aff and

buttress

aite and

students'

nd the

dying

7 of

277-0011

Nigeri stitute ersity

ion of th elopmer l Systen

urnal fo) No 7.

Study

hancing Electronics Technology Students' Learning Experience and Sausse of Computer Simulation Software Packages

By

Emmanuel Raymond and Maxwell E. Uduafemhe Industrial and Technology Education Department, Federal University of Technology Minna, P. M. B. 65, Niger State.

Email: maxwelluduafemhe@gmail.com

ABSTRACT

on Fur This paper examined the role of computer simulation software packages in enhancing the learning Teach experiences and satisfaction of students undertaking electronics technology course. Emphasis was Efficience laid on defining learning experience as all the activities and interactions within the school system irriculu from which students can learn. As well as student satisfaction, which is students' perceptions of learning experiences and perceived value of a course. The factors affecting electronics technology students' learning experiences and satisfaction such as: quality of staff, student teacher achers relationship, socio-cultural background, teacher-student ratio and admission standards were chools highlighted. It was established from the literature reviewed that, electronics technology is capital e. A po intensive and the funds required for procuring equipment and consumables are not often readily ducation available. Hence, in order to address the challenges, the use of computer simulation software Nation packages such as MATLAB, Multisim, PowerSim, PSPICE, Schematic and CircuitLab were Min identified and discussed in the paper considering the advantages they offer. The paper further recommended that both teachers and students of electronics technology are encouraged to embrace the use of computer simulation software for enhancing students' learning experiences and satisfaction.

Keywords: Learning, experiences, satisfaction, electronics, simulation, software.

INTRODUCTION

Providing qualitative education to all is one of the goals of the government of Nigeria. It therefore does not come as a surprise that the fifth item on the list of eliefs, that midwifed Nigeria's philosophy education, was captured thus: "education to be qualitative, comprehensive and elevant to the needs of the society" (Federal epublic of Nigeria (FRN), 2013). In giving uther credence to this position, Etor, ^{lbon} and Ekpenyong (2013) remarked that walitative education as a development ent that is valued by all nations of the ^{orld} because it has brought total liberation man, transformed man from ignorance

l, E. & Uduafemhe, M. E.

and misery to knowledge and happiness, and has made man useful to himself, his generation and beyond. In the same vein, Thom-otuya and Inko-tariah (2016) rightly noted that the quality of education determines the quality of manpower and products; reduce the rate unemployment, since graduates technicians can become self-employed after graduation. In the light of these, it is expected that every form of formal education in Nigeria must strive to bring this belief to realization. This is one of the reasons why improving the learning experiences and satisfaction of students of higher education has been on the front

buftejoste

242

Copyright © 2017 JOSTE. All Rights Reserved (www.atbuftejoste.com)

Bohling faction of students of higher education of climes, they serve as yardsticks for ating institutions of higher learning with relations to others of similar standing.

Additionally, apart from impacting in a negative way on the academic achievement of students of higher institution, student learning experience and satisfaction from enrolment point of view, can go a long way in impacting in the way certain courses and higher institutions are subscribed for. Dhaqane and Afrah (2016) agree with this position when they submitted that the retention of students is significant for fulfilling the primary objectives of educating and graduating students, but also from the viewpoint of college enrolment management, student satisfaction supports their intention to stay in college. Hence, when students of higher education courses get what they deserve, their needs met, others are likely to be attracted to those courses. Just as it is today in Nigeria, certain courses are over subscribed for, while others are simply fizzling out.

This is why in order to become effective, Lo, (2012) revealed that less-thanoptimal learning environments should be redesigned to include a variety of learning activities and opportunities shown to foster achievement of the desired learning outcomes. The researcher further submitted that instructors (lecturers) should provide evidence of student learning by assessing students' understanding and demonstration of desired results. This is in with the fact that, demographics have changed greatly in student recent years, as have teaching and learning because the student

population is increasingly diverse and unevenly fascinated by these technologies, instructors seeking to obtain accurate learning outcomes may need to use a variety of methods, in deference to the students' differential learning styles and thinking paths (Hooker, 2017). This is with a view of enhancing the learning experiences and satisfaction of the students.

