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ABSTRACT 
 

In this chapter, a Markov model to study weekly rainfall both in discrete and continuous time is 
presented. The model predicts and analyzes weekly rainfall pattern of  Makurdi, Nigeria using rainfall 
data of  eleven years(2005-2015). After some successful iterations of the discrete time Markov model, 
its stabilizes to equilibrium probabilities, revealing that   in the  long-run  22% of the weeks during 
rainy season in Makurdi, will  experience No rainfall, 50% will experience Low rainfall, 25% will 
experience Moderate rainfall and 2% will experience High rainfall. For the continuous time Markov 
model, It was observed that, if it is in No rainfall state in a given week, it would take at most 49%, 27% 
and 16% of the time to make a transition to Low rainfall, Moderate rainfall, and High rainfall 
respectively in the far future. Thus given the rainfall in a week, it is possible to determine quantitatively 
the probability of finding weekly rainfall in other states in the following week and in the long run. The 
model also reveals that, a week of High rainfall cannot be followed by another week of High rainfall,  a 
week of High rainfall cannot be followed by a week of  No rainfall, and a week of Moderate rainfall 
cannot precede a week of  High rainfall. With the combined results of the discrete and continuous time 
Markov model, the rainfall pattern of the study area is better understood. These results are important 
information to the residents of Markudi and environmental management scientists  for effective 
planning and viable crop production. 
 
Keywords: Markov chain; weekly rainfall; transition probabilities; equilibrium probabilities probability 

state vector; Makurdi. 
 

1. INTRODUCTION 
 
Rainfall is a type of precipitation that occurs when water vapour in the atmosphere condense into 
droplets, which can no longer be suspended in the air. The occurrence of rainfall is dependent upon 
several factors. Factors such as prevailing wind directions, ground elevation, location within a 
continental mass, and location with respect to mountain ranges, all have a major impact on the 
possibility of precipitation [1]. Rainfall in Makurdi, Benue state, Nigeria is not ordinarily predictable, its 
occurrence and amount varies from year to year. The majority of the people living in this part of the 
country are farmers and rainfall is the major source of water for agricultural activities. This 
dependence of agricultural production on rainfall variability and quantity, and the unpredictable nature 
of the rainfall in this part of the country, had over the years led to: improper crop planning and 
cultivation consequently led poor harvest. The research, is aimed at providing some quantitative 
information to the farmers and Government that could assists in boosting crop production in the state 
and the country at large.  Rainfall exhibits a strong variability in time and space across the globe. It is 
well established that rainfall is changing on both the global and the regional scale due to global 
warming [2]. Rainfall is the principal phenomenon driving many hydrological extremes such as floods, 
droughts, landslides, debris and mud-flows; its analysis and modeling are typical problems in applied 
hydrometeorology [3]. Hence, its stochastic modeling is necessary for the prevention of natural 
disaster. Understanding the rainfall distribution is equally necessary for future planning. This is 
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applicable in areas like agriculture, industry, insurance, hydrological studies and the entire planning of 
a country economy. Agricultural calendar have direct link with the onset and withdrawal of the rainfall 
which in turn have, direct impact on agricultural productivity [4]. Consequently, information on rainfall 
probabilities is vital for the design of water supply management, supplementary irrigation schemes 
and the evaluation of alternative cropping system for effective soil water management plans [3].  Such 
information can also be beneficial in determining the best adapted plant species and the optimum time 
of seedling to re-establish vegetation on deteriorated rangelands. 
 
