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Abstract— Electrode materials play a critical
role in the performance of microbial fuel cells. This
study investigates the contribution of capacitive
bio-electrodes to sustainable power production in a
single-chamber microbial fuel cell (MFC). The
capacitive electrodes consisted of a stainless-steel
wire mesh with an activated carbon layer, while the
non-capacitive control electrodes were made of
graphite felt with a wound current collector. The
MFCs were constructed using a glass vessel with the
anode completely buried in biologically active soil
and the cathode placed above the soil to form a
single chamber configuration. The performance of
the MFCs was investigated using linear sweep
voltammetry (LSV) and electrochemical impedance
spectroscopy (EIS). The results showed that the
performance of the capacitive MFC was three times
better than that of the non-capacitive MFC. While
there was no significant difference in the Ohmic
resistances of the MFCs, there was a significant
difference in charge transfer resistance and
capacitance of the MFCs. The capacitive MFC had
a double layer capacitance of 8.282 puF in addition
to the diffuse layer capacitance at the layer/metal
interface of 2.012 F, while the non-capacitive MFC
had a double layer capacitance of 5.034 puF with no
diffuse layer capacitance. The results show that the
capacitive characteristics of both cathode and
anode improve the performance of a single-
chamber MFC.

Keywords—capacitive MFC, electrodes, power,
resistance, microbial fuel cell.

I. INTRODUCTION

Microbial fuel cell (MFC) technology uses the
natural metabolism of electroactive microbes to

generate electricity. This technology represents one of
the fastest-growing renewable energy technologies in
the last decade owing to the fascinating possibilities of
MFCs to treat wastes while generating bioelectricity
through bacterial metabolism [1] Apart from being
environmentally friendly, MFC technology enables the
direct conversion of substrate energy into electricity,
thus ensuring the conversion of waste into energy [2—
4]. Therefore, the efficiency of MFCs is considered
relatively high compared to other bio-electrochemical
technologies because no input energy is required.
However, their low power density and fluctuations due
to the natural activities of the Electroactive bacteria
(EAB) still pose limitations for their real-world
applications [5]. Therefore, improved performance of
MFCs requires, among other things, optimization of the
architectural aspect.

The fundamental components of interest in the
design and construction of MFCs are electrodes
(cathode and anode), wiring, cell vessel(s), and
exchange Membrane. MFCs are built from a variety of
materials and in an ever-increasing variety of
configurations. Since the redox reaction in MFCs
occurs at the electrodes, special consideration of
electrode materials is required in the design of MFCs.
A good electrode material must be bio-compatible,
conductive, non-corrosive, non-fouling, porous,
inexpensive, easy to manufacture, applicable to larger
systems, and have a large surface area [6] to improve
the metabolism of the associated EAB. Carbon-based
electrodes are most commonly used in MFC research
because they meet much of the criteria for good
electrode materials [6]. Carbon electrodes are available
as compact graphite sheets, rods, or granules, as fibrous
materials (felt, cloth, paper, fibres, foam), and as glassy
carbon [6,7]. The most common materials for the anode
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are graphite sheets or rods because they are relatively
cheap, easy to handle, and have a well-defined surface
[8-10]. Conductivity is one of the most important
attributes of these materials because electrons must
flow through the material from the point of transfer by
the microorganism to the collection point. While many
metals fit this important characteristic, they fall short in
applicability due to their corrosive nature and lack of a
suitable surface for bacteria attachment [11]. Non-
corrosive stainless steel mesh is common as a metal-
based composite electrode in MFCs, but copper is
barely used due to its antibacterial properties in
aqueous environments [12,13]

The application of electrodes made of metals and
metal-based materials to improve MFC performance
has been extensively researched. Among other metals,
stainless steel (SS) has emerged as an excellent
alternative electrode material to pure carbon-based
electrodes due to the excellent mechanical properties,
electrical conductivity and corrosion resistance of high
quality SS materials; coupled with its unique easy
scalability and stability for long-term operation of
MFCs [8,14]. However, although SS is an efficient
electrode capable of producing stable current densities,
it is not often used in its pure form because it does not
have sufficient surface area for robust biofilm
development. Therefore, improvement in the
performance of the SS electrode is achieved by surface
modification [15]. The most common surface
modification of SS electrodes is coating with carbon-
based nanomaterials. [16,17]. These materials have
excellent properties, such as increasing the number of
active reaction sites for bacteria, greater opportunities
for bacterial attachment, increased Dbacterial
biocatalytic activities with a consequent increase in
power densities [18]. Besides, the surface coating of SS
electrodes has been reported to improve their capacitive
properties, thereby increasing the overall performance
of MFCs [19].