Concept of Students' Learning Experience and Satisfaction

Learning experiences are all the activities and interactions within the school system from which students can learn. According to Hassan, Ismail and Ibrahim (2013), learning experience refers to any interaction, course, programme, or other experience in which learning takes place, whether it occurs in traditional academic settings (schools, classrooms) or nontraditional settings (outside-of-school locations, outdoor environments), whether it includes traditional educational interactions (students learning teachers and professors) or non-traditional interactions (students learning through games and interactive software applications). The quality of learning experience serves an indicator for successful teaching (Zerihun, Beishuizen & Van Os, 2012). A lecturer using the right skills to the best of his ability is more likely to have a positive effect on students learning experience, but ineffective or improperly used skills could have a detrimental effect (Stevenson and Harper, 2006). In effect, Stevenson and Harper further noted that the impact made by the lecturer is made evident in students' increased knowledge and skills as a result of their experiences. Hence, proper planning and execution of teaching episodes lead students to that point where they feel the satisfaction that accompanies the learning experiences, and

Raymond, E. & Uduajemhe, M. E.

it can happen while they are still in school or after they graduate.

Student satisfaction refers student perceptions of learning experiences and perceived value of a course (Kuo, Walker, Belland & Schroder, 2013). To Lo (2012), student satisfaction is the subjective perceptions, on students' part, of how well a learning environment supports academic In the same nein, student satisfaction is defined as the favourability of a student's subjective evaluation of the various outcomes and experiences associated with education (Dhagane & Afrah, 2016). Kuo et al. (2013) posited that student satisfaction is an important indicator of the quality of learning experiences. As much student satisfaction is often influenced by the quality of interpersonal interaction between the student and the lecturer; the quality of their learning experience can also be affected by the student's own behaviour or misbehaviour. Hence, one role necessarily belonging to the student is to capitalize on challenges posed through instructional methods such as problem-solving exercises, in order to strengthen their critical thinking and creativity (Lo, 2012).

As rightly noted by De Smet, Valcke, Schellens, De Wever and Vanderlinde (2016), in an environment that is truly student centred, students are continually confronted with stimulating instructional methods environmental and related features, student generate which satisfaction that are linked to successful academic outcomes. Little surprise then that (and student satisfaction dissatisfaction), is one of the many criteria that contribute to universities' league table Positions in the United Kingdom (Douglas ^{t al.}, 2014). As a result, student satisfaction atings which unfortunately have been both ontinuously and increasingly poor and

therefore potentially damaging in terms of the recruitment and retention of staff and students (Dean, 2011). To further buttress this position, Calvo, Markauskaite and (2010) noted that students' experiences of their learning and the teaching in the subjects they are studying are one of the more ubiquitous sources of information about the quality of teaching for institutions and individual academics. Invariably, the results are used in the design of new courses and degree programs, as evidence for promotions and awards, and for various policy decisions. The critical areas of quality that foster satisfaction, from a student viewpoint are: responsiveness, communication and access (Douglas et al., If the learning experiences and satisfaction of students is being used as a litmus for judging the success or otherwise, of the educational services rendered by higher institutions, what then are the factors affecting the learning experiences and satisfaction of students?

