vo.  Yakubu Y., Aliyu Z. Q., Usman A., and Evans O. P. “A Study of the Fffect$
\ Baking Materials and Oven Temperature on Cake Height: Split-plot Centl:_

Composite Design Approach”.

4 - 5 May, Minna Nigeria

SCHOOL OF PHYSCIAL SCENCES
15" BIENNIAL INTERNATIONAL CONFERENCE

PROCEEDINGS

Theme:
_ Science Technology and Innovation (STI):
| The Vision for Poverty Reduction and Sustainable
Development

FEDERAL UNIVERSITY OF TECHNOLOGY
MINNA, NIGER STATE, NIGERIA

FUTHINNA 137 SPS BIENNIAL INTERNATIONAL CONFERENCE 2017 g |




PRITACT
This is the first international Conference organized by the school of Physical Sciences of the Federal
[PRONPR A o ) . s a . T "
University of Technology. Minna Nigeria the school is relatively new and consisting of the Departments
i) . vt e e . - . . N .
rii Physics. Chemistry. Mathematics. Statistics, Geology and Geography. It was exercised from the
former school of Natural and Applicd Sciences on the 6™ of November 2014.

The school of Physical Sciences 1*' Biennial International Conference is an interdisciplinary forum for
the presentation of new ideas, recent developments and research findings in the field of Science and
Technology. The Conference provides a platform to scholars. researchers in the academics and other
establishments to meet. share and discuss how science and technology can help reduce poverty and bring
about sustainable development. Submissions were received both nationally and internationally and
severally reviewed by our international program committee. All contributions are neither published
elsewhere nor submitted for publication as asserted by contributor.

\\’e.wish 10 express our gratitude to the school for challenging us to organize the first international
conference. Special thanks to the Dean of the School Prof. A. S. Abubakar. Special thanks to all members
of the organizing committee and sub-committee for their dedication. determination and sacrifice towards
achieving a fruitful and successful conference.

The Local Organizing Committee Chairman
Kasim Uthman Isah (PhD).

FUTHINNA 157 SPS BIENNIAL INTERNATIONAL C ONFERENCE 2017 v, ”




G MATERIALS AND OVEN

A STUDY OF THE EFFECTS OF BAKIN
OT CENTRAL COMPOSITE DESIGN

TEMPERATURE ON CAKE HEIGHT: SPLIT-PL

APPROACH

Yisa Yakubu', Aliyu Zulihatu Queen', Abubakar Usman' & Evans O. Patience’

' Department of Statistics, Federal University of Technology. Minna, Nigeria

xisa.){akubu@futminna.edu.ng

and Statistics, The Federal Polytechnic, Bida, Nigeria

2Department of Mathematics

patevansjj@gmail.com

Abstract
he secret to a good cake? While many may

le agree on one thing: texture. The texture
traditional textures, one of the easiest

Most people love a delicious piece of cake. But what is t
comment on flavor, frostings or other attributes, most peop

ofthe cake needs to be “fluffy”. While there are exceptions to the
«ture of a cake is by having the cake rise to a maximum height. By having the

me amount of starting material, more air is allowed into the cake, thereby
a central composite design (CCD)

ways to get the right te
tallest cake with the sa

creating the “fluffy” texture that people desire. In this work,
experiment within a split-plot structure was conducted to assess the impact of some baking materials

on cake height. The experimental factors (cake-baking materials) include oven temperature (factor A),
amount of flour (factor B), baking powder (factor C), and amount of milk (factor D) with a fixed
amount of other necessary ingredients present. The generated data were analyzed using Design Expert
(version 10) statistical package. The restricted maximum likelihood (REML) estimates of the variance
ed and the generalized least squares (GLS) estimator was used to obtain
he set of levels of these factors that yields optimum value of the cake
ht using optimization facility of the statistical package. It
D, the interaction term: BC and the quadratic

components were first obtain
the factor effects estimates. T

height (the stationary point) was then soug

was observed that each of the linear terms: A, B, C,
terms: A2, C%, and D? contributes significantly to the height of the cake. The fitted generalized least
of the total variation in the cake height. The estimated optimum

