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PREFEACE 

Hidden Markov Model (HMM) is one of the best and effective pattern recognition 

stochastic mathematical model currently in existence. What make it effective and 

unique is its double stochastic nature. Its effectiveness and benefits is not known to 

many researchers, this book is an attempt to provide such information to the 

intending researchers. 

This book is made up of two chapters: Chapter 1 discusses the basic concept of 

HMM while Chapter 2 presents applications of HMM in rainfall pattern prediction 

for the purpose of crop production in some selected states of North Central Nigeria. 
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CHAPTER ONE

1.0    Markov Models 

Markov models are stochastic models with a Markov property. A model is said to 

have a Markov property if the future state of the process depends on the current state 

and not on its past history. Markov model was first introduced by a Russian 

mathematician named Andrey Andreyevich Markov in 1906 when he produced the 

first theoretical result

time. His research area later became known as Markov process and Markov chains. 

A generalization to countable infinite state space was given by kolmogorov. 

1.1        Markov Chain  

Consider a stochastic process ,........}3,2,1,0,{ nX n  which takes on a finite or 

countable number of possible values. If iX n then the process is in  state i at time n. 

Whenever the process is in state i, there is a fixed probability Pij that it will next be in 

state j. Thus: 

  

for all states .0,,,........,, 10 nallandjiiii ni This type of a stochastic process is called 

Markov chain. A Markov chain has a memory property that is, the future state 

of the process depends on the present and not on the past.      

1.1.2  Chapman-Kolmogorov Equations (CKE) 

We define the n-step transition probabilities n
ijP  to be the probability that a process in 

state i will be in state j after n additional transitions. That is,         

0,,0},|{ jiniXjXPP mmn
n

ij                                                                  (1.2)

 Of course .1
ijij PP  The CKE provide a way for computing these n-step transition 

probabilities. Thus 
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n
ik PP  represents the probability that starting in state i the process will go to state j in 

mn  transitions through a path which takes it into state k at the nth transition. Hence, 

summing over all intermediate states k yields the probability that the process will be 

in state j after n + m transitions. We have 

)4.1(
|,|

|,

|

0

0
00

0
0

0

k

n
ik

m
kj

mn
ij

k
nnmn

mn
ij

k
nmn

mn
ij

mn
mn

ij

PPP

iXkXPiXkXjXPP

iXkXjXPP

iXjXPP

   
Now,  let   )(nP  represents  the matrix of n-step transition probabilities n

ijP , then

Equation (1.3) asserts that )()()( mnmn PPP .The dot represents matrix multiplication. 

Hence, in particular, 2)11()2( PPPPP  Equation (1.5) is obtained by induction,   
nnnn PPPPP 1)11()(                                                                                         (1.5)                 

This means that, the n-step transition matrix is obtained by multiplying the matrix P 

by itself n times.     

    

1.1.3 Limiting Probabilities 

If n in equation (1.5), the probability will converge to some value, which is the 

same for all i. That is, there exist a limiting probability that the process will be in 

state j after a large number of transitions, and this value is independent of the initial 

state  

1.2 Hidden Markov Model 

A Hidden Markov Model (HMM) is a double stochastic process in which one of the 

stochastic processes is an underlying Markov chain which is called the hidden part of 

the model, the other stochastic process is an observable one. Also a HMM can be 

considered as a stochastic process whose evolution is governed by an underlying 

discrete (Markov chain) with a finite number of states which are hidden, i.e. not 



directly observable (Enza and Daniele, 2007). A HMM consists of two stochastic 

processes. The first stochastic process is a Markov chain that is characterized by 

states and transition probabilities. The states of the chain are externally not visibly 

therefore  hidden e second stochastic process produces emissions observable at 

each moment, depending on a state-dependent probability distribution. Hidden 

Markov model is very influential in stochastic world because of its uniqueness and 

applicable mathematical structure and its independence assumption between the 

consecutive observations, motivates further applications. Hidden Markov Models 

have been successfully applied in automatic speech recognition and speech synthesis 

( Rabiner, 1989), molecular biology for DNA and protein sequencing (Durbin et al., 

1998), signal processing (Vaseghi, 2006), bioinformatics (Baldi et al., 2001), 

telecommunication (Hirsch, 2001) and in pattern recognition (Fink, 1989). 

1.2.1 Characteristics of Hidden Markov Model 

Hidden Markov Model is characterized by the following 

N = number of states in the model  

M = number of distinct observation symbols per state   

Q = state sequence  

TqqqqQ ....,........., 32,1                                                                                                  (1.6) 

 O = observation sequence  

  TooooO .............3,2,1                                                                                                (1.7) 

Transition probability matrix                                                                                   (1.8)

Observation probability matrix                                                  (1.9) 

where )|()( jtttj sqopob

If the observation is continuous a probability density function is used as follows: 

1)( dxxb j

                                                                                                       (1.10)

Initial state probabilities          j                                                                (1.11) 

The overall HMM                ),,( BA                                                              (1.12) 

}{ ijaA

)}({ tj obB



1.2.2  Problems of Hidden Markov Model   

 According to Rabiner (1989), the Problems of HMM are as follows: 

Problem 1 

Given the HMM ),,( BA , what is the probability of generating a specific 

observation sequence    

},{ ,...,21 ToooO .                                                                                                       (1.13) 

 Now the problem of computing )|(OP  arises  

Problem 2

Given the Observation Sequence  },{ ,...,21 ToooO  and  the model ),,( BA   

How do we determine the optimal states sequence?   

},...,,{ 21 TqqqQ                                                                                                       (1.14)                 

Problem 3 

Given the Observation sequence },...,{ 1 TooO , How to estimate the parameters

),,( BA  of the HMM?. This is to find the model ),,( BA  that maximizes the   

probability of O.  

1.2.3 Solutions to Hidden Markov Model Problems 

 1.2.3.1 Solution to the problem1 

Let ),,( BA  be a given HMM model and let },...,,{ 21 ToooO  be the observation 

sequence and },...,,{ 21 TqqqQ  be the state sequence, we are to find )|(OP .Then by 

definition of B we have that 

),|,...,(),,,...,|(),|( 1111 QooPQoooPQOP TTT                                                (1.15)                     
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Using the principle of joint probability, we obtain  
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Equation (1.20) is the joint probability of equation (1.16) and equation (1.17)  

Thus we have 

)21.1()|(),|()|,()|( QPQOPQOPOP
QQpossipleall

 This direct computation is generally infeasible, since it requires TTN2 Multiplication 

and as result of this limitation, we employ the use of Forward Algorithm. The 

Forward Algorithm involves the use of recursive formula to compute )|(OP

efficiently. 