The use of external capacitors is known to be
effective in slightly increasing the output power of
MFCs to drive devices that require higher power than
the MFCs can normally produce [20,21]. This is
possible by connecting the MFCs to charge capacitors
to provide short power spikes that are slowly recharged
by the MFCs [22]. Thus, charges can be stored by the
capacitors and intermittently delivered at a higher level
than the power output of the MFC. In addition to
external capacitors, recent studies have shown that the
use of electrode materials with electrochemical
capacitive properties can improve MFC current

Supported by PTDF/DAAD- Nigerian-German Postgraduate
Program 2018.

generation [15,23]. This is due to their high specific
surface area [24] , which enables charge storage with
the formation of an electrical double layer (EDL). Thus,
a capacitive electrode improves the internal capacitance
of an MFC leading to increased power quality [25].
Capacitive electrode materials with a high specific
surface area are advantageous in MFCs due to their
particular ability to reduce the overpotentials of MFCs
and thus increase the overall power density [26—29].

Currently, there is a rise in the number of studies
that utilize capacitive materials as electrodes in MFCs.
However, most of the studies only consider one
electrode at a time. Since the anode is considered the
hub of bacterial activities leading to the transfer of
electrons in MFCs, most studies are focused on the
development of capacitive bio-anodes [2,19,30-32]. A
few studies have also reported the importance of
capacitive biocathode on the overall performance of
MFCs [16,33]. Considering the anode and cathode of
an MFC as two pseudo-capacitors in series, high cell
capacitance could be achieved when both electrodes
possess capacitive features [26].

This study evaluated the contributions of the
combined capacitive properties of anode and cathode to
the overall performance of a single-chamber microbial
fuel cell catalysed by soil microbes. The performance
of an MFC fabricated with both electrodes made of
capacitive granular carbon material was compared to a
control MFC with electrodes made of carbon fibres
materials that lack capacitive properties.

II. MATERIALS AND METHODS

A. Production of Capacitive Electrodes.

The Capacitive electrodes were developed by
integrating a stainless-steel wire mesh, an activated
carbon catalyst layer, and a binder into one unit. The
adhesive paste was prepared from a 2-component epoxy
adhesive (UHU plus Endfeet, Germany) by mixing the
same amount (2.7 g) of binder and hardener. To
improve the capacitive and the conductive properties of
the paste, 0.25 g of carbon black (Vulcan XC-72) was
added and thoroughly mixed. The mixture was then
applied evenly and thinly to a clean stainless-steel mesh
(type 1.4301, Germany) with a mesh size of 0.315 mm
and a wire gauge of 0.2 mm. The electrodes were
further coated with a layer of carbon black [34] (Fig.
2A) to increase the surface area and pressed overnight
with screw clamps between two planes. The dry weight
of the applied capacitive paste was 2.15 g, while the
final weight of each electrode without the extended
current collector for external circuit connection was 5.7
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+ 0.4 grams. The non-capacitive control electrodes
(both anode and cathode) were made of carbon felt
(AvCarb C100 Soft Carbon Battery Felt) (Fig. 2B). A
titanium wire current collector with a diameter of 0.5
mm and a purity of 99.9% was inserted into the carbon
felt and firmly fixed on both sides with the adhesive
paste to ensure good electrical contact. All exposed
current collectors were insulated with heat shrink
tubing (0.32 - 0.16 cm)

B. MFC Construction and Operation

The MFCs were constructed around cylindrical glass
vessels (Fig. 1) as previously described [35]. A mixture
of garden compost and topsoil for agricultural
cultivation, saturated with distilled water, was used as
the source of the inoculum, ion exchange membrane,
and nutrient-rich electrolyte [36] . Artificial
wastewater, prepared according to [37], was used to
occasionally enrich the medium with a substrate, for
continuous bacterial metabolism. The MFCs were set-

up in duplicates.

i

200 nm EHT = 300 kv
Wo 73 mm Date BPI

Aperture Size = 3000 pm Imags Pivel Size = 2233 nm

Brightness = 503 % Mix Contrast= 324 % Ultra plus

ag= 50.00 KX

f 100pm

Fig. 2. SEM images showing the structures of the Capacitive (A)
and non-capacitive (B) electrodes before use.