—11.047 at the stationary point: oven temp = 250°C,
der = 1.5 teaspoonfull, and milk = 0.75cup.

squares model accounted for 95%
cake height was found to be ¥
amount of flour = 1.5 cups, baking pow

Keywords: Cake height, Split-plot CCD, Experiment, Design
Corresponding author: yisa.yakubu@futminna.edu.ng

1. Introduction

Most people love a delicious piece of cake. However, the secret to a good cake as most people
cake needs to be “fluffy”. While there are exceptions to the
s to get the right texture of a cake is by having the cake rise
ke with the same amount of starting material, more air

often agree is texture. The texture of the
traditional textures, one of the easiest way
to a maximum height. By having the tallest ca
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is allowed i , 5 . ) -
ed into the cake, thereby creating the “Muffy” texture that people desire. In this work, a study

was carrie i i i i .
e arried out on the impact of some cake-baking materials on cake height using statistically-
esigned experimental technique.

— pm::;;?;'rc::x;‘?ﬁgmd fllxperimenl is an indispensable lechnigue inthe def,ig’n stage ofa product

M —ey ‘gallrg't he efFeci? of several factors on.a quality characlen‘sn‘c of interest. These

tidesien, and )(’iev tley role in the design of-new products, improvement of exlstfng ones as well 'as

astivities inmost] SOPT}ITN of .maljnufacturlng processtas to p.rcduce them‘l which art.z the crucial
ad pharmacemic; ustna_ organl:f.allons today..ln most 1nduslr|e:s today: for lnslance._blotechnolc_-g

s, medical devices, electronics and chemical industries etc., experimental design

i::h:f:':ai)i‘e}:als resulted in shorter design an.d de‘.lielopmen'l li.m‘e for new products as well as products

o manufacture, products with higher reliability and enhanced field performance,

PI‘DduCts-that meet or even exceed customer requirements. The tools required for adequate selection

of a design and the subsequent fitting and evaluation of the hypothesized model using the data

generated by the design, have been developed in an area of experimental design known as response
surface methodology (RSM).

Response Surface Methodology is an area of experimental design which consists of a group
of n‘-lathematical and statistical techniques used in the development of an adequate functional
relationship between a response of interest, y, and a number of associated control (or input) variables
c'ienoted by x;,%2, ..., X, (Myers et all, 2009). The most extensive applications of RSM are in the
industrial world, particularly in situations where potential influence of several process variables on
50rr'le guality characteristic of the process is being investigated. RSM is widely used to explore and to
Optl-mlze response surfaces in these experiments. RSM is sequential in nature and so the experimenter
k.Jegms with a screening experiment to identify important factors. Follow-up experiments then seek to
improve the performance of the response. This process allows the experimenter to learn about the
process or system under study as the investigation proceeds. Response Surface Methodology is useful
for developing, improving, and optimizing the response variable especially when treatments are from
a continuous set of values. One of the most commonly-used response surface design is the second-
order design such as the central composite design (CCD) and the Box-Behnken design (BBD), which
were introduced, respectively, by Box and Wilson (1951), and Box and Behnken (1960). The variables
in these designs are always completely randomized.

The CCD consists of factors with five levels that involve three components. They are:

i a complete (or a fraction of) 2 factorial design with factor levels coded as -1, | (called
the factorial portion),

ii. an axial portion consisting of 24 points arranged so that two points are chosen on the
coordinate axis of each control variable at a distance of « from the design center,
iii. ny center points.

Thus the total number of points ina CCD is n = 2% 42k + n,. These three components of the design

play important and somewhat different roles.

i The factorial portion consists of equally-spaced points that contribute to the estimation
of linear terms and are the only points that contribute to the estimation of the interaction
terms in the model.

ii. The axial portion consists of points lying on the axis of each input variable, and in this
portion of the design, the factors are not varying simultaneously but rather in a one-factor-
at- a-time array. Thus no information regarding the interaction effect is provided by this
portion of the design. However, the axial portion allows for efficient estimation of pure
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quadratic terms in the model, and without these points, only the sum of the quadratic
terms, i.e.. ¥iey By can be estimated.

