-
B performs better and more efficient than the others.  “Ref 
[2]” research work was on anonymous authentication based 
on RSA encryption. The outcome of the research showed 
that signature verification time was minimal, while breach 
of confidentiality was a major challenge. “Ref [6]” designed 
and implemented a topological Quantum Error correction 
method. The authors introduced a new class of 
cryptographic algorithm to be used by classical computers 
that can mitigate the computational power exhibited by 
quantum computers. However, the security analysis of the 
proposed algorithm was its resistance against physical 
attacks. In the same vein [1] introduced a Named Data 
Network (NDN) with the use of RSA and ECDSA digital 
signature schemes and compare their performance in the 
NDN networks. ECDSA was considered to be the best 
algorithm and it provided an optimal time for signing. 
Authors showed that key length and efficiency plays a very 
important role in signature generation.  

III. RSA CRYPTO SYSTEM 

The RSA uses arithmetic modular principle to digitally 

carry out the signature of a message. RSA algorithms [3] 

have the following four stages: key generation, key 

distribution, signature generation, and signature checks. The 

three fundamental principles behind RSA can be found as 

entries for e, d and n so it could be really hard to find d. 

Although when e and n or even m are identified to have an 

integrated exponentiation for all entries m (with 0 ≤ m < n):  

).(mod)( nmm de  This modular congruity is 

defined by the triple bar (≡). Consequently, in some 

processes, the instructions of both exponentiations can be 

altered and the expression can be written as: 

 )(mod)( nmm ed 
 

RSA key generation process 

The following are the steps in creating RSA algorithm: 

Stage 1. Select two (2) distinctive prime numbers p and q  

that are divisible by itself and only one 

State 1. Due to safety resolutions, the two prime numbers p 

and q would be selected indiscriminately, but it 

should be comparable in size, with a few digits in 

length. 

Stage 2. Determine n equal to p * q 

Stage 3. For general and secret keys, n will be used for 

eigenvalues. The size is the key dimension, usually 

expressed in bits. The n component of the 

encryption key is made known to the public.  

Stage 4. Determine λ(n), and ‘λ’ which means Carmichael's  

totient  

function.  

i. Subsequently n equal to p * q, λ(n) equal to 

lcm(λ(p),λ(q)), hence  p and q are indivisible by 2, 

λ(p) equal to φ(p) equal to (p – 1) and similarly 

λ(q) equal to  (q – 1). Hence λ(n) equal to lcm(p − 

1, q−1). 

ii. λ(n) remains undisclosed. 

Stage 5. Select a figure in such way that 1 < e < λ(n) and  

greatest common divisor (e, λ(n)) equal to 1; which 

means, e and λ(n) are mutually prime. 
i. e with a brief bit size and a miniscule large volume, 

the first and most common value selected for e is 216 + 1 

equal to 65,537. The lowest (and firmest) conceivable 
significance for e is 3. Nevertheless, in some cases; this low 
quality of e has proved to be less safe. 

ii. e is set out as a fragment of the general key. 

Stage 6. Define d as d ≡ e−1 (mod λ(n));  d is the  

modular reverse multiplication of e mod λ(n). 

i. That implies, overcome d in the calculation d * e ≡ 
1 (mod λ(n)). d could be calculated proficiently by means of 
the extended euclidean algorithm. 

ii. d as the secret key exhibitor is made confidential. 

