(SKO, P.A.

IJRAS/CERT./25

The Board of the

International Journal of Research in Agricultural Sciences (IJRAS)

Is hereby awarding this certificate to

"Tsado, P.A.; Lawal, B.A. and Ezenwa, M. I. S."

In recognition of the publication of the paper entitled

"Assessment of Properties of Alfisols as Affected by Land use in Minna, Southern Guinea of Nigeria" Published in IJRAS Journal Volume - 1, Issue - 2, March-2014

March-April, 2014

Www.ijras.org

DOWNEDADS CANDACTUS

HOME

EDITORIAL BOARD

TOPICS

ISSUE PAY ONLINE

AUTHORS GUIDELINE

Go Reset Type of publication Year Authors

SKIURDAY, 28 FEBRUARY 2015

LATEST NEWS

in Agricultural Sciences

Fliter by:

Shakeel, M., Akram, W., Hamza, A., Ali, M. W. & Ali, A. (2014). Population Dynamics of Aphid (Aphis Gossypli G.) on Tomato Agro-Ecosystem in Fakalabad Region. IJRAS.

All teams Research areas

- . ISANC S. R. B. M. N. (2014). Response of Cauliflower to Organic Nutrition under Integrated Farming in Homesteads. IJRAS. 1(3), 186-188. [More] Ourna, M. A., Onyango, C. A., Omball, J. M., R., K. Z., O., M. C. & J., P. (2014). Use of Participatory Video in Enhancing Sorghum Production among Smallholder Sorghum Farmers' in Rachuonyo North Sub-County, Kenya, URAS, 1(3), 189-193. [More]
- * A. B. S. V. P. F. B. Z. S. R. A. S. (2014). Evaluation of Efficacy of Lactic Acid as Coagulant in the Preparation of Kaladhi: A Hard and Dry Cheese. IJRAS, 1(3), 194-198.
- . Okere, C., Xeith, L. & Bolden-Tiller, O. (2014). The Relationship between Body Con Formation, Testicular, Carcass Traits, and Serum Insulin-Like Growth Factor-1 Levels in Pubertal Male Boer Goat Crosses. (JRAS, 1(3), 199-205. [Moze]
- Bouchelaghem, S. & Delimi, A. (2014). Effect of Various Concentration of the Zinc on Chlorophyll, Soluble Sugars and Proline in Duckweed (Lemma Minor). IJRAS, 1(2). 51-53. [Mere)
- . Nikolova, I. M. (2014). Toxicity of Some Pyrethroids and Neonicotinoids used for individual and Simultaneous Control of Bruchus Pisi L. and Acyrthosiphon Pisi Kall. IJRAS. 1(2), 54-59. [More]
- Tarekegne, C., Bernhard, F., Alemayehu, G. & Delelegn, Y. (2014). Analysis of Rural Livelihood Challenges and Options under Climate Change Pressure: Case Study from Potato Producer Localities in Awi Zone, Ethiopia (IRAS, 1(2) 60-69 (More)
- * Tarekegne, C., Bernhard, F., Alemayehu, G. & Delelego, Y. (2014). Smallholder Household and Farming Practices under Climate Change Pressure. A Case of Gusha Shinkurta Area, Awi Zone, Ethiopia. IJRAS, 1(2), 70-81. [More]
- TSJOO, P. A. Limat, R. A. & Ezerwa, M. I. (2014). Assessment of Properties of Alfisols as Affected by Land use in Minna, Southern Guinea of Nigeria. IJRAS, 1(2), 82-86.
 - . ALLOUL N. (2014). REMESA. A Network to Control Infectious Animal Diseases in Mediterranean Countries. IJRAS, 1(2), 87-89. [More]
 - Sekhar, D. C., Rathinasamy, D. P., Hussain, M. S., Leon, M. T., Siranjeevi, R., Palani, R. et al. (2014). Strategies for Enhancing the Area Production and Productivity of Jasmine in Tamil Nadu - A Paradigm to the Farmers' Organizations of India. IJRAS, 1(2), 90-102. [More]
 - . Yitbarek, M. B. & Regasa, F. (2014). Reproductive Immunization of Domestic and Wild Animals. Review. (JRAS, 1(2), 103-114. [More)
 - Nitbarek, M. B. & Tamir, B. (2014). Silage Additives: Review. (JRAS, 1(2), 115-127. [More]
 - Bhaskar, B. P., Sarkar, D., Bobade, S. V., Gaikwad, S. S. & Anantwar, S. G. (2014). Land Evaluation for Irrigation in Cotton Growing Yavatmai District, Maharashtra. IPAS, 1(2), 128-136. [More]
 - · Abiramasundari, N., Shanthi, P., Kumar, D. S. & Saraswathi, R. (2014). Calius Induction and Regeneration in Commercial Rice Cultivars of Tamil Nadu. IJRAS, 1(2), 137-142. [More]
 - Mohapatra, A., Kanchana, P., Ranjan, D. M., Horta, S. S., Monica, Kavita et al. (2014). Antimicrobial Activity of Neem (Azadirachta Indica) Leaf Extracts. IJRAS, 1(2), 143-148. [More]
- . Shiyam, J. O., John, N. M., Ndaeyo, N. U. & Binang, W. B. (2014). Effect of Organo-Mineral Fertilizer on Soil Nutrient Flux and Malze (Zea Mays L.) Productivity on an Ultisoil in Southern Nigeria. (JRAS, 1(1), 1-4. [More]
- KHALDL F. (2014). Study of Changes in physiological and Enzymatic Metabolism of a Bryophyte "Rhytidium Rugosum" Under the Effect of a Herbicide "(TR. IJRAS, 1[1]).
- Dizaji, S. B. & Pirmohammad, R. (2014). Effect of Saccharomyces Cerevisiae and Bioplus 28 on Egg Quality and Yolk/Serum Cholesterol of Laying Hens. IJRAS. 1(1), 21-23.
- . A. E. M. S. M. S. Sh. R. & S. H. (2014). Modeling and Estimation of Banana Sike Browning during Drying using Artificial Neural Network. IJRAS, 1(1), 5-10. [More]
- Laler, M., Mincheva, N., Hristakieva, P., Oblakova, M. & Ivanova, I. (2014). Estimation of Heterosis. Direct and Maternal Additive Effects from Crossbreeding Experiment Involving Two White Plymouth Rock Lines of Chickens, IJRAS, 1(1), 11-15. [More]
- Tarkashrand, M., Alkhani, H. A. & Pourbabae, A. A. (2014). Nitrogen Fixation Ability of Some Cyanobacteria Isolated of Maize Field (Case Study Iran): IJRAS. 1(1), 24-27.
- Malck, A. H. & Ferry, F. (2014). Effects of Nitrogen and Phosphorus Fertilizers on Safflower Yield in Dry Lands Condition. IJRAS, 1(1), 28-33. [More)
- Rangamudali, L. M., Senarathne, S. H. & Egodawatta, W. C. (2014). Evaluation of Coconut Based Gliricidia sepium Agroforestry Systems to Improve the Soil Properties of Intermediate and Dry Zone Coconut Growing Areas, IJRAS, 1(1), 34-42. [More]