The center runs provide an internal estimate of error (i.e., the pure error). and efficiently
provide information about the existence of curvature in the system. If curvature is found

in the system. the addition of axial points allows for efficient estimation of the pure
quadralic terms.

This design technique was used in this work but conducted within a split-plot structure.

.

One difficulty in applying classical response surface designs is that they inherently assume
that all factors are equally easy to manipulate, thereby allowing for complete randomization of the
experimental run order. In practice most industrial experiments cannot be completely randomized due
to the presence of factors with levels that are difficult to change (called hard-to-change (HTC) factors)
and those with levels that are easy to change (called easy-to-change (ETC) factors). Thus factors with
HTC levels cannot be completely randomized and once an experiment includes such factors. split-plot
design approach is used, in which the experimental runs are performed in groups. where. in a group,
the levels of the HTC factors are not reset from run to run. This creates dependence among the runs
in one group, thereby leading to clusters of correlated errors and responses.

There are two separate randomizations for every split-plot design- whole plot factor levels are
randomly assigned to the whole plots using a different randomization for each block: subplot factor
levels are randomly assigned within each whole plot using a separate randomization for each whole
plot. This leads to two error terms for effects comparison, one for the whole-plot treatments (2 ). and

one for the subplot treatments (62) as well as the interaction between whole-plot treatments and
subplot treatments,

Split-plot central composite designs consist of four different categories of points. These
include the factorial portion (f), which consists of 1y equally-spaced points that contribute to the
estimation of linear and interaction terms in the model, axial point (whole-plot(a) and subplot(B)).
which consists of points lying on the coordinate axis of each input variable, and which allow for
efficient estimation of pure quadratic terms in the model and center (c) points, which provide an
internal estimate of error (i.e., the pure error), and efficiently provide information about the existence

of curvature in the system. If curvature is found in the system, the addition of axial points allows for
efficient estimation of the pure quadratic terms.

This work carried out the split-plot central composite design experiment that investigates the
effects of oven temperature (factor A), amount of flour (factor B), baking powder (factor C), and
amount of milk (factor D) on cake height and then locates the set of levels of these factors that
optimizes the predicted cake height (the stationary points). The oven temperature is a HTC factor
while the other three are ETC factors. Therefore, the central composite design (CCD) experiment was
conducted with a split-plot approach using these factors with a fixed amount of other necessary
ingredients present. The generated data were analyzed with the aid of Design Expert (version 10)
statistical package using restricted maximum likelihood (REML) approach.

1.1 Statistical model and notations

As stated earlier, the responses from the split-plot experiment are correlated and this violates
the assumption of independence of the ordinary least squares or OLS estimator. Therefore generalized
least squares or GLS estimates are better since they account for the correlation between these
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observations and are generally more precise. The generalized least squares (GLS) madel for a split-
plot response surlace design is

y=XB+Zy+e¢ (1.1
rall model matrix, B is the p x 1 vector of
ning observations to each of the b whole

f subplot error terms. It is

where y is the N x 1 vector of responses, X is the N .x p ove
regression coefficients, Z is an N x b incidence matrix assig
plots; y is the N x | vector of whole-plot error terms, € is the N x | vector ©

assumed that y;~N(0,02), &;~N(0,02), cov(¥i &) = 0-
The variance - covariance matrix for the observation vector y is
Var(y) =V = 621, + 0222’

= o2(l, + dZZ")

o . . : ..
whered = = gives the relative magnitude of the two variance components. The matrix ZZ isablock

diagonal matrix with diagonal matrices of Jai, Jn2, -, Jnzs where Jni isan n; X i matrix of ’s and

is the number of observations in the ith whole-plot.
and the off- diagonal elements are the

onal elements correspond to pairs of
lements correspond to pairs of

The diagonal elements of V are the variances of the responses
covariances between pairs of responses. The nonzero off-diag
responses from within a given whole plot while the zero off-diagonal e
runs from two different whole plots.