Overwhelming  researchers  within Nigeria and in around  the world,  have proposed several methods 
in attempt  to provide information that could enable humanity to make best use of this random 
phenomenon, either for agricultural purposes or other purposes of fundamental importance to life, 
such researchers include. Raheem et al., [5] had successfully developed a three-state Markov chain 
to examine the pattern and distribution of daily rainfall in Uyo metropolis of Nigeria using 15 years 
(1995-2009) rainfall data.  Evaluation of the effect of climate change on daily rainfall using first-order 
Markov chain model, has been presented by Chulsang et al. [6], the model was applied to Seoul 
weather station in Korea, the result shows that about 30% of the total change in monthly rainfall 
amount was due to the change in the number of wet days and the remaining 70% was due to the 
change in the rainfall intensity. Arumugam and Karthik [7] have investigated  the variations of annual 
rainfall in Tirunelveli district, India   based on stochastic method. Rainfall data for 44 years was used, 
the Markov chain model developed was used to predict annual rainfall for the future years, up to 2025. 
Katrin et al., [8] had applied Markov chains to analyzed the dynamics and succession of multivariate 
or compound extreme events.  The method was applied to observational data and an ensemble of 
regional climate simulations for Central Europe. They concluded that, the change in the succession of 
hot and dry days in summer will probably affect regions in Spain and Bulgaria. The susceptibility to a 
dynamic change of hot and dry extremes in the Russian region will probably decrease. Mouelhi et al. 
[9] had proposed a developmental method of stochastic generator of monthly rainfall series. The work 
was based on the modeling of the occurrence and the quantity of rain in a separate way. 
 

2. MATERIALS AND METHODS 
 
2.1 Study Area 
 
The study area of this research is Makurdi. The city is located in central Nigeria along the Benue River 
, it is located on (latitude 7.7°N, longitude 8.5°), Makurdi is the capital city of Benue state of Nigeria. 
Benue State is regarded as food basket of the nation because of its rich agricultural produce which 
include Yam, Rice, Beans, Cassava, Sweet-potato, Maize, Soybean, Sorghum, Millet, Sesame, 
cocoyam etc. Agriculture is the mainstay of the economy, engaging over 75% of the state farming 
population. The State also has one of the longest stretches of river systems in the country with great 
potential for a viable fishing industry, dry season farming through irrigation and for an inland water 
highway. The vegetation of the State consists of rain forests which have tall trees, tall grasses and oil 
palm trees that occupy the state's western and southern fringes while the Guinea Savannah is found 
in the eastern and northern parts with mixed grasses and trees that are generally of average height. 
 

2.2 Sample Collection 
 
The data used in this research work were obtained from the archive of Nigerian Meteorological 
Agency, Maitama, Abuja. It is the daily rainfall record of Markudi, Benue state for the period of 11 
years (2005 to 2015). 
 
2.3 Model Formulation 
 
This research, considers the use of weekly rainfall amount during the rainy season to study weekly 
rainfall pattern of Makurdi both in discrete and continuous time. 
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Following Ross [10], we consider a stochastic process ,........}3,2,1,0,{ nXn  which takes on a 

finite or countable number of possible values. Unless otherwise stated, this set of possible values of 

the process will be denoted by the set of nonnegative integers },.........3,2,1,0{  if iXn   then the 

process is said to be in state i at time n. 
 
We suppose that whenever the process is in state i, there is a fixed probability Pij that it will next be in 
state j. That is, we suppose that 
 

 
 

(1) 
 

for all states .0,,,........,, 10  nallandjiiii ni   Such a stochastic process is known as a Markov 

chain. Equation (1), may be interpreted as stating that, for a Markov chain, the conditional distribution 

of any future state 1nX  given the past states 110 ,.......,, nXXX  and the present state nX is 

independent of the past states and depends only on the present state. The value Pij represents the 
probability that the process will, when in state i, next make a transition into state j. Since probabilities 
are nonnegative and since the process must make a transition into some state, we have that 
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Now, suppose that the amount of weekly rainfall in Makurdi in a week during the rainy season is 

considered as a random variable X ,  the collection of these random variables over the weeks 

constitutes a stochastic process ...................3,2,1,0, nXn  
 
It is assumed that this stochastic process satisfies Markov properties mentioned above. Let the 
weekly rainfall be modelled by four states, Markov model. 
 

State1: No rainfall 
State2: Low rainfall 
State3: Moderate rainfall 
State4: High rainfall 

 
It is important to mention here that, the classification of states for a Markov model is guided by the 
purpose in which the model is intended to achieve. 
 
The transition between the states is described by Equation (2) and the transition diagram is 
represented by Fig. 1, thus we have 
 

2.4 Transition Probability Matrix 
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Fig. 1. Transition diagram of the weekly rainfall model 

 
The transition probability matrix and the transition diagram were obtained based on data collected and 
the rainfall states adopted for the study area. 
 