The general key contains mod n and the general 
(encoding) advocate e. Hence, secret key contains the secret 
(decoding) advocate d, and must be made confidential. p, q, 
and λ(n) necessity must be made private since d can be 
computed with them. In addition, after d is determined they 
can all be discarded. 

a). RSA key distribution process 

Let’s assume that Charlie wishes to send a message to 
Eve. The dual agreed on RSA algorithm application. Eve's 
general key must be made known to Charlie in order to 
provide the cipher text to encode the information; also Eve 
can use her secret key to decode the information. To assist 
Charlie transmit his encoded information, Eve transmits her 
public-key (pk) to Charlie through a dependable, but not 
always hidden path. Eve's secret key (n) is certainly not 
disseminated. 

b).  RSA encoding scheme process 
Afterward Charlie acquires Eve's public-key, he could 

then transmit his information to Eve. In order to achieve 
that, Charlie changes the text (plaintext) into a digit text in 
such a way that 0 ≤ m < n by using a padding mechanism 
regarded as a redundant standard negotiated upon. He then 
uses Eve's general key e to measure the ciphertext. 

(mod )
e

c m n  

Even if the number is large, this can be achieved with 

modular exponentiation reasonable speed. Charlie now 

sends ciphertext to Eve. 

 

c). RSA decryption process 
Eve uses her private key expected value d by 

calculation to retrieve message from the ciphertext 

( ) (mod )
d e

c m d m n  assumed message, Eve could retrieve 

the original information by applying the reverse padding 

mechanism. 

IV. ECDSA  CRYPTOSYSTEM 

A. ECDSA key generation  
Assuming Eve wishes to transmit an authorized text to 

Charlie. Firstly, Charlie and Eve have to reach an agreement 
on some specified factors (such as CURVE, H, M). Apart 
from the curve and also the field equation, there is a need 
for a base point of prime number that is required for H.  

 

 

 

 



 

 

TABLE I.   ELLIPTIC CURVE PARAMETERS 

Parameter Meaning 

CURVE Area and calculation of the elliptic curve 

H Elliptic curve unit point. A premise on the curve 

which produces a large prime order group subset m 

M Integral order of H, which implies the component 

status 

 

The order M of the unit point H, shall be prime. Certainly, 

it is assumed that each number that is not zero in the circle 

/ nZ Z are continuous, such that / nZ Z needs to be a sector. It 

denotes that M is a necessity to be a prime. 

Eve generates a pair of key, that contains a secret key 

number d A  arbitrarily, and carefully chosen at 

interval [1, 1]n  ; and a general key curve point QA equal to 

dAxG .The variable x is used to indicate the point of elliptic 

curve multiplication by a scalar [5]. 

 

B. ECDSA signature generation 
To encrypt a message, Eve follow the following 

procedures. 

i. Compute e HASH(m) (Here, HASH is a 

cryptographic hash function, like SHA2, that 

transforms the output to a whole). 

ii. Let's have Z  as Ln  leftmost bits of e, where; Ln  

is the bit size of the circle order n. (Note: Z may 

be bigger than n, but not smaller). 

iii. Choose a random integral k from cryptographic 

hash [1, 1]n  . 

iv. Determine the circle point  (x1, y1equal toK x G)  

v. Determine 1mod .; 0r equal to x n if r equal to repeat 

step iii 

vi. Determine 
1

( mod . 0
)

s equal toK r d n if s equal to
A


Z  

repeat step iii 

i. The pair is signed(r,s). Also (r, -smod n)it is 

authorized for use.  

 

C. ECDSA Signature Verification 
To authenticate the signature of Eve, Charlie must have 

a duplicate of its public key
A

Q . Charlie can validate that 

A
Q is an effective point on the curve point as: 

 Confirm that 
A

Q is not equal to the unit element 

0 , and its synchronizes, else valid. 

 Confirm that 
A

Q falls within the curve. 

 Confirm that 0n xQ equal to
A

   

Afterwards, Charlie takes these steps: 

 Attest that r and s are digits in [1, n-1] . 

Otherwise, the signature is not accepted. 

 Compute, e equal to HASH (m), Where HASH 

is used in signature generation for the same 

purpose. 

 Let’s have  Z  to be the L
n

leftmost bits of e . 

 Compute 
8 1

1 modu equal to n


Z  and 

8 12 modu equal to r ulosn . 