The generalized least squares (GLS) estimates are calculated from
BoLs = X'VTIX)TIXVTly (1.2)
Thus,
Var(Bers) = X'V7IX) !
7 =XX'VIX)"IX'V~ly = Hy
where H is the ‘hat’ matrix,

2. LITERATURE REVIEW

Research works on impact of a split-plot structure on response surface designs began in the
1990s and most of these work focused on two-level fractional factorial designs run as split-plots. Box
(1996) explains that completely randomized experiments are often impractical in industry and

indicates that split-plot experiments are often very efficient and easier to run.

Bisgaard and Steinberg (1 997) look at the design and analysis of prototype experiments. They
present examples that use split-plot designs and show clearly how to carry out a two-stage analysis of
the data. Bisgaard (2000) uses two-level fractional factorials to construct split-plot designs and gives

general expressions for deriving alias structures based on the group structure of the arrays
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Letsinger, Myers and Lentner (1996) is the first paper to exclusively focus on restricted
randomization in response surface methodology. The authors describe an experiment from the
chemical industry which investigates the effects of five process variables (temperature 1, temperature
2, humidity 1, humidity 2, and pressure) on a certain quality characteristic. They used a modified
central composite design but the experimental runs were not completely randomized due to the fact
that the levels of temperature | and pressure were hard to change. Thus, the split-plot design approach
was used in which the levels of the hard-to-change factors were changed as little as possible.

A sequential strategy for designing multi stratum designs, special cases of which are split-plot
designs, was presented by Trinca and Gilmour (2001). The authors describe an experiment to
investigate the effects of five factors on protein extraction. The factors were the feed position for the
inflow of the mixture, the feed flow rate, the gas flow rate, the concentration of protein A and the
concentration of protein B, each factor consisting of three levels. The feed position consists of hard-

to-change levels and is therefore the whole plot factor. The merit of split-plot approach was fully

utilized in this experiment since two experimental runs instead of one could be performed on one
single day.,

Kowalski (2002) considers split-plot experiments in robust parameter design. He constructs
24-run designs in two ways: using the properties of a balanced incomplete block design and by
semifolding a 16 run design.

Vining, Kowalski and Montgomery (2005), hereafter referred to as VKM, show how to
modify the standard central composite design (CCD) and Box-Behnken design (BBD) to
accommodate a split-plot structure. The authors then establish the general conditions under which

the ordinary least squares estimates of the model are equivalent to the generalized least squares
estimates and therefore are best linear unbiased.

3. MATERIALS AND METHODS

The materials used for baking all the cakes include flour, baking powder, milk and oven temperature,
with fixed amount of other necessary ingredients. Oven temperature was included because the
temperature at which the batches are baked strongly impacts cake height. It is a HTC factor since its
levels cannot be frequently changed as it takes some time to stabilize, while the other three are ETC

factors as their levels can easily be changed during randomization. Each of the factors consists of five
(5) levels and these levels were coded using

i 2Xi=(X+X ) (3 l)
¢ Xin—Xip

Where x; is the coded level of the ith factor, i = 1,2, ..., k; X;; and Xin are, respectively, the actual low

and high levels of the ith factor. The choice of factors, levels and factor ranges are listed in TABLE
3.1

Table3.1: Choice of factors, levels and ranges

Factor coded levels

-1 -1 0 1
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— |

|.5 cups 1.5 cup
Amount of Flour(X1) 1/2 cup 1/2 cup | cup -
.5 teaspoon 5 te
Amt of Baking Powder(Xz) 1/2 teaspoon 1/2 teaspoon | teaspoon ! p 1
3/4 cups 3/4 cup
Amount of Milk(X3) 1/4 cup |/4 cup 1/2 cup P :
150C 150C 200C 250C 250

Temperature of Oven(z:)

rst mixed together in the same Kitchen-aid mi'xer on
sifted together and added with the
then poured into the cake pan and a
m the same batch of ingredients

For every cake, the butter and sugar were fi
the same speed setting. The flour, baking powder and salt were
specified amount of milk and mixed at the same speed. This was
spatula was used to scrape all into the pan. All cakes were baked fro

and the same cake pans were used for each run.