C. Data collection and electrochemical
characterization of the MFCs

The electrical outputs of the MFCs were recorded
every 1 hour by a data logger (ADC-24, Pico
Technology). Biofilm growth was monitored by open-
voltage (OCV). Electrochemical
characterization of the cells was performed in a two-
electrode system using a potentiostat (Biologic VMP3).
Polarization curves were obtained by linear sweep
voltammetry between open-circuit and zero potentials
at a scan rate of 1 mV/s. Characterization of the
capacitance and resistance of the MFCs was performed
by electrochemical impedance spectroscopy (EIS). All
EIS experiments were performed in a potentiostatic
mode at an amplitude of 10 mV/s and a frequency range
of 100 kHz to 10 mHz [38]. The values of the
capacitance and the resistance were obtained from
Nyquist plots by fitting the EIS to an equivalent
electrical circuit [39] using EC-lab.

circuit

III. RESULTS AND DISCUSSIONS

Comparative evaluation of the capacitive (MFC,) and
non-capacitive (MFC,.) MFCs was performed using
various techniques. These include continuous open-
circuit voltage measurement with a data logger (ADC-
24), linear sweep voltammetry (LSV) to extract the
maximum power point of the MFCs over time, and
electrochemical impedance spectroscopy (EIS) to
simulate the capacitive and resistive characteristics.

A. Operation of the MFCs at Open-circuit Potential

The OCVs of the capacitive MFC (MFC¢) and the
non-capacitive MFC (MFC,.) as recorded with a data
logger for 75 days and 7 hours are given in Fig. 3.
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Fig. 3. Open-circuit potentials of capacitive and non-capacitive
MFCs. The arrow indicates a typical point of polarisation and the
first point of feeding

The initial starting voltages for the capacitive and
non-capacitive MFCs were 128.5 + 0.001 and -68 +
0.023, respectively. The pattern of the graph mimics the
growth curve typical of bacterial growth, but without
the death phase. The absence of the death phase is
apparently due to the occasional feeding of the MFCs
with an additional substrate to keep the microbial
activities in the stationary phase. The capacitive MFC
(MFCc) reached a stationary phase after 269 hours,
whereas it took slightly longer for the non-capacitive
MFC (MFCnc), which reached stability only after 392
hours. The growth of OCVs from the lag phase to the
stable phase is considered as microbial charging of the
MFCs to full capacity. MFC, and MFC, charged to
OCVs of 789 mV and 567mV, respectively, after 197
hours before the first feeding, after which the OCVs
increased to 818+1.4 mV and 788 + 8.5 mV for MFC.
and MFC,, respectively. The MFcs reached a fairly
stable state around these OCVs, with the MFC.
showing better stability over an extended period of
operation. Fig. 4. shows the behavior of the MFCs after
Polarization.

1000

0 100 200 300
Time(hr)

Fig. 4. Self-charging of MFCs after polarization

The last part of Fig. 3. is shown in Fig. 4. to demonstrate
the self-charging of the MFCs to their steady-states
after polarization. For both MFCs, the charging time
was faster during the exponential phase, so the

polarization points are not obvious during this phase.
The polarization points are evident from the stationary
phase onward, showing that the time for the MFCs to
self-charge increased as the MFCs operated around the
stationary phase. MFC, reached its steady open-circuit
potential after each polarization in the stationary phase,
in contrast to the MFC,., which exhibited irregular
potential behavior. The difference in potential
behaviors has been attributed to the storability of
electrons produced by the microorganisms by the
capacitive electrodes [19]

B. Electrochemical Performance of the Mfcs

1)  Polarization analysis: ~ To measure the
performance of the MFCs, linear sweep voltammetry
was performed at least every three days. Fig. 5. shows
typical polarization and power curves of the two
MFCs, while Fig. 6 shows the change in average
maximum power during the first 63 days of operation.
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Fig. 5. Polarization and Power Curves of the MFCs

1000 —— MFCnc

800 | "~ MFCc { ~|'
Zo00 H%’H’ HH
o Ed
2400 7
© |
[a ]

- M

+
*_l
0
0 25 50 75
Time (day)

Fig. 6. Maximum Performance of the MFCs with time. Data
points and error bars represent the mean + standard deviation of the
maximum power from the duplicate MFCs

The maximum power generated by MFC, and MFC,,
respectively is 712.5+110.8 uW and 236.5 + 6.15 pW.
As can be seen, the power of MFC,,c does not increase
in the same proportion as the OCV. This is attributed

1079

Authorized licensed use limited to: UNIVERSITAET BAYREUTH. Downloaded on June 04,2021 at 08:22:02 UTC from IEEE Xplore. Restrictions apply.



to a lack of charge storage capability of the MFCs. The
overpotentials were higher than the cell voltage during
polarization. For example, the best performance of one
of the duplicates occurs at an OCV of 815mV, while
the cell voltage and current at the point of maximum
performance were 341 mV and 0.687 mA,
respectively, resulting in a power of 234.3 uW. This
means that 474mV accounted for the total
overpotential (lost volt). When MFC, reached a similar
OCYV of 813mV, the cell voltage at maximum power
was 450mV at a current of 1.41mA, resulting in a
power of 634.5 uW, which is about 3 times better
performance. MFC. had lower overpotentials and
higher current, apparently due to the charge storage
capability of the capacitive electrodes.