 Compute the circle points  

( 1, 1) 1x 2xx y equal to u G u Q
A

 .If ( 1, 1) 0x y equal to ,      

the signature is therefore invalid. 

 The signature is true only when 1(mod )r x n , else 

invalid. 

 

V. W-OTS KEY GENERATION PROCESS 

Assuming G: {0, 1}∗ → G: {0, 1}s represent a function 
that has cryptographic properties. At foremost, a factor w is 

chosen, such that ,Nw is selected with t equal to 

⌈s/w⌉+⌈(⌊log2 ⌈s/w⌉⌋ + 1 + w)/w⌉ is computed. The factor w  
if chosen large value will decreases the size of the signature 
but would rise processing period. Presently, t random 
numbers X1, ..., Xt ∈ {0, 1}s are chosen. These arbitrary 
numbers are the secret keys X equal to (X1||...||Xt). 
Subsequent, in the next phase the general key ‘K’ is created 
by calculating Ki equal to H2w−1(Xi) for i equal to 1, ..., t. 

A. W-OTS encryption process 
Let’s have m equal to m1, ..., ms ∈ {0, 1} remain the text 

to be authorized as, X1, ..., Xt the secret id, w and t the 
factors as defined in the key generation process. The text m 
is divided into ⌈s/w⌉ chunks b1, ..., b⌈s/w⌉ of the size w. If 
required, zeros from left are applied to the message. 
Presently bi  will be treated as the number encrypted by the 
corresponding chunk and calculate the ciphertext 

[ / ]
2

s w wD equal to bii   . The dual illustration of D is then 

divided into ⌈(⌊log2 ⌈s/w⌉⌋ + 1 + w)/w⌉ blocks b⌈s/w⌉+1, ..., bt of 
size w. D is amplified with the nulls from the leftward if 
possible. bi is treated as the number encrypted by the chunk 

bi and calculates 
1

sig equal to  Hbi (Xi) for i equal to  1, ..., t 

with H0(Xi) equal to  Xi. The signature ( ||... || )
1

sig sig
t

of the 

text is the combination of all 
1

sig for i equal to  1, ..., t. 

B. W-OTS decryption  

To validate a signature, ' 'sig  is equal to ( ||... || )
1

sig sig
t

 

for a given text m is equal to {0, 1}s the factors ...,
1

b b
t

are 

calculated initially. This is achieved during the generation of 
signatures. For i equal to  1, ..., t,  

' 2 1
( )

1

w bi
sig equal to H sig

i

 
is designed.  

2 1' 2 1
( )( ( ))

ww bi bi
sig H sig H X equal to H equal toY

i i i i

 
 

Therefore, if  is equal to H
'

( ||... || )
i

sig sig
i t

) equals Y and 

equal to H ( ||... || )
1

Y Y
t

the signature is recognized else invalid. 

W-OTS Size: The signature sig = ( ||...|| ) 

comprises t chunks of . Every chunk has the size of an 

outcome of hash function. The signature bit length | | is 

|  | = t∗s = ⌈s/w⌉+⌈(⌊log2 ⌈s/w⌉⌋ + 1 + w)/w⌉∗ s ≈ s/w. 

Thus, the signature length is almost contrariwise relative to 



 

 

the factor w. In every step of a Winternitz signature 

algorithm, the impact of a parameter w is now observed. 

 

Key generation time ( ): Throughout the key 

generating period (t) arbitrary integers Xi has to be selected 

and 2 1
( )

w
H X

i

 need to be calculated thus, t ≈ s/w 

values X
i

.Therefore; 

1
/ * (2 )* / *

w
gen s w hash s w rand

time time time


 

(2 )* (1 / )*
w

o hash o w rand
time time

   is the time for one hash 

processing and rand
time

is the time required to generate one 

arbitrary integer number. Hence, the key generation time is 

maximized in respect to the length of w. 