3.1 Performing the Experiment

A four-factor central composite experiment was designed with a split-plot structure in one whole-
plot variable and three subplot variables, and with single replication of factorial and axial pamts, Each
factor consists of five (5) levels: -1, +1, -a, +4a, and 0. At each of the factorial points involvmg‘the
HTC factor, the subplot runs are the factorial points in the ETC factors. At each of the two axial points
that make up whole plots (i.e., zi = -, *a), eight replicates of the center of the subplot factors (i.e.,
x; = 0. x> =0, x3 = 0) were run. Two replicates of the whole-plot center points (z: = 0) were run, one
consisting of the six (6) axial points in the ETC factors while the other containing four(4) replicates
of the center of the subplot factors (x; = 0, x2=0, X3 = 0). Thus each of the whole-plot factorial and
axial portions of the design is of size eight while the first and second replicates of the whole-plot center
portion are, respectively, of size six and four. Thus the resulting split-plot central composite design
(CCD) has ny= 16 factorial points, 7. = 16 whole-plot axial points, iy = 6 subplot axial points and n.
= 4 center points. Thus there were N = 42 total design points in 6 whole plots as given in Table 3.2.
DESIGN-EXPERT (version 10) statistical package was used to create the design layout. The fully-
randomized order of runs of the experiment was given in the appendix.

Table 3.2: Design Matrix for D(1,3) split-plot CCD

Wp zl xl x2 x3 n
I ~1 +1 +1 ! 8

2 +1 | %1 *1 8
3 -a 0 0 0 8
4 +a 0 0 0 8
5 0 s o7 £ 0 0 2
0 0 +f 0 2

pl
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6 0 0 0 0 4

e é\_:_é“gll?::;‘g;ii\'gla)kc‘lfthe HTC factor Flemperalure}, all possible cornbin;ui?ns of the levels of
stiothier (Sale mn of:t] ing powder and milk) were baked.al the same time. This was f?lloxvcd b.y
Tl e Rets 1;3 ovlen at the other temperature setting and the process was conlmu?d.ur?ll!
baking time a5 a muies r erve s were completely run. All cakes.. were baked for 28 minutes to I'T'IIFIII'T!EZC
B, cadl, Y 5 Ol;lée l«:v:‘-;_()r. After every run of the oven, its temperature was allowed to stabilize
experiment took ws si )d efore another level was randomly selected I'on: another run. Thus the
e n tl,'( a).rs to c?mp[ete. All cakes were measurxl:d using the same ruler and

" aken in centimeters (cm). No unusual behavior was observed during the
experimental runs.

randzzyd:;f?nggn:is;s olt" twol different randomization s-tru.clure:- temperature factor-levels were
c6mBinafions werF; ndently assigned Fo the whole-plots; .Wlthll'l each whole plot, the -ETC facu?r level
R randomly and independently assigned to the subplots using a different
randomization technique. Thus levels of the whole-plot factors were not reset for each run of the
subplot factors and this leads to two error terms for effects comparison, one for the whole-plot

trea : 2 . .
tments (&, ), and one for the subplot treatments (o, ), as well as the interaction between whole-

plot treatments and subplot treatments.

3.2 Dara Analysis

(version 10) statistical package.

The generated data were analyzed using Design Expert
he whole-plot

Restricted maximum likelihood estimation (REML) technique was used to estimate t

and subplot variance components (a,? and o2, respectively). REML estimates for these variance

components can be obtained by maximizing the restricted log likelihood function:

(3.2)

1 1 = - i
ly = —2loglv| — Jlog|x'V71X| =31V 1r — = log(2m)

tion 1.1 above; T = y—X(X’V“X)"X'V'ly and p is the

Where X and V are as defined in sec
1). These estimates were obtained here with the aid

number of parameters in B (Goos and Jones, 201
of the statistical package.
The Generalized Least Squares (GLS) estimator given in equation (1.2), which is a version of least

squares that allows us 10 account for covariances among the responses, such as might be present in a
mixed effects model, was used to estimate the factor effects. The standard errors for the factor effects

were then computed as the square root of the diagonal elements of the covariance matrix (X'V™1X)7.
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the factors
C ‘ i set of levels of
Optimization facility of the statistical package was then used to obtain the

that yields optimum value of the cake height (the stationary point).

