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Abstract

In most experimental designs, Situations often arise where some observations are mfssing due to
some unforeseen factors. I sy, Situations, some Pproperties like optimality, orthogonalzt){, and
rotatability, which are performance criterig of a design, are destroyed. In the presence of missing
observations, efficiency of completely randomizeqd response suiface designs has been extensively
siudied. However, completely randomized "esponse surface designs become fnadeguare,
especially in most industriq} experiments, where some factors consist of levels that are d:ﬂicy!r
and/or expensive ro change, which are termed hard—to-change (HTC) factors, and some with
levels that are easy to change, termeq

€asy-to-change (ETC) factors. An appropriate approach to
such experiments restricts the randomi
structure, for which the designs

zation of the HTC factor levels and this leads to q split-plot
epend on relative magnitude (d) of model’s variance
components. Relatively litgle . no work has been done on investigating the impact of missing
observations  on efficiency of  response Surface designs  conducted with a split-
plot structure. Therefore, this stu impact of pairs of missing observations of fa
ctorial point (f), whole-plot axi

on efficiency of split-plot re

igns in terms of trace(A),
(G), integrated average(V) predicti 1 }
dAtd = 0.5, mm'immnA-eﬂ?cfency losses of 19.1,10.6,15.7% were ) |
pairs: ff, BB, fp, respectively; maximumn G- and V-
efficiency losses of 10.1,0.1,16.1,0.1% and 1,1.1,0.2% were also observed, dye
ectively, to missing pairs ff, aa, BB, cc.

efficiency was robust 1o missing cc, aq, ac, fe fawhile G ang Vefficiencies were robust to missi
g aw. As d increases, the efficiency losses became insignificant.

Keywords: Response Surface Designs, Splitplots, Missing observations, Efficiency,
mality criteria =4
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Rescarch works on impact of a split-plot structur
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the 1990s and most of these work focused on 996) is the first Major paper (o 4 )
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splitplots. Letsinger, Myers. and Lentn Udre

. thi split-plot structure. .
second-order response surface design’® o da qpomlfletel}’ random'Thik AUthrs
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investigate the efficiency of varo _ iz g
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fied the completel
Montgomery (2005), hereafter refe VKM, r:;sl E;ox-Behnke: deZiB; mndOmir_e(]
Central Composite designs (Box and Vﬁlson, 195 I)IM‘J &S (Boy 4
Behnken, 1960) to accommodate the Spllt’PlOt structi®

There are two separate randomizations for everY. splll}.);) t diSlgn;i Wwe_ plot Factor
levels are randomly assigned to the whole plots !Jsmg a '1h.ercn zlan ‘:}mIZHUOH for eqey,
block: subplot factor levels are randomly assxgned within each whole plot uSing
separate randomization for each whole plot. This leads o tWO €rTor terms for effeci

le-plot treatments (of,), and one for the subplot treatmeny
(c?) as well as the inleraclion_between wholc-?lol treatme.nts and subplot treatmeny,
Split-plot central composite designs (CCDs) consist ?f four different categories of pojp,
These include the factorial portion (). which consists of nr equally-spaced points Iha.t

contribute to the estimation of linear and interaction terms in the model, axial pojy,
(whole-plot(a) and subplot(B)); which consists of points lying on the coordinate axis g
h allow for efficient estimation of pure quadratic terms in th,
model and center (c) points, which provide an internal estimate of error (i.e., the pys
error), and efficiently provide information about the existence of curvature in the systen
If curvature is found in the system, the addition of axial points allows for efﬁcien.[
estimation of the pure quadratic terms. A design matrix for one such design with 3 factorg

(one whole-plot and two subplot factors) is given by Table 1.1 in the APPENDIX, with

the number of points (n) and their categories.

v 1IN

comparison, one for the who

each input variable, whic

1.1 Model and Notations

The gencralized least squarcs (GLS) model for a split-plot response surface design is
y=Xp+Zyte (1.1)

where y is the N x 1 vector of responses, X is the Nx p overall model matrix, f§ is thepx

1 vector of regression coefficients, 7 is an N x b incidence matrix assigning observations

o each of the b whole plots; v is the N x 1 vector of whole-plot error terms, & is the N/

vector of subplot error terms. It is  assumed that
45 2

7,~N(0, o), &;~N(. o?), cov(y, &) =0.

The variance - covariance matrix for the observation vector y is

Var(y) =V = o?l, + o227’
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= o2(1, + dZ2")

2 .
Oy . Y : ; A
where d =5 gives the relative magnitude of the two variance components. The malrix

AL block diagonal matrix with diagonal matrices of Jai, Jn2, ..., Jnzs Where Jut is an

u X matrix of 1's and 7 is the number of observations in the ith whole-plot.