Signature time ( )Sig
time

: Creating a signature is such that: 

( ||... || )
1

Sig sig sig
t

 , the worth of sig
i

has to be figured out  

t ≈ s/w times. To create one ( )
bi

sig H X
i i
 with 2 1

w
bi   

as normal 12 / 2 2 /1
wjw w wj

   hash processes has to be 

carried out. This outputs the cost of signature signing. 

*
/ *(2 2) /

w
Sig s w w hash

timetime
   = 

2
*(2 2) / * (2 )

w w
s w hash o

time
   

 

Verification time ( ver
time

): In order to authenticate a 

message, Sig
i
 has to be figured out t ≈ s/w times. To 

compute one 
2 1w bi

Sig H
i

 
 with bi <=  − 1 as 

usual
( 1)

( 2 / 2 2 / )1
w wj w wj


   hash processes has to be 

carried out. Therefore, verification period is the same as the 

signature period: 
2

*2 2 / *
w

Ver Sig s w hash
time time time

   = (2 )
w

o  

From here, the optimum rate for factor w depends on the 

accessible assets. If the signature system is quick enough, 

we can reduce the signature duration to a minimum. 

However, the time of signature rises exponentially while the 

length of the signature drops linearly, and it is not a reason 

to start again to pick a too high number value of w [4]. 

 

VI. MERKLE SIGNATURE SCHEME (MSS) 

A. MSS key generation 

Only a relatively small amount of text with one public 

key can be encrypted with the Merkle Signature Scheme [4]. 

In order to show the number of texts to be received, there is 

a need to have a power of two. Such that, N = . The first 

phase of public key generation is the production of public 

keys Xi and private keys Yi of  One-Time Signatures. For 

every general key Yi, with 1 ≤ i ≤ , a hash value hi = 

H(Yi) is calculated. With these hash values  Merkle binary 

tree is built. The node of the tree is  , whereby i represent 

the level of the node. The node position is determined by the 

space between the node and the leaf. Thus, a leaf of the tree 

has level i = 0 and the root has level i = n. The nodes of one 

level are numbered from the left to right, such that  is to 

the left of the node at level i. In the Merkle tree, the hash 

values  equals the leafs of a binary tree, such that  = 

. The hashing value of an inner node of the tree is given 

as:  

( || ) ( || )
1,0 0,0 0,1 2,0 1,0 1,1

a H a a and a H a a    

Therefore, a tree with 2
n

leafs and 
1

2 1
n

 nodes is 

constructed. The base of the tree  is the pubkey of the 

MSS. 

 

B. MSS signature generation 

In order to authenticate a text  using the MSS, the 

sender choses a key sets ( )X Y
i i

, places the digital signature 

by means of one-time signature scheme. 

Foremost, the sender selects ( )X Y
i i

key sets that has not 

been used to other messages, and makes use of the one-time 

signature scheme to authenticate the message, creating a 

signature 
'

sig and equivalent public key Y
i

.To verify to that 

message, the recipient ( )X Y
i i

has in detail one of the unique 

key pairs, the sender merely embraces intermediary nodes of 

the Merkle tree so that the recipient can confirm that 

( )
0,

h a
i i
 was used to determine the public key 

,0
a

n
at the 

root of the tree. The pathway in the hash tree and  to the 

root known as 1n  nodes, call them ,...,Ao An  with 

0 0, ( )A a i H Y
i

  being a leaf and 
,0

A a publickey
n n
   

being the root.  

It is known that A
i

 is an offspring of
1

A
i

. To allow the 

recipient, compute the next node 
1

A
i

given the prior, other 

offspring needs to be known as
1

A
i

, the sibling node of A
i

. 

This node is called auth
i

, such that ( || )
1

A H A auth
i i i




. 

Thus, n nodes ,...,
0 1

auth auth
n

are desired. 

,0
A a p

n n k
  from 

0 0,
A a

i
 The nodes , ..., ,

0 1
auth auth Y

n i
and 

the one-time signature sig  generally comprises a signature 

of  using the MSS. 