2.5 The Discrete Time Markov Model for the Weekly Rainfall 
 
Markov model that is discrete state and discrete time is considered in this section as a result, 
 

we Let 
)(nP  represent the probability state vectors of the Markov chain, 

 

Where  n can take values from zero to infinity (n = 0, 1, 2, 3,4,.....................) 
 

and 
)(n

iP  is the probability that the weekly rainfall is in the thi  state at the  thn  week.   
)0(P  is the 

initial state vector of the Markov chain and 
)(nP is  the state vector at the thn  week 

 

Then we can write          
PPp nn )()1( 

.                                                                                (3) 

 

Where P is our transition probability matrix and )1( np is the state vector at the thn )1(    week. 

 
on iteration, we have 
 

nn
Ppp )0()(                                                                                                                           (4) 
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this mean that the initial state vector 
)0(P  and the transition matrix P determine the state vector 

)(nP  at the thn  week 

 

If we now, let  nnnnn ppppp 4321
)( 

                                                                         (5) 
 

denote the probabilities of finding the weekly rainfall amount in any of the four states at the  thn  week 

and also let  .4321
)0( oooo ppppp 

                                                                                            (6) 
 
Denotes   the initial state vector, then our First order Markov Chain Model for weekly rainfall amount 
pattern prediction in the long run, in Makurdi can be represented by 
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2.6 Limiting State Probabilities 
 
The state occupation probabilities is independent of the starting state of the process, if number of the 
time the state transition is large thus the process reaches a steady state after a sufficiently large 
period of time. This is equilibrium distribution 
 

)( 4321  
 

 

If we let  n  in equation 4, we have 
 

p                                                                                                                                     (8) 
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these equations will be use to find the  limiting state probabilities for our model 
 
2.7 The Continuous Time Markov Model for the Weekly Rainfall 
 
Following [11], we consider a stochastic process that is discrete state and continuous time.  A 

continuous time stochastic process )(tX   is an infinite family of random variables indexed by the 

continuous real variable  that is for any fixed t, X(t) is a random variable and the collection of all these  

(for all t) is the stochastic process we ordinarily think of t as time, so we may expect )( 1tX , the 

random variable at time 1t , to be dependent on )( otX , where ,10 tt   but not upon )( 2tX , 

where 12 tt  . The value of )( 1tX  is the state of the process at time .1t  
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let ),(tpij  denotes transition probability  function which is discrete state and continuous time , 

where 
 

 iXjtXprtpij  )0(/)()(                                                                                         (10) 

 

Now, a fair amount can be known about these )(tpij  functions just as a consequence of the fact 

that they are,  for all t, probabilities. For example, they are non-negative bounded functions because a 

probability must lie between 0 and 1. The values of the functions at 0t  can be deduced because 
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If  we fix i and vary j  over all states, the sum of the )(tpij  must equal 1 ( for all t) 

 

Now,  under the assumption  that the )(tpij  are continuous functions then we may express ijp  for 

small t  by the use of Maclaurin’s series, thus 
 

)()0()0()( 2totpptp ijijij                                                                                      (11) 

 

Where )( 2to   represent all terms of the order of  the 
2)( t  or higher. If we consider this 

expression for ,ji   and let )0(ijij pq   we obtain 

 

)()( 2totqtp ijij                                                                                                          (12) 

 

This is a linear approximation to )(tpij  which is good approximation as long as t  is small. ijq  is 

called the transition rate from jtoi  

 

For ,ji   the Maclaurin’s series expansion yields 
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We get the linear approximation 
 

)(1)( 2totqtp jjjj                                                                                                    (14) 

 

If we now, consider the forward Chapman-Kolmogorov equation 
 

Which is a  equation for studying stationary Markov processes thus:  
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for small t , and substitute our linear approximation, we get 
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Taking limit as 0t  
  

(15) 
 
 

In matrix form we have Qtp
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The elements of Q may be further related by extending the properties of P(t) 
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In words, each row of Q must sum to zero. Since off-diagonal element in non negative, the diagonal 

element iiq , must be equal in magnitude and opposite in sign to the sum of others in the same rows. 