The generalized least squares (GLS) estimates are

Bous = (XV7X) Xy
var(Beys) = (XV-1x)™
§=X(XVX) T XV-ly = Hy (1.2)
where X is the model matrix, y is the vector of responses and H is the ‘hat’ matrix.

1.2 Missing Observations

Missing observations can hardly be avoided during experimentation due to SOme
sncontrollable reasons. Missing observations can create a big problem by making the
results of a response surface experiment quite misleading, thereby adversely affecting the
inference. Thus the estimates of the parameters will be misleading. Besides,
unavailability of some observations destroys some useful properties like orthogonality,
rotatability, optimality, and efficiency, which are performance criteria of an experimental

design. There is therefore a serious need for experimental designs which guard against (or

are insensitive to) the effect of missing observations.

Extensive studies have been undertaken concerning impact of missing observations on
efficiency of response surface designs with complete randomization in terms of some
given criteria. Ahmad and Gilmour (2010) study the robustness of subset response
surface designs to a missing value in terms of ratio of prediction variance criterion. The
authors compute the ratio of prediction variances for the design with a missing
observation to the prediction variance for the full design. They observed that the
minimum ratio of prediction variances were quite robust to missing design points for
almost all designs and for all types of missing design points except few. However,
relatively little or no research has been conducted on investigating efficiency of split-plot
response surface designs in terms of given optimality criteria when some observations are
missing. In this work, A-, G-, and V-efficiency of split-plot central composite designs

(CCDs) constructed using VKM (2005) format, were investigated for missing pairs of -

observations of the design points.
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optimality criteria include the D, A G, a . with split-plot response Surface
The wotion of optimality criteria i1 SO 996). The authors noted tha 4 5

‘ . <+ discussed by L€* w1yl s maximized, or equiv

zxsfrl:czt;i\tis if;rsone in which|M| =|XY chl IZ {ndwhich Trace(x'(xl/—l;](];j]}."
3 r’n b. f s A A-optimal design 18 0N h Is
[(X'VIX)7 is minimized. AP s maxirﬂumv(z'x)’ where

minimized. A G-Optimal design ™
N o ) F(z, X)dzdX
Pl R'X)" f(2
vzx)=¢ fnf(z,x) (X
is the scaled prediction vari

Letsinger et al. (1996) also ac
split-plot response surface designs an

_valued SY mart a
pich the model P
design €8

s the correlation matrix of the resp it

and Ri X0
ance (SPV), an e of prediction criterion f,,

ddressed the integrated.varianc
d gave the criterion as

Vs Mins f y(z, x)dzdx
X K Q

= Min%tr[(X'R“X)" [ fenfE x)'dzd’f]

= Min rr{(X'R"X)" [% [ﬂ f(z0f(z x)'dzdx]}

_ Mintr{(X R X)" B}
Where K =Idzdx and B=E{— J f(z,x)f(2 x)'dzdx] are, respectively, the volume of the
Q

design region (), and the moment matrix; R is the correlation mz.itrix_

Each of these criteria strongly depends on the unknown variance components only
through their ratio, d. Webb, Lucas and Borkowski (2004) described an experiment with
variance ratio 6.92 in a computer component manufacturing company. Kowalski, Cornell
and Vining (2002) studied a mixture experiment with{process variables where the
estimated variance ratio is 0.82.

The impact of correlated observations on efficiency of experimental designs has received
considerable attention in literature and it turns out that the presence of correlation
between observations can be beneficial to the design efficiency.

Bradley and Christopher (2009) noted that two alternative split-plot response surface
designs di and dz can be compared by computing their relative efficiencies in terms of a |
given criterion. The authors gave the relative D_efficiency of a design d;, relative to

another design d2 as

‘vl
REp(dy, dy) = i Kl 13

[X2V5 Xzl
while the relative V_efficiency of d), relative to d» was also given by the authors as
Trace([xz'vz‘ixgl_lﬂ) _ Trace([Xz'Rz'lxz]ﬂE)

REV (le dZ) = ' i -
Trace([,vi ] "'B)  Trace([x;R7ix,) B)

(1.4)
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Jues of d =0.5, 1.0, 5.0 and 10.

Jesigns
specific V2

20 Methodology

Three split-plot CCDs of different sizes were constructed using the VKM (2005?) format
and Were used throughout the study to validate the formulated efficiency functions- For
cach design: the whole-plot and subplot axial points were fixed at equal distance of 1
e, 007 B =1) and it is assumed that missing observations occur at the subp
only. The designs include the 4-factor D(2,2) CCD, which consists of two whole-p
wo subplot factors,  the 3-factor D(1,2) CCD with one whole-plot and two subplot

ors, and the 4-factor D(1,3) CCD with one whole-plot and three subplot factors.
tface designs (due

lot level
Jot and

fact .
n order to examine the efficiency of the reduced split-plot response su

o missing observations) relative to the corresponding full design, the following relative
officiency functions were formulated:

TraCe[(X'V"lX)-l]
RE}\ - TraCEI(X'V'IX)'llreduced (21)

where Trace[(X'V™X)™*] and Trace[(X'V™1X) ] equceq are respectively the A-criterion
for the full and reduced designs due to a pair of missing observations.