( || || || ||,...,|| )
0 1 1

sig sig Y auth auth auth
i n




. 

 
Figure 1.  MSS tree with height H=3 [4] 



 

 

C. To verify MSS signature 
The recipient recognizes the public key, the text, and the 

signature as:  

( || || || ||,...,|| ).
0 1 1

Sig isequal to sig Y auth auth auth
i n




In the 

beginning, the recipient confirms the one-time signature 

(OTS) sig′ of text m. Assuming sig′ is the true signing of m, 

the recipient calculates  equal to  H( ) by hashing the 

pub-key of the OTS. In figure 1, j equal to  1,..., n − 1, the 

nodes of  of the path ‘A’ are calculated as:   

( || )
1 1

A equal to H a b
j j j 

.  

 

VII. SYSTEM IMPLEMENTATION AND TESTING 

This section presents the findings of a comparative study 

of four algorithms. The key sizes of ECDSA and RSA were 

160, 224, 256, 1024, 2048, 302 and 4096 bits to determine 

the timing for key generation, signature generation and 

verification respectively. While the W-OTS and MSS 

program codes where written in C# to record the key 

generation time, signature generation and verification time 

as well. All four algorithms have been implemented using 

C-Sharp (C #).  

 

Hardware/Software requirements 

Hp Labtop 15-Bs0xx with Intel ( R) core i5-6006U CPU 

with 2.50GHz processor; 4.0 GB of RAM 

The software requirements include: 

Windows 10.0 pro; Ms Visual studio .Net framework; 

Programming language: C-sharp (C#). The choice of the 

programming language is because of its flexibility. 
Figure 2 is a sample screenshot of the comparative 

analysis of the chosen algorithms (RSA, ECDSA, W-OTS 
and MSS). 

 

 
 

Figure 2. Graphical User Interface implementation of the four algorithms 

VIII. DISCUSSION OF RESULTS 

The results are shown in table II for the four algorithms. 
 

TABLE II.  TIME RECORDED  

Algorithm Key 

generation 

time (seconds) 

Sign generation 

time (seconds) 

Sign 

verification 

time (seconds) 

RSA 0.2021 0.0778 0.0040 

ECDSA 0.1378 0.0187 0.0164 

W-OTS 0.002 0.001 0.0002 

MSS 16.290 17.474 13.494 

 
Fig. 3 is the bar chart of the results obtained during the 

experiment for the four algorithms. 
 

 
Figure 3. Bar Chart representing Time efficiency of all the algorithms 

 

The results of the experiment are calculated and measured in 

seconds (s). The results as shown in table II indicates that 

RSA key generation takes 0.2012s, signature generation 

takes 0.0778s and signature verification is 0.0040s. ECDSA 

key generation is 0.1378s, signature generation takes 

0.0187s, and verification time for the signature is 0.0164s. 

The W-OTS key generation is 0.002s. To generate a 

signature, it takes 0.001s and verification time for the 

signature is 0.0002s. Lastly MSS key generation, signature 

generation and verification has high values as compared 

with RSA, ECDSA and W-OTS which are 16.290s, 17.474s, 

and 13.494s respectively.  

IX.  CONCLUSION 

From the research, security of ECDSA and RSA 
depends on the complexity of solving mathematical 
problems such as Discrete Logarithm Problem and Integer 
Factorization Problem. While the Hash-based Signature 
Schemes (HBSS) security depends on the hash function 
used. HBSS are assumed to withstand computer quantum 
attacks and unforgeable under chosen message attacks. The 
results obtained are based on the time efficiency of the 
algorithms selected. In all the parameters under 
consideration, W-OTS performs better as shown in table II. 
The security of W-OTS is from the property of the hash 
function used, and can be recommended to secure bitcoin 
transactions. Further research is recommended for other 
HBSS and their variance. Comprehensive study of different 
attacks on HBSS is also recommended. 
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