That is 
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ji

ijii qq                                                                                                                         (17) 

 

To obtain the solution to equation(16) , the initial condition ;4,3,2,1),0( iPi  must be specified 

Taking the Laplace transform of  equation(16),  we obtained 
 

1))(0()(  QSIPsP                                                                                                       (18) 

 
Thus p(t) is obtained as the inverse transform of P(s) [12] 
 

3. RESULTS AND DISCUSSION 
 
The data used in this research work were obtained from the archive of Nigerian Meteorological 
Agency, Maitama, Abuja. It is the daily rainfall record of Markudi, Benue state for the period of 11 
years (2005 to 2015).  The summary is presented in Table 1 below. 
 

Table 1. A summary of weekly rainfall amount in Makurdi between 2005-2015 and states 
distribution 

 
Weekly  rainfall in mm Frequency State 
0 68 No Rainfall 
Rainfall  amount <61 254 Low Rainfall 
61-120 51 Moderate Rainfall 
Rainfall amount >120 9 High Rainfall 

 

3.1 Application of the Discrete Time Markov Model 
 
The transition count matrix is shown below and is obtained from Table 1 
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From equation10, using the maximum likelihood estimator i.e 
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Where ijf  is the historical frequency of transition from state i  to state j , we  to  obtained the 

transition probability matrix given below 
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The state of the process at time n, Xn is related to the process at time  n+1 through what is known as 
the transition probabilities. If the process is in state i at time n, at next time step n+1, it will either  stay 
in state i or move or transfer to another state j .The probabilities for these changes in state are defined 
by equation (1), called One-Step transition probabilities. 
 

3.2 n-Step Transition Probability 
 
The probability of moving from state i to state j in n times steps is called n-step transition probability 

and is defined by  iXjXprobp n
n
ij  0
)( /   Linda [13] 

 

Calculating 
nP ,    we have, on iteration 
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3.3 Limiting State Probabilities 
 
The state occupation probabilities is independent of the starting state of the process, if number of the 
time the state transition is large thus the process reaches a steady state after a sufficiently large 
period of time. Thus 
 

As  n    increases,
nP  gets closer and closer to equation (28), that is 18n the transition 

probabilities stabilises to equation(28), and from equation (4), with the initial state probability vector 
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This is the probability of finding the weekly rainfall amount fall in any of the four states for large

 18. nein  

 

From equation (8),  the limiting state probability vector is given by 
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Where  correspond to equation (28) 
 
This shows that in the long-run,  22% of the weeks during rainy season in Markudi will experience No 
rainfall, 50% will experience Low rainfall, 25% will experience Moderate rainfall, 2% will experience 
High rainfall. It is important to mention here that the result does not sum up to 100% because 1% was 
lost during approximation process in the computations. 
 
In this section, we have applied the principle of Markov in discrete time to study weekly rainfall 
amount in Markudi. In the transition probability matrix, we have P11, P12, P13, and P14 = 0.50, 0.431, 
0.034 and 0.034 respectively for the first year, after some iteration; these values stabilised to 0.219, 
0.501, 0.249 and 0.022 respectively at the 18 steps . These are the equilibrium probabilities. That is, 
the probabilities of having weekly rainfall in state1, state2, state3 and state4 respectively in the long 
run. For instance, the value of P13 increases steadily from 0.034 for the first year and stabilised to 
0.249 at the 18steps. This is probabilities of having no rainfall week during the rainy season making a 
transition to moderate rainfall in the following week or subsequent weeks cannot be more than 0.249.  
Similar interpretation is given to P12, and P14 as well as to the other transition probabilities. With this 
Markov chain model, it is easy to make a prediction of what the rainfall (state) may be in the following 
week and in the long run if we know the present rainfall state on a discrete time scale. 
 
From equation(2), it can be observed that P41, P34, P44 = 0, these mean that, there are not transition 
between these states. For example for  the P44 = 0, it  means that,  it is not possible for a week of  
high rainfall in Makurdi to be followed by another week  of high rainfall , and also for the P41, it is not 
possible to  for a week of high rainfall to be followed by a week of  no rainfall. Similarly, for  P34, a 
week of moderate rainfall cannot precede   a week   high Rainfall. 
 

3.4 Application of the Continuous Time Markov Model 
 
Unlike the model considered in the previous section where results were expressed at discrete point in 
time only, this model will provide result at any point in the time scale. To achieve this, we need to 
consider the transition count matrix of the weekly rainfall in equation (19) 
 
Normalizing Equation (19) using Equation (17), we have equation (29) below 
 





























8260

0844

7478026

222529

A

                                                                                            (29) 
 
Thus, the matrix A can be interpreted as the reciprocal of the mean times of the negative 
exponentially distributed random variable having the cumulative distribution 
 

t 1  and mean value 


1
. 