Now, let )(it be the probability of observing the partial sequence },...,,{ 1 tooo  until 

time t and being in state is  at time t, given the model , That is, 

)|,,...,,()( 21 ittt sqoooPi                                                                                 (1.22)

The probability can be calculated recursively as: 

Initialization: )|,()( 111 isqoPi                                                                          

)()( 11 obi ii                                                                                                         (1.23)              

The Recursion                                                                         

)|,,...,,()( 11211 jttt sqoooPj
                                             (1.24)
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From equation (1.25) we can see that the probability of the observation sequence can 

be calculated as:  
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Similarly, we define the backward variable, )(it  as the probability of being in state  

is  at time t and observing the partial sequence, that is, Tt oo ,...,1

),|,...,()( 1 itTtt sqooPi                                                                               (1.28)

Initialization: 1)(iT

Recursively, we obtain 

),|,...,()( 1 itTtt sqooPi
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1.2.3.2 Solution to the problem 2 (Decoding) 

The goal of the decoding is to find the states sequence  



},...,,{ 21 TqqqQ  having the highest probability of generating the observation 

sequence }...,,{ ,21 ToooO , given the model 

Let )(it be the probability of being in state is  at time t, given O and . This can be 

computed as 

),|()( OsqPi itt                                                                                               (1.31)
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Decoding Using Viterbi Algorithm  

To find a best states sequence },...,,{ 21 TqqqQ  for a given observation sequence  

},...,,{ 21 ToooO . The Viterbi algorithm is used, it has advantage of less computation 

and it is generally efficient. The Viterbi algorithm can be viewed as a dynamic 

programming algorithm applied to the HMM or as a modified algorithm. The Viterbi 

algorithm picks and remembers the best path, instead of summing up probabilities 

from different paths coming to the same destination state.  To achieve this, We define

a new variable. 

]|,...,,,,...,[)( 21121 tttt oooiqqqqMaxPi                                                            (1.33)

j
jtjt

itTtitt

sqPsqOP

sqooPsqooP

)|(),|(

),|...()|,...( 11



This represents the best score along a single path at time t, which accounts for the 

first t observation and ends in state ..i This probability can be calculated based on the 

dynamic programming and the optimal path can be retrieved by backtracking from T.

Initialization: 

)()( 11 obi ii   , ii 0)(1

Recursion Tt .................2

ijtjobaij ai
i

ttjijt
i

t )(maxmax 1arg)(,)()()( 1

                             (1.34)

Termination )(maxarg iTq
i

T

Path (state sequence) backtracking 

1,...,2,1),( *
11

* TTtqq ttT                                                                            (1.35)

The variable )( jt keeps track of the optimal state at time t-1 if the state at time t is 

j. Once the best state at time T is known (which is
*
Tq ),  the optimal path can be 

retrieved by backtracking the variable

1.2.3.3 Solution to the problem 3 

This is a learning process and it involves the adjustment of the model parameters to 

best fit the observations. In general, the goal of learning is to calculate *  that 

maximizes the likelihood )|(OP of the sample of training sequence, we define 

),( jit as the probability of being is at time t and js at time 1t , given the whole 

observation O and the model , that is

),|,(),( 1 OsqiqPji jttt                                                                                 (1.36)
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Also the probability of being is at time t and js at time 1t , given the whole 

observation O can be obtained by 

N

j
tt jii

1

),()(
                                                                                                      (1.40)

is the expected number of visits to state is at time t, and ),( jit  is the expected 

number of transitions from is (at time t) to js (at time t+1).  

Using  equations (1.12), (1.22), (1.28), (1.31)  and  (1.36),  the Baum-Welch 

Algorithm is  as follows: 

The Baum-Welch Algorithm 

1. Initialize ),,( BA

2. Calculate itallforiandi tt ,)()(   

3. Calculate tallforiandji tt )(),(

4. Estimates a  as follow  

)(it
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Repeat Step 2-4 

where  
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 With the above definition, one can  then outline the Baum-Welch  Re-estimation 

formula as follows
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CHAPTER TWO 

2.0  Application Of The Hidden Markov Model in Rainfall Pattern Prediction 

For Crop Production 

Rainfall Modelling and predictions are essential input in agricultural production and 

management of water resources. Bumper harvest and lean years depend largely on 

rainfall variability and quantity. Rainfall exhibits a strong variability in time and 

space across the globe. It is well established that rainfall is changing on both the 

global and the regional scale due to global warming (Hulme et al., 1998). Rainfall is 

the principal phenomenon driving many hydrological extremes such as droughts, 

floods, debris, landslides and mud-flows; its modelling and analysis are typical 

problems in applied hydrometeorology (Barkotulla, 2010). Hence, its stochastic 

modelling is imperative for the avoidance of natural disaster. Having a well 

established knowledge of rainfall pattern of an area is an important information for 

future planning. This is applicable in areas like: industry, agriculture, insurance, 

water resources management and the entire planning of a country economy. 

Subsequently, proper information on rainfall pattern is fundamental for the design of 

water supply management, complementary irrigation schemes and the evaluation of 

alternative cropping system for effective soil water management plans (Barkotulla, 

2010). Such information could be beneficial in determining the best adapted plant 

species and the optimum time of seedling to re-establish vegetation on deteriorated 

rangelands. Rainfall modelling and prediction are becoming increasingly in demand, 

because of the uncertainty that is involved with rainfall and the dependence of 

agricultural production on rainfall. Annual rainfall varies in Nigeria. It decreases 

from the south to the north where rainfall comes late and not evenly spread across the 

rainy season and consequently has adverse effect on agricultural activities (Iloeje, 

1981). The selected locations for the application of the HMM are Niger and Plateau 

states in north central Nigeria. Rainfall in the north central Nigeria, is not ordinarily 

predictable, its occurrence and amount varies from year to year. The majority of the 

people living in this part of the country are farmers and rainfall is the major source of 



water for agricultural activities. This dependence of agricultural production on 

rainfall variability and quantity, and the unpredictable nature of the rainfall in this 

part of the country, had over the years led to: improper crop planning and cultivation, 

poor harvest, lost of income of the farmers, shortage of food to the country, 

hydrological extremes such as mud-flows, floods, landslides, droughts and debris. It 

has generally reduced Gross Domestic Product (GDP) of the country there by 

affecting its economy.  

2.1 Seasonal Rainfall Modelling for Crop Production in Maikunkele Niger state, 

Nigeria

Niger State is the biggest state in the middle belt of Nigeria with an area of about 

76,363 km2. It is located in 9.6490° N, 6.4530° E.  It has Guinea savannah vegetation 

which covers the entire landscape and is characterized by tall grasses woodlands and 

interspersed with tall dense species. It has tropical climate. Niger Sate is an 

agriculture-based state in Nigeria, with about 80% of its population engaged in 

agricultural activities (Blessing Smart, 2015). Rainfall is the major source of water 

for agricultural production in Niger state (Lawal Adamu, 2013). Knowing the nature 

of rainfall distribution before each growing season begins in this  apart of  Nigeria 

has always been a fundamental problem to the farmers, and this has over the years 

led to improper crop planning and cultivation, consequently led to poor harvest.  In 

this section, HMM will be use to predict seasonal rainfall pattern for crop production. 

This will provide the farmers with information that will enable them plan strategies 

for high crop production in region.  

2.1.1 Formulation of the Model 

In this model, classification of the states (seasons) is be based on our study area,  

planting/growing and maturity period of the major crops being grown in the study 

area. The classification of states for a Markov model is usually based on the purpose 

in which the model is intended to achieve. The purpose of this model is to identify 

the major crops being grown in the study area and their maturity period in relation to 



rainfall. This will make it possible to provide a quantitative prediction of rainfall 

pattern to the farmers and policy makers to boost crop production.  

Model Assumptions  

i.  The transition of  rainfall state to another state follows a Markov chain of 

the first order dependence, as represented by equation (1.1) 

ii. The probability of   generating current observation symbol depends only on 

current state. That is ),|(),|(
1

tt

T

t

qoPQOP
                                       (2.1)

iii. Amount  of rainfall is considered to be low if it is below 341mm 

iv. Amount of rainfall is considered to be moderate if it is within the range 

(341- 680)mm 

v. Amount of rainfall is considered to be high if it is above 680mm 

The classification of states in this research work, is based on the growing seasons of 

the major crops in the study area and the data collected. Now, based on our study 

area, let the seasonal rainfall for crop production be modelled by a three state  

Hidden Markov model and six observations.   