The relative G- and V- efficiencies are respectively:

_ MAXzxer[v(zx)]
REg = MAXzxerV(ZX) reduced =
e - Trace{r(x)) 8}

v Trace{(M (x ))"'B } (2.5

reduced

where v(z,x) is the scaled prediction variance, (M({))™! is the covariance matrix and
1 ’ .
3:[E L iz, x)f (z,x)dzdx] is the moment matrix for a given split-plot response

surface design; f(z,X) 1s the general form of the 1 x p model vector.

Here we note that

(i)  Relative efficiency greater than 1 indicates that the missing observation or
combination of observations has little or no adverse effect on the design in terms of the
criterion, which implies that the criterion was, to some extent, robust to the missing
points.

(i)  Relative efficiency smaller than 1 indicates that the missing point or combination

of points has large adverse effect on the design in terms of the criterion.

There are ten possible groups of pairs that are formed from factorial (), whole-plot axial
(&), subplot axial (B), and center points (c). These groups are ff, ag, BB, cc, fu, fB, fec, apf
ac, and fic. A-, G-, and V-criterion values for the full and corresponding’ red,uce’d s, litz
plot CCDs due to missing observations of these pairs were first computed and tabu]zted
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| ;l:::ns ?ilf}iﬁfg lgt]?r?levzaﬁve G and V-efficiency plots were given in Figures 35, -
! 3.
i 3.5b respectively.’ . sely aff
| From Fil;ure 3_5ya, we observed that the G-efﬁcmnc}fdv:las< a;i\éelr re:pecg::d by mj §
| pairs of observations of ff and fp for d < 0.52 aned ﬂ;-al ;his criterion ‘A}/’a.isThe “lle
continues to reduce as d increases. We also .0 RBER tions for the whole Fobus to
missing pairs of whole plot axial and center point ghservalions .- Tangeof g
gp P e effect on the relative V-efficiency wag du

i i t advers
Figure 3.5b shows that the highes (BF) an d the center observations e

Wi " % .ervations f
missing pairs of the subplot axial obs el . . or
d increases, the criterion 1MpPIoves. This Criteriop W

small values of d. However, as as

| observed to be quite robust to the missing pairs of observati[ons of the factorial pojpq (f
and the whole plot axial points (aa) for the whole range of d.

Table 3.1: A — criterion values ((X'V"X)™?) for complete design and for reqc, q

designs due to a pair of missing observations in D(2,2) _unﬁer different d
U(M;:p:.;__)) due to missing

None  ff ao Bp Cc Fa B Fe A ac e
05 2724 3.016 2785 3412 2743 2.847 3.163 2.832 3.072 2753 3.058
1 3.925 4234 3989 4.62 3.945 4.05 4377 4035 4.284 3955 4.269
S 1353 1386 1359 1423 1355 1365 1399 1364 139 1356 |34
10 25.53 2587 2561 2624 2556 25.66 26,01 25.65 2591 2556 25.89

Ssin

€ tg

i Table 3.2. A — criterion values ((X'V™'X)~') for complete design and for reduced
i designs due to a pair of missing observations in D(1,2) CCD

Fa

D tr(Mess)) due to missing

None  ff aa BB Cc Fa B Fc AR ac Bc
05 1799 2223 1816 2016 2132 2016 2267 2120 1.909 1916 2014
1 2616 3.094 2634 2.839 2949 2849 3111 2853 2731 2733 283
5 9.153 9.738 9.171 9.385 9486 9.408 9.683 9.513 9.275 9270 9379
10 1732 17.93 17.34 1756 17.65 17.58 17.86 17.68 17.44 1744 1755

Tal‘ﬂe 33. A— CI'.'itEI‘iOI’.l value ((X'V™1X)1) for complete design and for reduced
designs due to a pair of missing observations in D(1,3) CCD
D tr(Ms22)) due to missing

TR
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Table 34. SPV p.roperlies and G-
x SSIng observationg

1.483
2.219
8.105
15.46

ff aa

1.665
2.408
8.303
15.66

with av;:_: of mlDeSign

: ducto 41
missing

05
Full 12.786
ff 15.338
ad 11.782
B 11.853
- 11.72

;- 11.839
ff 13.75
ac 10.9
BB 10.961
iE 10.852

5 @ 9.946
ff 10.205
act 9.134
BB 9.158
cc 9.117

0 - 9.516
ff 9331
aa 8.732
BE 8746
cc 8.723

aa

point

a(1.732)