2)  Impedance Spectroscopic analysis: To obtain
more detailed information about the capacitance,
ohmic, and charge transfer impedances of the MFCs,
an EIS was performed on a whole-cell basis (two-
electrode system). Fig. 7 and Fig. 8 show the Nyquist
plot of MFC. and MFC,,, respectively.

—fits
o Capacitive

Im(ZMOth‘
o wnn o wu

125

Fig. 7. Nyquist impedance plot of MFC,
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Fig. 8. Nyquist impedance plot of MFC,,

Randle circuits were chosen for modeling the physical
systems considering the kinetics of the Porous
Electrodes in Presence of Redox Species. For Fig. 7.,
an equivalent electrical circuit
R1+C2//R2+C3//R3+C4+W3 was chosen such that the
double layer capacitances of anode and cathode C2 and

C3 were respectively, parallel to their corresponding
resistances at the interface between the electrodes and
the electrolyte. Besides, the diffuse layer capacitance
at the coating/metal interface (C4) and the equivalent
Wamburg impedance (W4) of the two electrodes were
connected in series [40]. The absence of C4 in MFC,,
is obvious in Fig.8. Therefore, the same Randle circuit
could not model the parameters for MFC,. The
impedance parameters were modeled with C4 omitted.
Table 1 shows the parameters modeled with the
equivalent electrical circuits using EC-Lab V11.2

TABLE L. IMPEDANCE AND CAPACITIVE PARAMETERS OF THE
MECs
Cells R1 R+R3 C2//C3 C4 (F)
(D) (D) (1)
MFCc 68.5 26.8 8.282 2.012
MFCnc | 56.7 | 1791.5 5.034

The parameters were obtained by simulating the electrochemical impedance spectroscopy
to the equivalent circuits R1+C2//R2+C3//R3+C4+W3 and RI1+C2//R2+C3//R3+W3,
respectively. Where R1 is the total Ohmic resistance, R2 and R3 represent the charge
transfer resistance of the anode and cathode respectively for each MFC. C2 and C3
respectively represent the double-layer capacitance of the anode and cathode. C4 is the
equivalent capacitance of the coating/metal interface of the anode and cathode. C2 and C3
in the model were replaced with constant phase elements since the electrodes are not pure
capacitors.

Since a two-electrode system was used, the equivalent
double-layer capacitance of the anode and cathode and
the equivalent capacitance of the coating/metal
interface of the anode and cathode were represented by
an equivalent capacitance of the series connection, as

calculated from Equation 1
11,1

ccote (D

Where C, = anode capacitance, C. = cathode
capacitance. Also, the charge transfer resistance was
considered as the sum of R2 and R3.

The ohmic resistance of MFC, was slightly higher than
that of MFC,, which is probably due to a difference in
the conductivity of the bulk electrolyte at the
measurement point. This is also an indication that the
poor performance of MFC,. was not due to the contact
resistance between the electrodes and the current
collectors, because the ohmic resistance is composed of
the contact resistance, the resistance of the electrode
material, and the resistance of the bulk electrolyte [41].
The large difference in charge transfer resistance
explains the difference in electron transfer processes in
the two MFCs. This implies that the application of the
capacitive electrodes in the single chamber MFC
significantly reduced the charge transfer resistance and
thus improved the oxygen reduction reaction at the
cathode. Therefore, the better performance of the MFC,
was attributed to the reduction of the charge transfer
resistance and the pseudocapacitive properties of both
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the anode and the cathode, which resulted in a higher
specific energy of the MFC according to Equation 2
[26].

1 (CVpnan)?

max_z

m,. (2)

Where V. is the maximum practical cell voltage, My
is the total electrode mass.

IV. CONCLUSION

The study compared the outputs of a capacitive and
a non-capacitive MFC. The capacitive MFC generated
a maximum power of 712.5 + 110.8 uW, while the non-
capacitive MFC generated 236.5 + 6.15 uW during the
study period. Impedance spectroscopy of the MFC
showed that the capacitive properties of the electrodes
resulted in better performance of the single-chamber
MFC by reducing the charge transfer resistance and
storing the charge generated by the electroactive
bacteria. It was also found that the diffuse layer
capacitance at the layer/metal interface of the electrodes
contributed more to the capacitive properties of the
MFC than the double-layer capacitance. Further
investigation is needed to determine the specific
contribution of each electrode to the total capacitance
of the capacitive single-chamber MFC.
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