Factors Associated with Students' Learning Experience and Satisfaction

Student learning experience and satisfaction are affected by a myriad of factors. Some of them are encapsulated as follows. Department of Education and Training (2015) reported that some of these factors are directly related to learning and teaching, while others have to do with life beyond the class. Uduafemhe (2015) submitted that the factors that affect student learning experience and satisfaction can be classified into three main elements. characteristics student are: These gender), and (intelligence environment (socioeconomic class), and school context (quality of instruction). Mlambo (2011) identified them as; parental background, school environment, learner's characteristics. Whichever way

these factors are viewed, they affect the way students experience learning and influence their level of satisfaction. The factors affecting the contemporary student's experience and satisfaction include: (a). large increases in student numbers, (b). student fees and HE funding models, (c). admission standards, (d). evolving issues around equity, (e). internationalisation, and (f). blended and distance education (James, French & Kelly, 2017). Others include: school type, school facilities (Alimi, Ehinola & Alabi, 2012), school location, student attitude (Ntibi & Edoho, 2017), parent socioeconomic status (Aliyu, 2016), and teacher's competence, experience and teaching performance (Asfani, Suswanto & Wibawa, 2016). In a nutshell, the factors that affects students' learning experience satisfaction are: learning facilities, school infrastructure, quality of staff, studentteacher relationship, socio-cultural background, teacher-student ratio. admission standards, student aptitude and attitude. These factors affect students of medicine, languages, humanities, sciences, engineering and technology. This include electronics technology students.

Overview of Computer Simulation for Instructional purposes

Computer simulation started to make inroads in the Nigerian academic space recently. For instance, Oyelekan and Olorundare in 2009 developed and validated a computer instructional package for teaching electrochemistry for secondary schools in Nigeria. Udo and Etiubon (2011) investigated computer-based simulations, guided-discovery and students' performance in chemistry. Gambari and Yusuf (2014) developed and validated a computer instructional package on physics for secondary schools in Nigeria. The effect of computer simulation instructional package on senior secondary school mathematics students' retention in arithmetic progression in Lavun Local Government Area of Niger State, Nigeria was explored by Gimba, Falode and Bashir in 2015. A careful observation the Nigerian situation, reveals that while computer simulation is being embrace by the natural sciences. industrial and technology education, electronics technology particular appears to be lagging behind in terms of fully harnessing the merits of computer simulation. Save for Raymond, Uduafemhe & Shuaibu who in 2016, studied the effects of computer simulation on Nigeria certificate in education students' psychomotor achievement and interest in electronics technology.

There are many simulations software that are relevant in electronics technology. According to Vogt, Hendrix and Nenzi (2018), Pannam Imaging Advances Interface Solution (2017), Microcontrollers Lab (2017), Raj (2015) and Tobin (2007), the software that are useful in electronics technology include the following: Matrix Laboratory (MATLAB), Multisim, SiMetrix, Toolkit for Interactive Network Analysis (TINA), PowerSIM, Power Simulation Programme with Integrated Emphasis (PSPICE), SmartDraw, ProfiCAD, Linear Technology Simulation Programme Integrated Circuit (LTSPICE), . CircuitLab, **Emphasis** DoCircuit, EveryCircuit, Easy Electronics Automation Design (EasyEDA), Schematic, Scheme-it, Ngspice, PartSim, Analysis **GNU** Package CircuitLogix, Top Simulation Programme Integrated (TopSpice), MacSpice, Power Electronics Circuit and Control Systems (PECS), Proteus, and Quite Universal Circuit Simulator (QUCS). These simulation softwares are invaluable for doing the following with ease: lossless

Raymond, E. & Uduafemhe, M. E.

image compression in cameras, antenna circuit design design, and analysis calculations, gain and noise calculations in amplifier designs, circuit simulation and fault analysis, implementation of Fourier transforms, doing calculation of all complex mathematical functions, machine learning, for performing any task at a faster rate, data analysis, creation of circuit layouts, circuit analyses and simulation, exploration of breadboard in 3D before lab assignment submission and creation of printed circuit boards (PCB), power electronics systems design, alternating current and transient noise analysis, interactive simulation and animation, virtual Instruments, and local (Pannam measurements remote Imaging Advances Interface Solution, 2017; Microcontrollers Lab, 2017; Raj, 2015). Learning Students' Enhancing Satisfaction and Experience Simulation Computer Packages is