Results 51 - 75 of 77 Startw1234xEnd

DECCE International Journal of Dectronics Communication and Computer Engineering ISSNC/nime* 2249 - 071X ISSN 19*100-2276 - 4209 www.ljecck.org Submissions open	DAIR International Journal of Agriculture innevations and Research ISSN(Online): 2319 - 1473 news. jair.org Submissions open	IJISM Incernational Journal of Innovation in Science and Mathematics ISSN 2347 - 9051 Innovalism org Submissions open
John Colonia Journal of Engineering Innovations and Research 25514(Online): 2277 - 5668 (Submissions are open.	Intelligence and Mechatronics	IJRAS International journal of Research in Agricultural Sciences ISSN(Online): 2348 - 3997 www.ijras.org Submissions open

INDEXED BY

Assessment of Properties of Alfisols as Affected by Land use in Minna, Southern Guinea of Nigeria

*Tsado, P.A., Lawal, B.A. and Ezenwa, M. I. S.

Department of Soil Science, Federal University of Technology, PMB 65, Minna, Niger State *Email: tsadophilips@yahoo.com

Abstract - To assess the land use effects on soil properties, this study examined the profile variations in the morphological, physical and chemical characteristics of an Alfisols as affected by land use systems. Soil profiles from arable farmland and teak plantation were described. The surface color of the soils was grayish brown (10YR 5/2) in arable farmland and very dark grey (10YR 3/1) in teak plantation over various shades of brown in the subsurface horizons. Particle size analysis showed that sand particle was the dominant mineral fraction in soils of the two land use types studied and its content decreased down the profiles. Soils of the two land use types showed evidence of clay migration from surface to horizons below with higher contents in teak plantation than arable farmland. The soil pH was moderately to slightly acidic irrespective of the land use type studied. Organic carbon and total nitrogen values of these soils were lower in subsurface horizons and decreased with depth. Available phosphorus was moderate in arable farmland and low in teak plantation with mean values of 11 and 7 mg kg⁻¹ respectively. Values for exchangeable bases (Ca, Mg and K) were lower in teak plantation compared to arable farmland and appeared in the order of Ca > Mg > K in terms of abundance. Higher value of exchangeable acidity (1.16-1.80 cmol(+) kg-1) were observed in the horizons of teak plantation, thus indicative of the deteriorative effect of trees on the soil properties. The ECEC of these soils were also found to be low.