4. RESULTS AND DISCUSSION

odel. This ANOVA
We first looked at the analysis of variance (ANOVA) for our s

confirms the adequacy of our fitted model, as given in the Table below.

g 816
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TABLE 4.1: ANOVA (REML)

Term Error F p-value
Sourge df df Prob> F
Whole-plot ) 27 N 00003 significant
a-Oven
I — / 27 814 0.0082
a2 / 27 13.87 0.0009
Subplot 12 27 42.19  <0.0001 significant
B-Quantity of flour / 27 35582 < 0.000]
C-Amount of
baking powder / 27 10.92 0.0027
D-Amount of milk ! 27 17.86  0.0002
aB ! 27 227 01432
aC i 27 2.03 0.1653
aD I 27 0015 0.9036
BC i 27 8.37 0.0075
8D I 27 0081 0.7776
€D i 27 0.042 0.8401
B2 I 27 0.71 0.4081
2 I 27 6.97 0.0136
D2 ! 27 6.97 0.0136

The fourth column of the table gives the computed F-values while the fifth column gives the
2, C* and D?

probability values. From this column we can see that each of the terms: a, B,C.D,BC,a,
contributed significantly to the goodness-of-fit of the model. That is, each of the oven temperature,
amount of flour, amount of baking powder and amount of milk had significant effect on the cake
height, with p-values far less than 0.05. Also, the interaction effect of the quantity of flour and amount
of baking powder was highly significant; the quadratic effects of the oven temperature, amount of
baking powder and quantity of milk were also highly significant. All other terms were not significant.

and residual (or subplot) variance components.

Next we considered the group (or whole-plot)
el in terms of the factors, as given in the Table

These are variations that were not explained by the mod

below.
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TABLE4.2: Varinnce Components

95% C1 High

e Varance  StdErr IS%Cl Low
Group 0.000 0 0 g
Residual 038 01 0.24 0.7
Total 0.38

The group (or whole-plot error) variance is due to resetting of a hard-to-change factor level (in this
work, oven temperature). The computed group variance was zero, and this signifies that the whole-
plot model explained all of the variation between the whole plots. The residual (or subplot error)
variance is due to each of the subplot runs. In this work, the residual variance was 0.38.

R? = 0.95). Thus only 5%
0.92), as given at the
t is, the model have

This fitted model explains 95% of the total variability in the cake height (
was not accounted for by the model, also, the adjusted R? was 0.92 (Adj. R% =
bottom of Table 4.3. These statistics signify that the fitted model was good, tha
captured most of the variation in the data.

flation factors (VIF) as given
del is inflated by the lack of
(correlation among

Then we looked at the computed regression coefficients and variance in
in Table 4.3 below. The VIF measures how much the variance of the mo
orthogonality in the design. It indicates the extent to which multicollinearity
predictors) is present in a regression analysis.

TABLE 4.3: Estimated regression coefficients

Coefficient Standard
Source Estimate Error VIF
Intercept 5.727822581 0.19865203
Whole-plot Terms:
a-Oven temperature -0.309375 0.1084569 |
a2 10.861391129  0.23130547 1.082949309
Subplot Terms:
B-Quantity of flour 2.727777778 0.1446092 1

C-Amount of baking powder 0.477777778 0.1446092 |

D-Amount of milk O.6L1LLTLN] 0.1446092 |
aB 0.23125  0.15338122 1
aC -0.21875  0.15338122 1
aD 0.01875  0.15338122 |
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Be 044375  0.15338122 |
Bb .0.04375  0.15338122 !
- 003125  0.15338122 !
B2 0.303629032  0.36128969 3.566820276
e 0.953629032  0.36128969 3.566820276
b 0.953629032  0.36128969 3.566820276