Table 2.1: Seasons and Crops being Grown 

2.1.2 The Observations of the Hidden Markov Model 

The possible observations within each of the seasons are 

Seasons Crops  grown  Months within a 

season 

Season 1 Maize, melon ,Ground nut March-June 

Season 2 Rice ,soya beans July-September  

Season 3 Cowpea, Melon October-February 



1OA  (Low rainfall well spread) 

2OB  (Low rainfall not well spread) 

3OC  (Moderate rainfall well spread) 

4OD = (Moderate rainfall not well spread) 

5OE  (High rainfall well spread) 

6OF = (High rainfall not well spread) 

Rainfall Well Spread: Means rainfall that spreads evenly across the growing season 

Rainfall Not Well Spread: Means rainfall that is not spread evenly across the growing 

season 

             

  Figure 2.1 : The Transition Diagram of the  Seasonal Rainfall Model 



From Figure 2.1 we formulate the following  

Season1 emissions 

)|()( 1111 tatqtatoPob   ,   )|()( 1221 tatqtatoPob  , )|()( 1331 tatqtatoPob

)|()( 1441 tatqtatoPob ,    )|()( 1551 tatqtatoPob  , )|()( 1661 tatqtatoPob

Season 2 emissions 

)|()( 2112 tatqtatoPob  ,  )|()( 2222 tatqtatoPob ,  )|()( 2332 tatqtatoPob

)|()( 2442 tatqtatoPob ,  )|()( 2552 tatqtatoPob ,  )|()( 2662 tatqtatoPob

Season 3 emissions 

)|()( 3113 tatqtatoPob  ,   )|()( 3223 tatqtatoPob  , )|()( 3333 tatqtatoPob

)|()( 3443 tatqtatoPob ,   )|()( 3553 tatqtatoPob ,   )|()( 3663 tatqtatoPob

2.1.3Transition Probability Matrix for the states 

The transitions between states are given by the matrix below 

00
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                                                                                        (2.2) 

2.1.4  Observation  Probability Matrix

The observations emitted by each state are represented by the Matrix below
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   Before training, the sum of column entries equal one, if there is observation 

otherwise   zero       
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1
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ob                                                                                     (2.4) 

       

        After training, the sum of row entries must be one 

        
6

1
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m

mk ob                                                                                                   (2.5) 

2.1.5  Initial Probability Distribution  

The initial probability distribution for the model is given below

321                                                                                                         (2.6)

Equation (2.6) is calculated using equation (2.7)  

3,2,1i
L

ci
i (2.7)

Where ic  is the count of each state in the sequence of the states in the dataset 

That is Lccc 321                                                          

2.1.6 The Hidden Markov Model 

The overall hidden Markov model for Seasonal Rainfall Modelling for Crop 

Production is given  by the compact notation below

),,( BA                                                                                                            (2.8)

 Hidden Markov Training  

The hidden Markov model for Seasonal Rainfall Modelling for Crop Production 

developed shall be trained, using Baum Welch Algorithm mentioned in section 



1.2.3.3 This will enable the model   understand the historical data. At the end of the 

training, the new hidden Markov model  will best fit the observed data. The new 

model will then make prediction with high precision.  

2.1.8 The Application of the Seasonal Rainfall Model for Crop Production  

We shall at this point provide numerical illustration for the model discussed in 

section 2.1. The data used in this research work, was collected from the archive of 

branch office of Nigerian Meteorological Agency, located in Minna  Air port, 

Maikunkele. Maikunkele  is the headquarters of Bosso Local Government Area  of 

Niger state, located  in north central Nigeria. It lies in 9.6490° N, 6.4530° E.  The 

summary of the data is presented in Table 2.2 below

Table 2.2:A Summary of Seasonal  Rainfall in Maikunkele Between 1980-2015  

With Each Seasonal Observations

Year 1985 1986 1987 1988 1989 

State 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

Observation D D B B E B A D B B F B D C B 

Year 1980 1981 1982 1983 1984 

State 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

Observation D C B B C B C F B B F B B D B 



Year 1990 1991 1992 1993 1994 

State 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

observation D C B D D B D F B D D B      D E B 

Year        1995 1996 1997 1998 1999 

State 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

observation D F B D E F D C B D C B B E B 

Year 2000 2001 2002 2003 2004 

State 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

observation B F B D E B D D B B D B D C B 

Year 2005 2006 2007 2008 2009 

State 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

observation D D B B F B D E B B E B B F B 



Year 2010 2011 2012 2013 2014 

State 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

observation B E B B D B B E B D D B D E B 

Year        2015 

State 1 2 3 

observation D D B 

1 = Season 1,   2 = Season2 and 3 = Season3 

A = (Low rainfall well spread) 

B = (Low rainfall not well spread) 

C = (Moderate rainfall well spread) 

D =  (Moderate rainfall not well spread) 

E = (High rainfall well spread) 

F = (High rainfall not well spread) 

2.1.8 Making Predictions With the Model 

Making prediction for the three seasons is done along with the training of  parameters 

of the model. The parameters of the model are initialized then trained using Baum-

Welch algorithm  in section 1.2.3.3 to attend  Maximum likelihood. The forward 

probability of the training observation sequence is calculated from time t=1 to time T 

using Forward Algorithm (Rabiner, 1989). To predict the next state at time T+1 and 

its observation given the present state at time T, we calculate forward probability  for 



each possible observations of the states, then the sequence with highest value  of the 

forward probability at time T+1 is taken as predicted state and its observations. The 

prediction is made for the next two seasons (season 2 at time T+2, and season 3 at 

time T+3).  At the end of each year when the rainfall data recorded by the Nigerian 

Meteorological Agency is made available to the public, the predictions are compared 

with actual states and observations.  If  the prediction is not 100% accurate, it is 

included it in the training system to absorb the newest information. When the training 

is done and the parameters of the HMM are updated, we used the updated model to 

perform the predictions for the next three seasons using the previous method. To this 

end, we have developed two hidden Markov models, one of the models is to test for 

the reliability of the model and the  other  model is for future predictions. To avoid 

underflow of the forward algorithm we let the coefficient  
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2.1.10 Hidden Markov Model (HMM1) to Make Predictions for 2015 Seasons

HMM1 is a test HMM, to  test for the reliability of the Model, the parameters of  the 

HMM1 were estimated using the rainfall data from January, 1980 to February 2015, 

then made predictions for Season 1 (Mar-Jun, 2015), Season 2 (Jul-Sep, 2015) and 

Season 3 (Oct,2015 Feb, 2016). 

Transition Count Matrix 

0034

3500

0350

T

                                                                                          (2.11) 



  

Adding Pseudocount  

All transitions and emissions never observed in the dataset are usually   set to zero, as 

it can be seen in equation (2.11).  This can be a problem during training of the HMM. 

A simple solution, is to add a constant  called pseudocount to all the entries of the 

transition or emission  matrix. If the constant  is one, it is called   laplace rule 

(Srinivas, 2006) and  (Creighton and  Hanash,  2003). This is illustrated in equation 

(2.12) below. 