using Software the

simulation Computer manipulation of the variables of a system on a computer by the use of a prototype of a real-life situation so that predictions about the system can be made. Computer simulation was defined by Raghuwanshi, Singh and Mokhariwale (2012) as an attempt to model a real-life or hypothetical situation on a computer so that it can be studied to see how the system works. Simulation on a computer requires that a relevant software is developed to suit the intended purpose. Software is a generic term for organized data computer of collections instructions, often broken into two major categories: system software that provides the basic non-task-specific functions of the computer, and application software which is used by users to accomplish specific tasks (Axelrod, 2012). The use of computer simulation software is one of the recent

technological advances introduced into instructional media which has the capacity to aid students, especially at the tertiary level, to grasp new concepts faster and better in engineering related disciplines (Raymond et al., 2016).

Research evidences show that the use of computer simulation software can help students grasp concepts in electronic technology faster than the use of the conventional laboratory equipment (Furo, 2015; Raymond, Uduafemhe & Shuaibu, 2016). Similarly, Fang (2012) reported that 88 percent of 304 students who were taught engineering dynamics using computer simulation and that responded to a survey indicated positive experiences with the animation simulation and computer learning module. Taher and Khan (2015) intimated computer simulation adopts a learning strategy that is based on the higher order thinking skills, and this involves three principles: (1) creating an intriguing learning environment, (2) combining visual and interactive learning experiences that mental form to students help developing (3)and representations, cognitive architecture that unifies their learning experiences.

computer of advantages The numerous. are software simulation Raymond, Uduafemhe & Shuaibu, (2016) revealed that they: can be used for teaching a variety of courses like electronics in the offers a faster field of Technology, understanding of circuits, use industryrenowned tools, can handle multiple circuits' applications at a time, can be used to teach foundational analogue, digital, and power circuits concepts, and are useful tool in research in electronics and power electronics design. In addition to these, Taher and Khan (2015) enumerated three important advantages of using computer simulations in the classroom:

ste.com)

11

ry

in

al

ia

ıiг

ın

er

al

ξУ

in

in

of

d,

2d

n

ts

in

ns

CS

nd

es

:rs

he

CS

rix

ix,

sis

on

uit

D,

ne

sis

iit,

ign

im.

NU

(P),

me

asis

nics

and

CS).

ıble

less

Copyright © 2017 JOSTE. All Rights Reserved (www.atbuftejoste.com)

ymond, E. & Uduafemhe, M. E.

computer simulations in the classroom provide a strong tool for dealing with strategic planning and thinking, which are often times difficult to develop. Second, the purchase, maintenance, and update of lab equipment is often more expensive than computer hardware and software. Third, computer simulations in the classroom reduces the concern for students' physical safety the simulation-learning environment. general, In computer simulation is a powerful tool for teaching not only the content, but also thinking or reasoning skills that are necessary to solve problems in the real world.

CONCLUSION

The importance of the use of computer simulation software enhancing the learning experiences and satisfaction of students in higher institutions has come of age globally. For this reason, students and lecturers of electronics technology in Nigeria cannot afford to be left behind. Therefore, the adoption of computer simulation software in electronics technology in the entire higher education system in Nigeria has the capacity to foster enhanced student learning experiences and satisfaction. Hence, it is important that all stakeholders electronics technology embrace computer simulation software. If this happens, students would be further propelled towards personal study armed with a laptop computer with any electronics simulation software which would help them master the skills they are being taught.

REFERENCES

Alimi, O. S., Ehinola, G, B., Alabi, F. O.

(2012). School types, facilities and
academic performance of students in
senior secondary schools in Ondo
State, Nigeria. International

- Education Studies, 5(3), 44-48. doi:10.5539/ies.v5n3p44.
- Aliyu, G. A. (2016). Influence of socioeconomic status on academic achievement of senior secondary students, in Nassarawa Zonal Education area of Kano State, Nigeria. Asian Journal of Educational Research, 4(4), 1-8.
- Asfani, K. Suswanto, H. & Wibawa, A. P. (2016). Influential factors of students' competence. World Transactions on Engineering and Technology Education, 14(3), 416-420.
- Axelrod, C. W. (2012). Engineering safe and secure software systems. Artech House.
- Calvo, R. A., Markauskaite, L. & Trigwell, K. (2010). Factors affecting students' experiences and satisfaction about teaching quality in engineering.