R? = 0.95, Adjusted R? = 0.92

e last three terms of the

From the last column of this table, all the VIFs are equal to one except for th
] to (i.e., not correlated

“’F’del- This indicates that each of the first eleven predictors was orthogona
with) all the other predictors in the model. Each of the last three predictors has VIF equal to 3.56,
which indicates that it was moderately correlated with all the other predictors. Thus there was no case
of multicollinearity in the data, and we have the fitted second-order model for the data as:

Height = 5.73 — 0317, + 2.73x, + 0481, + 0.61x; +0.232,%; = 02277 + 00192173
+ 0.44x, %, — 0.044x, %5 + 0.031x,x5 — 0.862 + 0.30x2 + 0.95x3 + 0.95x3

@.1)

Each of the terms in this mode! has the same p-value as in Table 4.1. Thus the effects of the terms: a,
2 2 2 B . . .
B, C. D, BC, a%, C?, and D? were each significant while that of the remaining terms were not significant.

4.1 Diagnostic plots

Here we diagnose the statistical properties of the above fitted model. Figure 4.1 below gives the normal
probability plot of the residuals, which indicates whether the residuals follow a normal distribution.
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Fig.4.1: Normal probability plot of the residuals

: : — iduals
From this plot, all the points fall on the straight line. This indicates that, to some extent, the ]reSldfuthe
were normally distributed. Thus there are no problems with our data. next we looked at the plot ©
residuals versus the predicted values, as given in figure4.2 below.
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Fig4.2: Residuals Vs Predicted plot

rectly seen, this plot

This plot is a visual check for the assumption of constant variance. As can be di T
e

is a random scatter with a consistent top to bottom range of residuals across the predictions on t
axis. Thus we can conclude here that our model satisfied the constant variance assumption.

Next we looked at the plot of the residuals versus the experimental run order, as given in figure 4.5

below.

FUTMINNA I°7 5P5 BIENNIAL TNTERNATIONAL CONFERENCE 2017 pg, 821



/’—_——\_—h——“_—'—————_ -

Design-Expent® Sotwarg
Cako Height

Color poinls by walue of
Cake Height

ﬁm?
a2

Fig.4.3: Residuals versus experimental run order

Internally Studentized Residuals

30042

2.00 -

100 —

-1.00 —{

-2.00 —

-3.00 42

Residuals vs. Run

LN BB B e B B I I..|!|rx—|-—|—r-i—"—4

1

6 11 16 21 26 3

Run Number

This plot provides a check for lurking variables that may have influenced the response during the

experiment.

As can be directly observed, the plot showed a random scatter without any trend. Thus there were no
any lurking variable in the background.

Lastly, we looked at the plot of the predicted values versus the actual values, as given in the figure 4.4

below.
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Fig.4.4: predicted versus actual values plot

This graph plots the Obse}‘ved (actual) response values versus the predicted response values. The plot
help us to detect obser\fallons that that were not well predicted by the model. From this figure, the data
points were evenly split by the 45 degree line. Thus our fitted mode! was okay.

5, Conclusion

This study has investigated the potential effects of baking materials and oven temperature on cake
height through the conduct of the response surface experiment within a split-plot structure. By
conducting the response surface experiment within the split-plot structure, the number of times the
oven temperature has to be reset was reduced by sorting the design into whole-plot groups. Since
randomization was restricted by sorting, a restricted maximum likelihood (REML) analysis was
applied to obtain the estimates of the variance components and the generalized Jeast squares (GLS)
estimator was used to obtain estimates of the effects. The predictors were not linearly correlated and
so there was no case of multicollinearity; thus the parameter values were independently estimated.
The baking materials considered as well as the oven temperature play significant roles in determining
the cake height, which is one of the easiest ways to get the right texture of a cake. The fitted generalized
least squares (GLS) model accounted for 95% of the variability in the cake height.

Numerical optimization resulted in the set of the factor levels that will yield optimum value of the
cake height. The statistical properties of the fitted mode! were further diagnosed and these revealed
no problems with the data. The conducted split-plot CCD allowed the experimenters o save time and
money and run a design which might well have been infeasible if fully randomized.
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