Pseudocount Transition Matrix 

1135

3611

1361

C

                                                                                          (2.12) 

The Transition Probability Matrix, Observation Count Matrix and Pseudocount 

Observation Matrix are given in Equations (2.13),(2.14) and(2.15) respectively. 

0270.00270.09459.0

9474.0026.00263.0

0263.09474.00263.0

A

                                                                    (2.13) 
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00191141
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1111361
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11202152
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                                                                                  (2.15) 



While  Observation probability Matrix and Initial State Probabilities are given in 

Equations (2.16) and (2.17)  

0909.00769.00313.00909.06923.025.0

8182.08462.03438.07273.00192.025.0

0909.00769.06250.01818.02885.05.0

B

                               (2.16) 

001                                                                                       (2.17)

The overall HMM1 is represented by Equation (2.18) 

),,(1 BA                                                                                                     (2.18)

After 250 iterations  of the Baum Welch Algorithm, equation (2.18) stabilised to 

equation (2.19) 

),,(*
1 BA                                                                                                     (2.19)

 where 

0000.00000.00000.1

0000.10000.00000.0

0000.09722.00278.0

A

                                                       (2.20) 

0000.00000.00000.00000.00000.10000.0

2286.03143.02857.01714.00000.00000.0

0000.00000.05429.00286.04000.00286.0

B

                              (2.21) 

and 

001                                                                                       (2.22) 



 Prediction for season 1, 2015  

From our dataset (Table 2.2), the process is in Season3 at time T(Oct, 2014 to Feb, 

2015) emitting Observation B. To get next observation at time T+1, we calculate the 

forward probability for BA, BB, BC, BD, BE, and BF using equation (1.25) and take 

the one with highest likelihood value in Table 2.3 

Table 2.3: Likelihood Based Prediction Table for  Season1, 2015.  

BA BB BC BD BE BF 

STATE 1 0.0286 0.4 0.0286 0.5429 0.0 0.0 

STATE 2 0.0 0.0 0.0 0.0 0.0 0.0 

STATE 3 0.0 0.0 0.0 0.0 0.0 0.0 

From table 2.3, State 1 under BD, has the highest likelihood value, so is taken as 

most probable observation sequence at T+ 1 (that is, State 1 emitting observation D 

at T+1) 

States:                3 1(Mar Jun, 2015) 

                                                                               

Observations:                     B                                          D 

 Prediction for season 2, 2015 

 From the computation of Table 2.3, the process is in state1 at tme T+1(Mar-Ju, 

2015) with observation D and sequence BD. To get the next sequence at time T+2, 

we calculate the forward probability for BDA, BDB, BDC, BDD, BDE and BDF and

take the one with the highest likelihood value in Table 2.4 



Table 2.4 : Likelihood Based Prediction Table for  Season 2, 2015. 

BDA BDB BDC BDD BDE BDF 

STATE1 0.0008 0.0111 0.0008 0.0151 0 0 

STATE2 0 0 0.1666 0.2778 0.3056 0.2222 

STATE3 0 0 0 0 0 0 

From Table 2.4, State 2 under BDE, has the highest likelihood value, so is taken as 

most probable observation sequence at T+ 2 (that is, State 2 emitting observation E at 

T+2). 

States:      3 1(Mar -sep, 2015)  

                               

Observations:         B                                          D                                  E 

Prediction for Season 3, 2015 

From the computation of Table 2.4, the process is in state 2 at time T+2 (Jul-Sep, 

2015) with observation E and sequence BDE. To get the next sequence at time T+3, 

we calculate the forward  probability for BDEA, BDEB, BDEC, BDED, BDEE and  

BDEF and take the one with the highest  likelihood value in Table 2.5 



Table 2.5 : Likelihood Based Prediction Table for  Season 3, 2015

BDEA BDEB BDEC BDED BDEE BDEF 

STATE1 0.0 0.0 0.0 0.0 0.0 0.0 

STATE2 0.0 0.0 0.0 0.0 0.0 0.0 

STATE3 0.0 1.0 0.0 0.0 0.0 0.0 

From Table 2.5, State 3  under BDEB has the highest likelihood value, so is taken as 

most probable observation sequence at T+3, (that is, State 3 emitting observation B 

at T+3) 

States: 3 1(Mar - Feb, 

2016) 

                                       

Observations:              B                           D                                E                        B 

Comparison of the Predicted states and Observations, and the Actual States and

Observations from the Dataset 

Predicted States and Observations for 2015 Seasons Using HMM1 

States: 3 1(Mar - Feb, 

2016) 

                             

Observations:       B                                    D                               E                         B 



Actual states and Observations from the Dataset 

States:3 1(Mar - Feb, 

2016) 

                                

Observations:          B                                  D                             D                         B 

Hidden Markov Model(HMM2) to Make Predictions for 2016 Seasons 

 HMM2 was developed to make predictions for future seasons, the parameters of the 

HMM2 was estimated using Table 2.2, then made predictions for season 1(Mar-Jun, 

2016), season 2(Jul-Sep, 2016) and season 3(Oct,2016 Feb, 2017). 

The Transition Count Matrix, Pseudocount transition matrix and the Transition 

Probability Matrix are given in Equations (2.23), (2.24) and (2.25) respectively
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(2.25)                 

While Observation Count Matrix, Pseudocount Observation Matrix and Observation 

Probability Matrix are given in Equations (2.26), (2.27) and (2.28) respectively 

0263.00263.09474.0

9487.00256.00256.0

0256.09487.00256.0

A
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                                                                                  (2.27) 

0909.00769.00294.00909.06923.025.0

8182.08462.03529.07273.00192.025.0

0909.00769.06176.01818.02885.05.0

B

                                   (2.28) 

The  Initial probabilities is represented by Equation (2.29) 

001                                                                                              (2.29) 

The Overall HMM2 is represented by Equation (2.30) 

),,(2 BA                                                                                                            (2.30) 

After 250 iterations  of  the Baum Welch Algorithm,  equation (2.30) stabilised to 

equation (2.31) 

),,(*
2 BA                                                                                                            (2.31)

where 

0000.00000.00000.1

0000.10000.00000.0

0000.09729.00271.0

A

                                                            (2.32) 

0000.00000.00000.00000.00000.10000.0

2222.03056.03055.01667.00000.00000.0

0000.00000.05556.00278.03881.00278.0

B

                              (2.33) 

and 



001                                                                                              (2.34) 

Prediction for Season 1, 2016  

From our dataset Table 2.2,  the process is in Season3 at time T(Oct, 2015 to Feb, 

2016) emitting Observation B. Now,  to get the next emission at time T+1 (Mar Jun, 

2016) we calculate the forward probability for BA, BB, BC, BD, BE, and BF using 

equation (1.25) and take the one with highest likelihood  value in Table 2.6 

Table 2.6: Likelihood Based Prediction Table for  Season1, 2016.

BA BB BC BD BE BF 

STATE1 0.0278 0.3887 0.0278 0.5553 0 0 

STATE2 0 0 0.0008 0.0001 0.0001 0.0001 

STATE3 0 0 0 0 0 0 

From Table 2.6, State1 under BD, has the highest likelihood value, so is taken as 

most probable observation sequence at T+1, (that is, State1 emitting observation D at 

T+1). 

States:    3 1(Mar Jun, 2016) 

                                          

Observations:                    B                                   D  

  



Prediction for Season 2, 2016 

From the computation of Table 2.6, the process is in state1 at time T+1(Mar-Jun, 

2016) with observation D and sequence BD. To get the next sequence at time 

T+2(Jul-sep, 2016) we calculate the forward  probability for BDA, BDB, BDC, 

BDD, BDE and BDF and take the one with the highest likelihood value in Table 2.7 

Table 2.7: Likelihood Based Prediction Table for  Season 2, 2016.