 
The above matrix indicates that if the rainfall is no rainfall state, the time it takes to make a transition 
to low rainfall state is exponentially distributed with mean 25 weeks. That is, if the rainfall is in No 

rainfall state, it has a probability t
25

1
 of making transition to low rainfall state,  a probability t

2

1
 of 

making transition to moderate rainfall state and a probability t
2

1
 of making transition to high rainfall 

state in the time interval  ttt , .  Also if the rainfall  is in low rainfall state it has a probability 
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t
26

1
 of making transition to no rainfall state,  a probability t

47

1
 of making transition to moderate 

rainfall state and a probability t
7

1
 of making transition to high rainfall state in the time interval 

 ttt , . Similarly,  if the rainfall  is in moderate rainfall state it has a probability t
4

1
 of making 

transition to  both no rainfall state and   low rainfall state and a probability  of  0 to high rainfall state, in 

the time interval  ttt , .     Similar interpretation is given to being in high rainfall state making 

transition to no rainfall state, low rainfall, and moderate rainfall with probabilities, 0,   t
6

1
, and t

2

1
   

respectively in the time interval  ttt , . 

 
The Matrix A can be expressed as the expected value of the exponential distribution thus 
 





























67.05.017.00

05.025.025.0

14.002.02.004.0

5.05.004.004.1

Q

                                                                                (30) 
 
Now ,  to obtained solution for  equation (18), we have that 
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                (31) 
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s

s
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                                                                         (32) 
 

We suppose that the initial state of the process is  0001)0( P  
 
Thus 
 

1))(0()(  QSIPsP  
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 
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5.05.004.004.1
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s

sP                                        (33) 

 
Solving equation (33), using maple software   we have the following equations to compute 
 

tt tttP 004.1242425401.0
12 ))153.0sin(1048.2)153.0cos(1080.1(1006.1679.0488.0)(   

 

))153.0sin(10922.2)153.0cos(10806.3(10129.2545.0266.0)( 2424100425401.0
13 tttP tt   

 
 

))153.0sin(1077.8)153.0cos(1079.4(10662.2036.0164.0)( 2322006.124401.0
14 tttP tt   

 
 
P12(t)  is the conditional probability that the weekly  rainfall will be in low rainfall state at time t given 
that the weekly rainfall was in no rainfall state at time zero 
 
P13(t)  is the conditional probability that the weekly  rainfall will be in moderate rainfall state at time t 
given that the weekly rainfall was in no rainfall state at time zero 
 
P14(t)  is the conditional probability that the weekly  rainfall will be in high rainfall state at time t given 
that the weekly rainfall was in no rainfall state at time zero 
 
P11(t)  is the conditional probability that the weekly  rainfall will be in no rainfall state at time t given 
that the weekly rainfall was in no rainfall state at time zero. This the compliment of  P12(t), P13(t) and 

P14(t) this can be calculated at any point in time using  
j

ij ijp 4,3,2,1,1 , 

 

to obtain )(11 tP ,one may  use  )()()(1)( 14131211 tPtPtptP 
 

 
The values of  the equations evaluated for t = 0 to 25 are tabulated in Table 2  and are illustrated  
graphically in Fig. 2. 
 

Table 2. The transition probabilities 
 

t P12(t) P13(t) P14(t) 
0 0.000000 0.000000 0.000000 
1 0.087732 0.302213 0.223710 
2 0.197351 0.380988 0.225555 
3 0.286862 0.379895 0.198041 
4 0.351632 0.356771 0.178654 
5 0.396334 0.332300 0.168832 
6 0.426582 0.312415 0.164674 
7 0.446882 0.297773 0.163215 
8 0.460466 0.287480 0.162874 
9 0.469547 0.280411 0.162928 
10 0.475619 0.275616 0.163083 
11 0.479679 0.272385 0.163235 
12 0.482395 0.270215 0.163356 
13 0.484212 0.268761 0.163444 
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t P12(t) P13(t) P14(t) 
14 0.485428 0.267786 0.163506 
15 0.486786 0.267134 0.163548 
16 0.487395 0.266697 0.163577 
17 0.487559 0.266405 0.163596 
18 0.487668 0.266209 0.163609 
19 0.487741 0.266078 0.163618 
20 0.487789 0.265991 0.163624 
21 0.487823 0.265932 0.163627 
22 0.487845 0.265893 0.163630 
23 0.487859 0.265866 0.163632 
24 0.487845 0.265849 0.163633 
25 0.487859 0.265837 0.163634 