10.166
8.473
9.352
9.382
9.319

12.708
11.792
11.674
11.7

11.649

13.523
16.375
16.317
16.327
16.308

18.946
17.406
17.372
17.378
17.367

1.536
2272
8.158
15.51

Criterion |q
for D(1,2)

B(1.732)

14.094
15.141
12.963
15.097
12.92

13.904
14.589
12.778
14.384
12.745

17.791
13.127
12.407
12.945
12.396

- 13.436

12.73

12,323
12.616
12.316

1.559
2.297
8.184
15.54

cation

11.999
10.999
10.999
10.999
14.666

14.999
13.749
13.749
13.749
16.499

20.999
19.249
19.249
19.249
20.166

22,363
20.499
20.499
20.499
20.999

split-plot CCD

1.625
2.364
8.252
15.61

B o
F _—"_‘——-—-—___
1486 1 5g9 2 B
2222 2398
8.108 g1

15.46 1557

Fe

1.581
2.318
8.205
15.56

AR
1.537
2.274
8.162
15.52

ac Bc

1.507 1.558
2243 2.296
8.128 8.183
1549 1554

for the full design and for the design

G — location

0.000
1.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000

v

1.732
1.000
0.000
1.732
0.000

0.000
1.732
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000

0.000
1.000
1.732
0.000
0.000

0.000
0.000
0.000
1.732
0.000

0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000

8.217
8.559
7.598
8.223
9.27

9.517
9.606
8.775
9.263
10.028

12.119
11.476
11.126
11.298
11.543

12.71
11.86
11.66
11.755
11.888

Table 3.5, Scaled prediction variance (V(zx)) properties and G-criterion location for the

full design and for the desi

CCh
d|

gn with a pair of missing observations for D(1,3) split-plot

Voo

Design

point

291

G — location

\



dueto %1
missing
05
Full 22.597
ff 27.842
aa 21.640
BB 21.737
! cc 21.615
|
: 1T - 21.221
gf fr 25.127
| aa 20.317
I BB 20.389
I cc 20298
|
5 - 18.464
fr 19.330
{ aa 17.668
i BB 17.692
é.' cc 17.661
§ 10 - 17.837
L fr 17.977
oo 17.065
-' BB 17.078
cc 17.062

a(2.00)

16.985
16.327
16.255
16.276
16.246

22.924
21.991
21.934
21.952
21.928

34.803
33.312
33.202
33.299
33.290

37.503
35.884
35.873
35.877
35.872

p(2.00)

24.934
25.081
23.859
29.691
23.850

24.289
24.168
23.240
27.675
23.233

22.992
22.309
21.995
23.496
21.993

22.697
21.883
21.711
22.532
21.710

19.167
18.333
18.333
18.333
19.555

25.875
24.750
24.750
24.750
25.666

39.291
37.583
37.583
37.583
37.688

42.340
40.500
40.500
40.500
40.666

0.000
1.000
0.000
0.000
0.000

0.000
1.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000

2.000
1.000
2.000
0.000
0.000

0.000
1.000
0.000
2.000
0.000

0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000

0.000
1.000
0.000
2.000
0.000

0.000
1.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000

Relative Aeficiercy

e

Su

T
R

correintion ratio (d)
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40 Conclusion

¢ study revealed that rejyg .
Th tversely aff ative efficiency of — ' o
was aOVEIEY 21 ected by m; 1ese designs in terms of the given criteria

ssin : ,
srroﬂgly gn thf: category of points ll%atpélc];.rns (_Jf observations and that the effect depends
(). This implies that some pojngs are mof:‘i”lf‘lle the pairs and also on the correlation ratio
[t was shown that the relative A-ef NHuential than others.

. fici y -
irs of observations of ¢¢ 1ency appears to be slightly robust to the missing
a , QL o, fi y

(he missing pairs of B, ff andfﬁi and fa, and adversely affected at low values of d, by
i ; - This Implies that care should be taken in handling

The study revealed that even for the missi : : )
Jfhiciency, their &tfeste continte o missing points with considerable effects on the

1sappear a i ich indi
hat the presence of correlation p s the value of d increases, which indicates

given criteria. rrelation, the more efficient the design in terms of the
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PPENDIX

A
i i 2005) D(1,2) $ lit-plot CCD
Table 1.1. Design Matrix for VKI}:;( - e

V‘:P 3 xll g 2 factorial

1 1 -1
-1 -1 1
-1 1 1 :

5 ) 5 1 4 factorial
1 1 -1
1 -1 1
1 1 1

3 " 0 0 4 Whole-plot axial
i 0 0
- 0 0
-0 0 0

4 +o 0 0 4 Whole-plot axial
+a 0 0
+a 0 0
+a 0 0

3 0 -B 0 4 Subplot axial
0 +p 0
0 0 -B
0 0 +B

6 0 0 0 4 center
0 0 0
0 0 0
0 0 0
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