BDA BDB BDC BDD BDE BDF 

STATE1 0.0008 0.0105 0.0008 0.0151 0 0 

STATE2 0 0 0.1621 0.2971 0.2972 0.2161 

STATE3 0 0.0003 0 0 0 0 

From Table 2.7, State 2 under BDE, has the highest likelihood value, so is taken as 

most probable observation sequence at T+2 (that is, State 2 emitting observation E at 

T+2) 

States:      3 1(Mar -sep, 2016)  

                                          

Observations:                    B                                 D                               E 

 Prediction for Season 3, 2016 

From the computation of Table 2.7, the process is in state 2 at time T+2(Jul-Sep, 

2016) with observation E and sequence BDE. To get the  next sequence at time 

T+3(Oct,2016 Feb, 2017) we calculate the forward  probability for BDEA, BDEB, 

BDEC, BDED, BDEE and  BDEF and take the one with the highest  likelihood value 

in Table 2.8 



Table 2.8: Likelihood Based Prediction Table for  Season3, 2016. 

BDEA BDEB BDEC BDED BDEE BDEF 

STATE 1 0.0 0.0 0.0 0.0 0.0 0.0 

STATE 2 0.0 0.0 0.0 0.0 0.0 0.0 

STATE 3 0.0 1.0 0.0 0.0 0.0 0.0 

From Table 2.8, State 3 under BDEB has the highest likelihood value, so is taken as 

most probable observation sequence at T+3, (that is, State 3 emitting observation b at 

T+3) 

   Predicted states and Observations for 2016 seasons Using HMM2

States: 3 1(Mar  2(Jul- 3(Oct,2016 Feb, 

2017) 

                                           

Observations:         B                                  D                            E                         B 

                                               

The parameters of the HMM1 were estimated using rainfall data from January, 1980 

1 stabilised to 

1*, this new model was then used to make predictions for 2015 

seasons. As shown,   HMM1 was in State 3 at time T(Oct. 2014 to Feb. 2015)  

emitted observation B then made transition to season1 at time T+1 (Mar  Jun, 2015) 

governed by first order Markov dependence,  emitting observation D. Similar 

interpretation is given to transition to season 2 at T+2(Jul-Sep., 2015) and transition 

to season 3  at time T+3 (Oct. 2015 Feb. 2016) emitting observation E and B 

respectively. HMM1 has shown a 100% accuracy in States predictions and 75% in 



observations predictions when compared with the actual states and observations from 

the dataset.  

  

The parameters of the HMM2 were estimated using rainfall data in Table 2.2, after 

2 2*, this new 

model was then used to make predictions for 2016 seasons.  It was found that HMM2 

was in State 3 at time T(Oct. 2015 to Feb. 2016)  emitted observation B then made 

transition to season1 at time T+1 (Mar  Jun, 2016) governed by first order Markov 

dependence,  emitting observation D. Similar interpretation is given to transition to 

season2 at T+2(Jul-Sep., 2016) and transition to Season 3  at time T+3 (Oct. 2016 

Feb. 2017) emitting observation E and B respectively. 

2.2  Annual   Rainfall Pattern  for Crop Production in Jos Plateau State, Nigeria 

Plateau state is one of the north central states. It has an estimated population of about 

three million people, with an area of about 26,899 square kilometres. The state is 

named after the picturesque Jos Plateau, a mountainous area in the north of the state 

with captivating rock formations. It is located between latitude 80°24'N and 

longitude 80°32'E. The altitude ranges from around 1,200 meters (about 4000 feet) to 

a peak of 1,829 metres above sea level in the Shere Hills range near Jos (Plateau 

State, 2016). 

 In each year, rainfall onset and recession have become a very big problem to the 

farmers and policy makers in planning for crop cultivation. This is because rainfall 

starts early or late and stops early or late in a year. This had over the years affected 

crop cultivation and planting and it had consequently led to poor harvest. the Hidden 

Markov Model is developed on basis of observed data in the study area and it is 

capable of predicting rainfall  onset, recession, spread and  amount within a year. 



 Formulation of the Model 

In this model, amount of rainfall is considered as state of the Hidden Markov Model 

while onset, recession, distribution (spread) of the rainfall within a year is taken as 

emission of the model.  As a result, we make the following assumptions  

i.  The transition of annual rainfall state to another state in a year follows a 

Markov chain of first order dependence as represented by equation (1.1) 

ii. The probability of generating current observation symbol depends only on 

current state, that  is  

            )35.2(),|(),|(
1

tt

T

t
qoPQOP

                          

iii. Rainfall is said to start early if  it starts within (January-March)  

iv. Rainfall is said to start late if  it starts on the month of April or beyond   

v. Rainfall is said to stop early if  the rainfall does not exceed  the  month of 

October of a year    

vi. Rainfall is said to stop late if  the rainfall exceeds  the month of October  

 Let the annual rainfall be modelled by a three state hidden Markov model and eight 

observations The states are given below 

State1

State2

State3:    High Rainfall (Rainfall amount  >1300mm) 

And all the possible observations within a year for all the states are given below: 

Let   

1OA  (rainfall starts early and ends early in that year and it is well spread) 

2OB  (rainfall starts early and ends early in that year and it is not well spread)



3OC (rainfall starts early and ends late for that year and it is well spread)  

4OD  (rainfall starts early and ends late for that year and it is not well spread) 

5OE  (rainfall starts late and ends late for that year and it is well spread) 

6OF  (rainfall starts late and ends late of that year and it is not well spread 

7OG  (rainfall starts late and ends early of that year and it is well spread) 

8OH  (rainfall starts late and ends early for that year and it is not well spread) 

The possible transitions between the states and their emissions are illustrated in 

Figure 2.2 



                       

 Figure 2.2: Transition Diagram of the Annual Rainfall Model 

From Figure 3.1, we have the following emissions 

State 1 Emission 

)|()( 11 tatqtatoPob ll ,  )|()( 22 tatqtatoPob ll ,  )|()( 33 tatqtatoPob ll

)|()( 44 tatqtatoPob ll , )|()( 55 tatqtatoPob ll , )|()( 66 tatqtatoPob ll

)|()( 77 tatqtatoPob ll ,  )|()( 88 tatqtatoPob ll



State 2 Emissions 

)|()( 11 tatqtatoPob mm ,  )|()( 22 tatqtatoPob mm ,  )|()( 33 tatqtatoPob mm

)|()( 44 tatqtatoPob mm ,  )|()( 55 tatqtatoPob mm , )|()( 66 tatqtatoPob mm

)|()( 77 tatqtatoPob mm , )|()( 88 tatqtatoPob mm

State 3 Emissions 

)|()( 11 tatqtatoPob hh , )|()( 22 tatqtatoPob hh , )|()( 33 tatqtatoPob hh

)|()( 44 tatqtatoPob hh , )|()( 55 tatqtatoPob hh , )|()( 66 tatqtatoPob hh

)|()( 77 tatqtatoPob hh , )|()( 88 tatqtatoPob hh

2.2.2 Transition Probability Matrix for The states 

 The transitions between the states are represented by the Matrix A 
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                                                                                     (2.36)   

2.2.3 Observation   Probability   Matrix

The observations emitted by each state are represented by the Matrix B 
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     (2.37)          

2.2.4 Initial Probability Distribution 

The initial probability distribution of the model is given by Equation (2.39)  

321                                                                                                       (2.39)



  2.2.5 Application of Annual Rainfall Pattern for Crop Production  in Jos, 

Plateau State, Nigeria 

The data used in this research work, was collected from the archive of the department 

of Geography and Planning, Faculty of Environmental Sciences, University of Jos, 

Plateau state, Nigeria. Jos is the capital city of Plateau state. It is located between 

latitude 9.95030N and longitude 8.88280E. The summary is presented in Table 2.9. 