 

 
 

Fig. 2. The graph of Transition Probabilities 
 
We observe that, the limit of each function as t goes to infinity or fairly large is immediately apparent, 
both in the functions themselves and in the graphs of the functions. The convergence is smooth and 
monotonic, as opposed to discontinuous, oscillating or both. 
 
The result is presented in Table 2 and illustrated graphically in Fig. 2. The model enables us to 
determine the values of P12(t), P13(t), P14(t) respectively at any time t. It is observed from the table that  
P12 rose steadily and stabilizes to 0.49 as t tends to infinity, also P13 rose, later dropped and stabilized  
to 0.27 as t tends to infinity, similarly P14 rose and drop sharply and later stabilized to 0.16 as t tends 
to infinity. These are the equilibrium transition probabilities. For instance, if the process is No rainfall 
state in a given week, it would take at most 59%, 27% and16% of the time to make transition  to Low  
rainfall state, moderate  rainfall, and high rainfall state   respectively in the long run. Thus given the 
rainfall in a week it is possible to determine quantitatively the probability of finding rainfall in other 
states in the following week(s) and in the long run. 
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4. CONCLUSIONS 
 
A stochastic model to analyze and predict weekly rainfall pattern both in discrete and continuous has 
been presented. With the combined results of both the discrete and continuous time Markov model, 
the rainfall pattern of the study area is better understood. The results from the model are an important 
information, that could assists the residents to better understand the dynamics of weekly rainfall of the 
study area which may be helpful for effective planning and viable  crop production. 
 

COMPETING INTERESTS 
 
Authors have declared that no competing interests exist. 
 

REFERENCES 
 
1. Cwanamaker.  What is Rainfall and How Rainfall is created; 2011. 

Available:http://hubpages.com/ education/What-is-Rainfall-and-How-is-it-Created. 
2. Hulme M, Osborn T, John T. Precipitation sensitivity of global warming: Comparison of 

observations with HADCM2 simulations. Geophysical Research Letter. 1998;25:3379-3382. 
3. Barkotulla M. Stochastic generation of the occurrence and amount of daily rainfall. Pakistan 

Journal of Statistics and Operation Research. 2010;6(2). 
4. Singh AK, Singh YP, Mishra VK, Arora S, Verma CL, Verma N, Srivastav A. Probability analysis 

of rainfall at Shivri for crop planning. Journal of Soil and Water Conservation. 2016;15(4):306-
312. 

5. Raheem MA, Yahya WB, Obisesan KO. A markov chain approach on pattern of rainfall 
distribution. Journal of Environmental Statistics. 2015;7(1). 

6. Chulsang Yoo, Jinwook Lee, Yonghun Ro. Markov chain decomposition of monthly rainfall into 
daily rainfall: Evaluation of climate change impact. Hindawi Publishing Corporation Advances in 
Meteorology. 2016;1-10. 

7. Arumugam P, Karthik SM. Stochastic modelling in yearly rainfall at Tirunelveli District,Tamil 
Nadu, India. International Conference on Processing of Materials, Minerals and Energy (July 
29th– 30th) 2016, Ongole, Andhra Pradesh, India; 2016. 

8. Katrin Sedlmeier, Sebastian Mieruch, Gerd Schädler, Christoph Kottmeier. Compound 
extremes in a changing climate – A Markov chain approach. Nonlinear Processes in 
Geophysics Discussions; 2016. 

9. Mouelhi Safouane, Nemri Saida, Jebari Sihem, Slimani Mohamed. Using the Markov chain for 
the generation of monthly rainfall series in a semi-arid zone. Open Journal of Modern 
Hydrology. 2016;6:51-65. 