 Australasian Journal of Engineering Education, 16(2), 139-148.
- De Smet, C., Valcke, M., Schellens, T., De Wever, B., & Vanderlinde, R. (2016).

 A qualitative study on learning and teaching with learning paths in a learning management system. JSSE-Journal of Social Science Education, 15(1), 27-37.
- Dean, A. A. (2011). Improving the
 educational experience of HLST
 students in higher education. The
 Higher Education Academy York:
 Hospitality, Leisure, Sport and
 Tourism Network.
- Department of Education and Training.
 (2015). Selected higher education
 statistics 2015 Student
 Data. Canberra: Department of
 Education and Training.
- Dhaqane, M. K. & Afrah, A. A. (2016).

 Satisfaction of students and
 academic performance in Benadir

University. Journal of Education and practice, 7(24), 59-63.

Douglas, J. A., Douglas, A., McClelland, R. J. & Davies, J. (2015) Understanding student satisfaction and dissatisfaction: an interpretive study in the UK higher education context. Studies in Higher Education, 40(2), 320-349. doi: 10.1080/03075079.2013.842217.

Prot., C. R., Mbon, U. F. & Ekpenyong, E. E. (2013). Primary education as a foundation for qualitative higher education in Nigeria. Journal of Education and Learning, 2(2), 155-104.

Fang, N. & Guo, Y. (2016). Interactive computer simulation and animation for improving—student learning of particle kinetics. Journal of Computer Assisted Learning, 32(5).

Fang, N. (2012). Using computer simulation and animation to improve student learning of engineering dynamics.

Procedia - Social and Behavioral
Sciences, 50(2012), 504-512.

Federal Republic of Nigeria (2013), National policy on education, Lagos, NERDC Press.

Furo, P. T. (2015). Computer assisted instruction (CAI) and students interest as determinant of SS II chemistry students' achievement in chemical equilibrium in Rivers State. IOSR Journal of Applied Chemistry (IOSR-JAC). 8(8), 50-56.

Gambari, I. A., & Yusuf, M. O. (2014).

Development and validation of computer instructional package on physics for secondary schools in Nigeria. Educational Research International, 3(1), 112-130.

(2015). Effect of computer simulation

instructional package on senior secondary school mathematics students' retention in arithmetic progression in Lavun local government area of Niger State.

Nigeria. African Symposium, 15(1), 20-24.

Hassan, R., Ismail, A., & Ibrahim, N. H.

(2016). Employer engagement in skills
development and tvet in Southeast
Asia. Retrieved on 28th February
2018 from

https://www.researchgate.net/profile Razali_Hassan2_publication_3047 50041_Employ er_Engagement_in_Skills_Develop ment_and_TVET_in_Southeast_Asia /links/5779b37bo8ae4645d6uf2a3/E mployer-Engagement-in-Skills-Development-and-TVET-in-Southeast-Asia.pdf.

Hooker, M. (2017). A study on the implementation of the strengthening innovation and practice in secondary education initiative for the preparation of science, technology, english and mathematics (stem) teachers in Kenya to integrate information and communication technology (ICT) in teaching and learning (Doctoral dissertation.

Queen's University Belfast).

James, R., French, S. & Kelly, P.

(2017). Visions for Australian tertiary
education. Melbourne: Melbourne
Centre for the Study of Higher
Education, The University of
Melbourne.

Kuo, Y., Walker, A. E., Belland, B. R. & Schroder, K. E. E. (2013). A predictive study of student satisfaction in online education programs. The International Review of Research in Open and Distance Learning, 12(1), 16-39.