Table 2.9: A summary of Annual Rainfall in Jos between1977-2015 with States 

and their Observations

Year  State Observation 

1977 1 B 

1978 2 A 

1979 2 A 

1980 2 H 

1981 3 G 

1982 2 B 

1983 2 B 

1984 3 B 

1985 2 B 

1986 3 B 

1987 2 B 

1988 2 B 

1989 3 B 

1990 2 H 

1991 3 B 

1992 3 D 

1993 3 H 



1994 3 H 

1995 3 H 

1996 3 B 

1997 2 D 

1998 2 H 

1999 3 B 

2000 2 B 

2001 1 H 

2002 2 B 

2003 1 H 

2004 3 B 

2005 2 H 

2006 2 B 

2007 1 H 

2008 2 H 

2009 2 H 

2010 1 H 

2011 2 H 

2012 2 H 

2013 3 H 

2014 3 B 

2015 3 B 

2.2.6 Testing the Reliability of the Model 

In order to test for the reliability of the model, we divided the dataset into two sets, 

one training set and the other test set. We estimated the parameter of the test HMM1  

using the rainfall data from 1977-1994, then  used it to predict annual rainfall for 

1995, 1996 and 1997. The Transition Count Matrix, Transition Probability Matrix 



and Observation Count Matrix are given in Equations (2.39), (2.40) and (2.41) 

respectively. 
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4286.05714.00000.0

5000.05000.00000.0

0000.00000.10000.0
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                                                                    (2.40)
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00000020
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                                                                            (2.41) 

While Observation probability Matrix and Initial State Probabilities are given in 

Equations (2.42) and (2.43) respectively 

5000.00000.10000.00000.00000.10000.03000.00000.0

5000.00000.00000.00000.00000.00000.05000.00000.1

0000.00000.00000.00000.00000.00000.02000.00000.0

B

         (2.42)

4444.05000.00556.0                                                                        (2.43) 

The overall HMM1 is represented by Equation (2.44) 

),,(1 BA                                                                                                             (2.44) 

After 500 iterations of the Baum Welch Algorithm using Matlab, equation (2.44) 

stabilised to equation (2.45) 

),,(1 BA                                                                                                   (2.45) 

where 
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2667.00667.00000.00000.00667.00000.06000.00000.0

0001.00000.00000.00000.00000.00000.00000.09999.0

0000.00000.00000.00000.00000.00000.00000.10000.0

B

       (2.47) 

and 

]100[                                                                                          (2.48)                  

Prediction for 1995 

From the dataset (Table 2.9), the process is in state 3 at time T(1994) emitting 

Observation H. To get next observation at time T+1,  we calculate the forward 

probability for HA, HB, HC, HD, HE, HF, HG, HH using equation (1.25) and take 

the one with highest likelihood value. 

Table 2.10: Likelihood Based Prediction Table for 1995 

HA HB HC HD HE HF HG HH 

STATE1 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

STATE2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

STATE3 0.0 0.6 0.0 0.0667 0.0 0.0 0.0667 0.2667 

From Table 2.10, State 3 under HB has the highest likelihood value and is taken as 

most probable observation sequence at time T+1 (that is, State 3 emitting observation 

B at time T+1) 



States                   3( 3(1995) 

                                     

Observations               H                                         B 

 Prediction for 1996 

From the computation of Table 2.10, the process is in state 3 at time T+1(1995) with 

observation B and sequence HB. To get the next sequence, we calculate the forward  

probability for HBA, HBB, HBC, HBD, HBE, HBF, HBG and HBH and take the one 

with the highest likelihood value in Table 2.11. 

Table 2.11: Likelihood Based Prediction Table for 1996

  HBA HBB HBC HBD HBE HBF HBG HBH 

STATE1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

STATE2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

STATE3 0.0 0.6 0.0 0.0667 0.0 0.0 0.0667 0.2667 

From Table 2.11, State 3 under HBB has the highest likelihood value, is taken as 

most probable observation sequence at time T+2, (that is, State 3 emitting 

observation B  at T+2) 

States                 3(

                               

Observations          H                       B                      B 



Prediction for 1997  

From the computations of Table 2.11, the process is in state 3 at time T+2(1996) with 

observation B and sequence HBB. To get the next sequence, we calculate the forward  

probability for HBBA, HBBB, HBBC, HBBD, HBBE, HBBF, HBBG and HBBH 

and take the one with the highest likelihood value in table 2.12

Table 2.12: Likelihood Based Prediction Table for 1997 

HBBA HBBB HBBC HBBD HBBE HBBF HBBG HBBH 

STATE1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

STATE2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.001 

STATE3 0.0 0.6 0.0 0.066 0.0 0.0 0.066 0.266 

From Table 2.12, State 3 under HBBB has the highest likelihood value, is taken as 

most probable observation sequence at time T+3 (that is, State 3 emitting observation 

B at T+3) 

States                 3 3 (

                                               

Observations:          H                     B                  B                  B 

 Comparison of the Predicted States and Observations, and the Actual States 

and Observations From the Dataset  

Predicted states   and Observations Using the Test model (HMM1).

States                 3 3

                                               

Observations:            H                    B                  B                 B 



Actual states  and Observations from the Dataset. 

. 

States:                       3 3

                                                                          

Observations:                  H                    H                   B                  D 

2.2.7  Hidden Markov Model for Future Predictions (HMM2) 

In order to make predictions for the future years, the whole dataset (rainfall data from 

1977 to 2015) was used to estimate the parameters of the model, then make 

predictions for 2016, 2017 and 2018 .The Transition Count Matrix, Transition 

Probability Matrix and Observation Count Matrix are given in Equations (2.49), 

(2.50) and (2.51) respectively. 

770

784

140

C

                                                                                                (2.49) 

5000.05000.00000.0

3684.04211.02100.0

200.08000.00000.0

A

                                                                    (2.50) 

41001080

80001082

40000020

B

                                                                           (2.51) 

While Observation Probability Matrix and Initial State Probabilities are given in 

Equations (2.52) and (2.53) respectively 

2500.00000.10000.00000.05000.00000.04444.00000.0

5000.00000.00000.00000.05000.00000.04444.00000.1

2500.00000.00000.00000.00000.00000.01111.00000.0

B       (2.52)  

3846.04872.01282.0                                                (2.53)  



The overall HMM2 is represented by Equation (2.54)                              

),,(2 BA                                                                                                            (2.54) 

After 500 iterations of the Baum Welch Algorithm, equation (2.54)  stabilised to 

equation (2.55) 

),,(2 BA                                                                                                  (2.55)

where  

6357.03643.00

0000.02332.07668.0

3668.06332.00

A

                                                            (2.56) 

0000.00780.00000.00000.00000.00000.09220.00000.0

3187.00000.00000.00000.01338.00000.04137.01338.0

0000.10000.00000.00000.00000.00000.00000.00000.0

B

        (2.57) 

and 

100                                                                                              (2.58)

         
 Prediction for 2016  

From the dataset(Table 2.9), the process is in state 3 at time T(2015) emitting 

Observation B. To get next observation at time T+1,  we calculate the forward 

probability for BA, BB, BC, BD, BE, BF, BG, BH using equation (1.25) and take the 

one with highest value in Table 2.13. 