10. Ross SM. Introduction to probability Models. Academic Press, Ltd, London; 1989. 
11. Bhat UN. Element of applied stochastic processes. John Wiley, New York; 1984. 
12. Korve KN. A three state continuous time markov model for the asthma process. Abacus the 

Journal of the Mathematical Association of Nigeria. 2000;27( 2):33-46. 
13. Linda JS, Allen. An introduction to Stochastic processes with Application to Biology. Texas, 

USA: Chapman and Hall; 2010. 
 
 
 
 
 
 
 
 
 
 
  



 
 
 

International Research in Environment, Geography and Earth Science Vol. 8 
Prediction of Weekly Rainfall Both in Discrete and Continuous Time Using Markov Model 

 
 

 
142 

 

Biography of author(s) 
 

 
 
Dr. Lawal Adamu 

Department of Mathematics, Federal University of Technology, Minna, Nigeria. 
 
He is from Fiche-Kuchi, a remote village under Paikoro Local Government  of Niger State, Nigeria. He has first degree in 
Mathematics with Computer Science, Maters degree in Mathematics and a PhD degree in Applied Mathematics. He is 
specialized in Optimization Theory/Operations Research with special interest in Predictive stochastic Models and Queuing 
Systems. He is a Lecturer with department of Mathematics, Federal University of Technology Minna, Nigeria. He has 
supervised both undergraduate and postgraduate students and he has published 17 academic papers all in reputable journals. 
One of his significant contributions to the world of science is the development of  a stochastic mathematical  model that predict 
rainfall onset, recession, distribution/spread and amount within a year,  and it has been implemented in some selected states of 
North Central Nigeria with high level of accuracy and  published in ISI indexed journal. He can be reached on 
lawal.adamu@futminna.edu.ng 
 

 
 
Prof. U. Y. Abubakar 
Department of Mathematics, Federal University of Technology, Minna, Nigeria. 
 
He is a Professor of mathematics, he specializes in Optimization Theory with special interest in Predictive stochastic Models. 
He obtained B.Ed Mathematics from Ahmadu Bello University Zaria, Masters of Mathematics from University of Jos and PhD in 
Applied Mathematics from Federal University of Technology Minna. He is a Lecturer with department of Mathematics, Federal 
University of Technology Minna, Nigeria, he has supervised both undergraduate and postgraduate students and he has 
published 30 academic papers all in reputable journals. One of his significant contributions to the world of science is the 
development of stochastic model for the studying of desertification in Nigeria. 
 

 
 
Prof. Danladi Hakimi 

Department of Mathematics, Federal University of Technology, Minna, Nigeria. 
 
He is a Professor of Mathematics with specialization in Optimization Theory  and with special interest in Unbounded Horizon.  
He is from Shengu, a remote village under  Minna Emirate,  Niger State, Nigeria. He has first degree in Mathematics with 
Computer Science, Maters degree in Mathematics and a PhD degree in Applied Mathematics. He is a Lectuer with department 
of Mathematics, Federal University of Technology Minna, Nigeria. He has supervised both undergraduate and postgraduate 
students and he has published 35 academic papers all in reputable journals. 
 



 
 
 

International Research in Environment, Geography and Earth Science Vol. 8 
Prediction of Weekly Rainfall Both in Discrete and Continuous Time Using Markov Model 

 
 

 
143 

 

 
 
Prof. Andrew Saba Gana 
Department of Crop Production, Federal University of Technology, Minna, Nigeria. 
 
He is a Professor of Crop Production with specialization in Plant Breeding and Genetics. He obtained B Sc. Agriculture from  
Usmanu Danfodio University Sokoto  and obtained Both his Msc and PhD degrees  from  University of Ilorin, Nigeria.  He is a 
Lecturer with department of Crop Production, Federal University of Technology Minna,  He is a member of Genetics Society of 
Nigeria, Crop Science Society of Nigeria and Association of Seed Scientists of Nigeria. He has published about 80 articles in 
journals, book chapters, conference proceedings and technical papers. He has also served as external examiner to some 
Universities. 

_________________________________________________________________________________ 
© Copyright (2021): Author(s). The licensee is the publisher (Book Publisher International). 

 
DISCLAIMER 
This chapter is an extended version of the article published by the same author(s) in the following journal.  
J. Appl. Sci. Environ. Manage., 20(4): 965-971, 2016. 
 