Copyright © 2017 JOSTE, All Rights Reserved (www.aduptejoste.com

- Lo, C. C. (2012). How student satisfaction factors affect perceived learning. Journal of the Scholarship of Teaching and Learning, 10(1), 47-54.
- Microcontrollers Lab (2017). Best
 electronics simulation software.
 Retrieved on 16th March 2018 from
 http://microcontrollerslab.com/circ
 uit-simulation-software.
- Mlambo, V. (2011). An analysis of some factors affecting student academic performance in an introductory biochemistry course at the University of the West Indies.

 Caribbean Teaching Scholar, 1(2), 79–92.
- Ntibi, J. E. & Edoho, E. A. (2017). Influence of school location on students' attitude towards mathematics and basic science. *British Journal of Education*, 5(10), 76-85.
- Oyelekan, O. S., & Olorundare, A. S. (2009). Development and validation of a computer—instructional package on electrochemistry for secondary schools in Nigeria. International Journal of Education and Development using ICT, 5(2). Retrieved on 24 February 2018 from http://ijedict.dec.uwi.edu/vie warticle.php?id=677.
- Pannam Imaging Advances Interface
 Solution (2017). Top pcb design
 software tools for electronics
 engineers: 46 must-have tools to
 streamline pcb design. Retrieved on 2
 February 2018 from
 https://www.pannam.com/blog/best
 -pcb-design-software-tools/.
- Raghuwanshi, S. S., Singh, A. &
 Mokhariwale, Y. (2012). A
 comparison & performance of
 simulation tools
 MATLAB/SIMULINK, PSIM &

- PSPICE for power electronics circuits. International Journal of Advanced Research in Computer Science and Software Engineering. 2(3), 187-191.
- Raj, N. (2015). Open source circuit simulator software list. Retrieved on 20th January 2018 from https://www.quora.com/Whichone-is-the-best-software-for-breadboard-circuit- analysis.
- Raymond, E., Uduafemhe, M. E. & Shuaibu, H. (2016). Effects of computer simulation on Nigeria certificate in education students' psychomotor achievement and interest in electronics technology. *Journal of Information, Education, Science and Technology (JIEST)*, 3(2), 66-73.
- Taher, M., & Khan, A. (2015). Comparison of simulation-based and hands-on teaching methodologies on students' learning in an engineering technology program. *Q Science Proceedings*, 58. DeVry University, Addison, Illinois, USA. https://doi.org/10.5339/qproc.2015.e lc2014.58.
- Thom-otuya, B. E. N. & Inko-tariah, D. C. (2016). Quality education for national development: The Nigerian experience. *African Educational Research Journal*, 4(3), 101-108.
- Tobin, P. (2007). Pspice for circuit theory and electronic devices. Dublin. Morgan and Claypool publishers.
- Udo, M. E., & Etiubon, R. U. (2011).

 Computer-based science
 simulations, guided-discovery and
 students' performance in
 chemistry. *Modern Applied Science*, 5(6), 211-217.
 doi:10.5539/mas.v5n6p211.
- Uduafemhe, E. M. (2015). Comparative effects of scaffolding and

Raymond, E. & Uduofemhe, M. E.

Copyright © 2017 JOSTE. All Rights Reserved (www.atbuftejoste.com)

collaborative instructional approaches on secondary school students' cognitive and psychomotor achievement in basic electronics in north central, Nigeria. Unpublished master's thesis, Federal University of Technology Minna, Nigeria.

Vogt, H., Hendrix, M. and Nenzi, P. (2018).

Ngspice user's manual version 27

plus. Retrieved on 12th March 2018

from

http://ngspice.sourceforge.net/docs/
ngspice-manual.pdf

Zerihun, Z., Beishuizen, J. & Van Os, W. (2012). Student learning experience as indicator of teaching quality.

Educational Assessment,

Evaluation and Accountability, 24, 99- 111. doi:10.1007/s11092-011-9140-4.