Table 2.13: Likelihood Based Prediction Table for 2016 

BA BB BC BD BE BF BG BH 

STATE1 0 0 0 0 0 0 0 0.2213 

STATE2 0.0437 0.1351 0 0.0427 0 0 0 0.1041 

STATE3 0 0.4170 0 0 0 0 0.0353 0 

From Table 2.13, State3 under BB has the highest likelihood value and is taken as 

most probable observation sequence at T+1 (that is, State3 emitting observation B at 

T+1) 

                          

Observation     B                    B 

 Prediction for 2017

From the computations of Table 2.13, the process is in state 3 at time T+1(2016) with 

observation B and sequence BB. To get the next sequence at time T+2, we calculate 

the forward  probability for BBA, BBB, BBC, BBD, BBE, BBF, BBG and BBH and 

take the one with the highest likelihood value in Table 2.14



Table 2.14: Likelihood Based Prediction Table for 2017 

BBA BBB BBC BBD BBE BBF BBG BBH 

STATE1 0 0 0 0 0 0 0 0.1876 

STATE2 0.0445 0.1375 0 0.0437 0 0 0 0.1041 

STATE3 0 0.4427 0 0 0 0 0.0375 0 

From table 2.14, State 3 under BBB has the highest likelihood value and is taken as 

most probable observation sequence at T+2 (that is, State 2 emitting observation B at 

T+2) 

States:                   3 3

                                                            

Observations:              B                        B                     B 

  Prediction for 2018 

From the computations of Table 2.14, the process is in state 3 at time T+2(2017) with 

observation B and sequence BBB. To get the next sequence at time T+3, we calculate

the forward  probability for BBBA, BBBB, BBBC, BBBD, BBBE, BBBF, BBBG 

and BBBH and take the one with the highest likelihood value in Table 2.15. 



Table 2.15: Likelihood Based Prediction Table for 2018 

HBBA HBBB HBBC HBBD HBBE HBBF HBBG HBBH 

STATE1 0 0 0 0 0 0 0 0.1876 

STATE2 0.0442 0.1367 0 0.0442 0 0 0 0.1053 

STATE3 0 0.4413 0 0 0 0 0.0375 0 

From Table 2.15, State 3 under HBBB has the highest likelihood value, is taken as 

most probable observation sequence at time T+3 (that is, State 3 emitting observation 

B at T+3) 

Predicted states and Observations Using HMM2  

States:                3 3

                               

Observations:        B                B              B                 B         

The parameters of the HMM1 were estimated using rainfall data from 1977-1994, 

1 stabilised 1
*, this new 

model was then used to make predictions from 1994-1997. From the prediction time 

series, the  HMM1 was in state 3(high rainfall) at time T(1994) emitted observation 

H(rainfall starts late and ends early of that year and it is well spread ) then make 

transition to state 3(high rainfall) at time T+1 (1995) governed by first order Markov 

dependence,  emitting observation B(rainfall starts early and ends early that year and 

it is  not well spread). Similar interpretation is given to transition to state 3(high 

rainfall) at T+2(1996) and transition to state 3(high rainfall)  at time T+3 (1997) both 

emitting observation B(rainfall starts early and ends early in that year and it is well 

spread). This model has 75% accuracy is state and 50% in observation in the 



predictions, this model was purposely developed to test for the reliability of the 

model.  

The parameters of the HMM2 were estimated using the whole dataset (rainfall data 

from 1977-2015), after 500 iterations 2 stabilised to a 

new model , 2
*. This model was used to make predictions for annual rainfall pattern 

for the future years( 2016, 2017 and 2018). The prediction shows that the annual 

rainfall is in state 3(high rainfall) at time T(2015)  with observation B(rainfall starts 

late and ends early of that year and it is not well spread) will make transition to state 

3(high rainfall) at time T+1(2016) according to first order Markov dependence, 

emitting observation B(rainfall starts early and ends early in that year and it is not 

well spread), it then made transition to state 2 (moderate rainfall) at time T+2(2017) 

and later to state1(low rainfall) at time T+3(2018)  both emitting Observation 

B(rainfall starts early and ends early in that year and it is not well spread). 



REFERENCES

Abubakar, U. Y., Lawal, A., & Muhammed,  A. (2013). The  Use  of   Markov 
             Model in Continuous Time  for  Prediction  of  Rainfall for  Crop Production.  
            IOSR Journal  of  Mathematics, 7(1), 38-45.  

Adams, R.M., Hurd, B.H., Lenhart, S., &   Leary, N. (1998).  Effects   of   global 
          climate Change  On  Agriculture:  An  interpretative review, Climate  Change,  
          11,  19 30. 

Ahn, P.M. (1993). Tropical    Soils  and  Fertiliser Use.   London:  Longman 
         Scientific Technical. 

Andrew, W., Robertson, S .K., &  Padhraic, S. (2003). Hidden  Markov  models For  
modelling  daily  rainfall  occurrence  over  Brazil. Technical  Report  UCI-
ICS 03-27  Information and Computer Science University of California, Irvine. 

Andrew W. R., Amor V. M., & James W. H. (2007). Downscaling  of  Seasonal 
Precipitation for Crop   Simulation.   Journal  of  Applied   Meteorology  and  
Climatology.    46, 677-693 

Arumugam, P., & Karthik, S.M. (2016).Stochastic Modelling in Yearly Rainfall at 
Tirunelveli District,Tamil Nadu, India. International Conference on 
Processing of Materials, Minerals and Energy (July 29th  30th) 2016, 
Ongole, Andhra Pradesh, India.

Barkotulla, .M. A. B .(2010). Stochastic   Generation of  the  Occurrence   and 
Amount of Daily Rainfall. Pakistan journal of statistics and operation 
research. 6 (1),61-63.  

Baldi, P., & Brunak, S. (2001). Bioinformatics. Cambridge: A Bradford Book, The 
MIT Press,.  

Blessing  Smart.(2015). Top 6 Geopolitical zones in Nigeria. Information guide in 
Nigeria. Retrieved from http://infoguidenigeria.com/top-6-geopolitical-zones-
nigeria. 



Chulsang,Y., Jinwook, L., & Yonghun, R. (2016).Markov  Chain Decomposition of 
Monthly Rainfall   into Daily     Rainfall. Evaluation of Climate  Change   
Impact.  Hindawi Publishing Corporation Advances in Meteorology Volume 
2016, 1-10.  

Chaouche, A., &  Parent, E. (1999). Bayesian  Identification   and   Validation  of  a 
daily rainfall model under monsoon conditions. Hydrology. Science Journal, 
44(2), 199-220. 

Cox, D.R., & Isham, V. (1994). Stochastic models of precipitation: Statistics for the 
environment  2: Water issues. Wiley, New York, 3-18. 

Creighton .C., &  Hanash.  S. (2003). Mining gene expression  databases  for  
association rules. Bioinformatics, 19,79 86. 

Danilo, B .(2014). Hidden   Markov   Models:    An    Approach   to   Sequence 
Analysis In Population   Studies,   National    Center  of Competence in 
Research LIVES Institute for Demographic and Life Course Studies,
University  of  Geneva,  Switzerland,  PPA 2014 Annual Meeting. 

  

Delleur, J.W.,Chang,T. J., & Kavvas, M. L. (1989). Simulation Models of Sequences 
of wet and  dry days. Journal of Irrigation and   Drainage Engineering, 
115(3), 344-357. 

Durbin, R., Eddy, S.Y., Krogh. A., & Mitchison .G.(1998). Biological Sequence 
Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge, 
UK: Cambridge University Press.  

Enza,  M., & Daniele, T.(2007).  Hidden   Markov  models  for  scenario  generation. 
Journal of Management Mathematics, 19, 379-401. 

Fink,G.A.(1989). Markov Models for  Pattern Recognition. From Theory to  
           Applications, Second Edition. London, UK:  Springer.

Fisher, R. (1924). The Influence  of  the  Rainfall  on  the  yield  of  wheat  a  
Rothamsted. Philosophical Transaction of the Royal Societies of London,  2,  
120-123. 



Gabriel, K.R., & Neumann, J. (1962). A Markov chain Model for Daily Rainfall 
Occurrences at Tel Aviv. Quart Journal Ray Meteorology society, 88, 90-95. 

Geng, S., Penning. D, Vries F.W.T., & Supit, I. (1986). A Simple Method for
Generating Daily Rainfall Data. Agricultural. Forest Meteorology, 36, 363
376. 

Hay, L. E., McCabe, J. G. J., Wolock, D. M.,& Ayers, M. A. (1991). Simulation of 
Precipitation by weather type analysis. Water Resources Research, 27, 493-
501. 

Hyang-Won. L(2014). Hidden Markov Models, Probability and Statistics Spring, 

          P1-18 

Hirsch H.G.(2001).HMM Adaptation for Applications in Telecommunication. 
Speech Communication, 34(1-2), 127-139. 

Hulme, M.,  Osborn, T., & John, T .(1998). Precipitation Sensitivity of Global 
Warming: Comparison of Observations with HADCM2 Simulations. 
Geophysical Research  Letter, 25, 3379-3382. 

Iloeje N.P. (1981). A New Geography of Nigeria. Nigeria: Longman  Nigeria  
          Limited. 

Jae, Y. S. (2012).  Investigation   of   Non-homogeneous Hidden Markov Model and 
Their   Application to Spatially-Distributed Precipitation Types, a master of 
science Thesis Submitted to the Office of Graduate  Studies of Texas A&M  
University, USA. 

James, H., Matis, C., R., Perry, D.E., & Boudreaux D.J.A.(1989). Markov   Chain 
Forecasts of  Cotton Objective Yield. United    States  National   Agricultural 
Statistics. Service  Research  and Application Divisions, SRB Research Report
Number SRB-89-11.

Jimoh, O.D., &  Webster, P.(1996). Optimum Order of Markov chain for daily 
rainfall in Nigeria Journal of Hydrology,185, 45-69. 

Jimoh, O. D., & Webster, P. (1999). Stochastic Modelling Daily  Rainfall in Nigeria: 
intra-annual variation of model parameters. Journal of Hydrology, 222, 1- 17. 



Katrin, S., Sebastian,  M., Gerd, S., &   Christoph,    K.  (2016). Compound  
Extremes  in  a Changing Climate  A  Markov Chain Approach. Nonlinear 
Processes  in  Geophysics  Discussions.

Lawal, .A. (2013). The Use  of  Markov  Model   in   Predicting the Rainfall Pattern 
for Crop Production. Unpublished  M.Tech  Thesis,  Department  of  
Mathematics  and Statistics, Federal University of Technology, Minna. 
Nigeria. 

Maheepala, S., & Perera, C.J.C.(1996).Monthly hydrologic data data generation by 
disaggregation. Journal of Hydrology. 178, 277-291. 

Mouelhi, S., Nemri, S.,  Jebari, S.,  Slimani, M.  (2016). Using the Markov  Chain for 
the Generation of Monthly Rainfall Series in a Semi-Arid Zone. Open Journal 
of Modern Hydrology,  6, 51-65. 

Parzen, E. (1962). Stochastic    Processes,   Second    Edition.   Oakland  California,  
         USA: Holden- Day Series in Probability and Statistics. 

Plateau State. (2016, November 29). In    Wikipedia, The  Free  Encyclopedia. 
          Retrieved08:18,November29,2016,from   
          https://en.wikipedia.org/w/index.php?title = Platea  State & oldid=752062055.  

Porter, J. W., & Pink, B. J. (1991). A Method of synthetic fragments for 
disaggregation in Stochastic data generation. Hydrology and Water Resources 
Symposium,187-191. 

Przemyslaw D. (2011). Hidden Markov Models, Theory and Applications: Intech 
Crotia. 

Rabiner, L.R.(1989). A tutorial   on    hidden  Markov models and selected 
applications in speech recognition. Proc. IEEE, 77, 257-286. 

Raheem, M. A., Yahya, W.B., & Obisesan, K.O. (2015). A Markov Chain Approach 
on Pattern of Rainfall  Distribution. Journal of Environmental Statistics, 7(1), 
451-457. 

Ross S.M. (1989). Introduction  to   probability  Models.  London: Academic   Press, 
          Ltd.  



Saran, S, T. K., Kitti .C., Preesan .R., & Thitiporn, C, Itsuo, K.(2014). Rice 
Cultivation an Harvest Date  Estimation Using MODIS NDVI Time-series.  
Data  Nagatsuta-cho, Midori-ku, Yokohama Japan, 226-8503. 

Srinivas, A. (2006 ). Handbook   of  Computational Molecular Biology. Iowa state 
University, Ames, Iowa, USA. Chapman & Hall/CRC, Taylor & Francis 
Group. 

           
Tamil,S., & Samuel, S. (2011). Stochastic Modelling of Annual Rainfall at Tamil 

Nadu. Universal Journal of Environmental Research and Technology, 1(4) 
566-570. 

Tang, X. (2004). Autoregressive Hidden Markov Model with Application in An EL 
NiNo Study. A masters  Thesis Submitted to the College of Graduate Studies 
and Research Department of Mathematics and Statistics University of
Saskatchewan, Saskatoon. 

  
Thyer, M., & Kuzcera, G. (1999). Modelling long-term persistence in rainfall time 

series: Sydney  rainfall case study. Hydrology and Water Resources 
Symposium,  550-555. 

Vami  H., N., Mahaman, B. S., Sorin. P., Romulus, T., Bogdan, B.,  Eric, V. D., 
Fernand, K.,  Monica,  B., & Kouadio, A. (2014).  Markovian  Approach  for 
analysis and Prediction of Monthly  Precipitation Field in the Department of 
Sinfra .International Journal of Engineering Research and General Science,
2(1), 34-49.   

         
Vaseghi, S.V.(2006). Advanced Digital    Signal    Processing    and  Noise  
          Reduction. 4th  Edition US: Wiley.

Vent,  M  .S., &  Fritz, C.G.(1957).Weather Influence   on   the   Size   of   US   cord 
Soya beans. Department   of   Agronomy,  Agricultural  Experimental    Station  
Seasonal   Journal.

 Wei .L., Tana, F. Y., & Zulkifli, Y.(2013).  Non-Homogeneous  Hidden Markov  
Model for Daily Rainfall Amount in Peninsular Malaysia, 63(2), 75 80.



                  