Keywords - Arable Farmland, Land Use, Soil Properties, Teak Plantation.

I. INTRODUCTION

The soils of Minna and its environs were derived from deeply weathered basement complex rocks made up of granites, magmatites, gneisses and schists [1]. They are strong brown to red sandy clay, loamy sand or sandy surface layer, deep and weakly to moderately structure with gravelly and concretionary layers in the upper or beneath the surface layers [1], [2]. Soil properties vary in spatial and temporal and such variation depicts systematic changes as a function of soil parent materials and land use [3], [4]. The soils of Minna have been largely exposed to continuous cultivation as a result of increasing human population. [5]Reported that fragile nature of savanna soils predisposes them to degradation rapidly under continuous cultivation. The productivity of such soils declined drastically especially where continuous cultivation is associated with poor land management [6]. Studies on soil properties as affected by different land uses are scanty around Minna. Such exercise is likely to provide rapid information for soil fertility and productivity management. This study was therefore designed to investigate the

profile distribution of morphological and physicochemical properties of an Alfisol in Minna in response to land use, that is, arable farmland and teak (Tectona grandis) plantation.

II. MATERIALS AND METHODS

A. Site description

The study site was lies within the forest plantation and the adjourning arable farmland of the Federal University of Technology, Gidan-Kwano Campus, Minna, Nigeria on latitude 09° 31' N and longitude 06° 27' E. Geomorphologically, the site was moderately flat land (< 3 % slope) on elevation of 229.7 meters above mean sea level. The vegetation is southern Guinea savanna with a sub-humid tropical climate. The mean annual rainfall is 1284 mm spread over months of April/May to October [1]. The geology of the area is made up of basement complex. The dominant soil parent material in Minna and its environs are weathered remains (saprolites) of the varied basement complex rocks, which have been deeply and markedly altered for a long time such that bedrock, apart from where it emerges as inselbergs or lower rock outcrops, is several meters below the surface [1].

B. Sample collection

Land use of the study area was arable farmland and teak plantation. Two modal profile pits, one for each land use type were dug and described in accordance with guidelines for soil profile description [7]. Soil samples were collected from each identified genetic horizons for laboratory analysis.

C. Laboratory analyses

Soil samples were air-dried and gently crushed to pass through 2 mm and 0.5 mm sieve. Particle size distribution was determined by the hydrometer method after dispersion with sodium hexametaphosphate according to the procedure described by [8]. pH values of the samples were determined in 1.0 N CaCl2 solution using a soil solution ratio of 1:2.5 [9]. Organic carbon was determined by the Walkley-Black wet oxidation method [10]. Exchangeable basic cations were extracted with neutral 1N NH4OAc with potassium (K) and sodium (Na) determined by flame photometry and calcium (Ca) and magnesium (Mg) by atomic absorption spectrophotometry. Exchange acidity was determined by shaking the samples with 1.0 M KCl and titrating them with 0.1 M NaOH. Available P was determined by the Bray P1 method [11]. Effective cations exchange capacity was obtained by summation of the exchangeable basic cations. Total nitrogen (TN) was determined by the micro Kjeldhahl method. Were

necessary, data were subjected to paired t-test to compare the means of values from both land use types.

III. RESULTS AND DISCUSSIONS

A. Morphological properties

The result of some morphological properties of the soils studied is shown in Table 1. Surface color was grayish brown (10YR5/2) in arable farmland and very dark gray (10YR3/1) in teak plantation over various shades of brown in the subsoil. The grayish or brownish coloration in both soils was an imprint of organic matter contents. The surface soils of the two land use types were non-mottled which suggested that they have good aeration. [12]inferred that absence of mottling in soils is an indication of a prevalent non-reducing condition, that is, such soils are in highly oxidized state. Another reason for absence of mottling, especially in arable farmland may be attributed to frequent mixing during ploughing activities. The occurrence of mottling in the subsurface layers may be attributed to poor internal drainage condition caused by presence of massive structure occurring below 50 cm depth in both sites.

Table 1: Some morphological properties of soils of the study sites

Horizon	Depth (cm)	Colour (moist)	Structure*	Roots**	
		Matrix	mottles		
		Arable Farmland			
Ap	0-24	10YR5/2 grayish brown		2cr	5mf
Bil	24-54	10YR4/6 dark yellowish brown	mottled	2sbk	3f
Bi2	54-120	7.5YR5/6 strong brown	mottled	Ms	0
BC1	120-157	10YR6/3 pale brown	mottled	Ms	0
BC2	157-206	10YR7/3 very pale brown	mottled	Ms	0
		Teak Plantation			
Ap	0-19	10YR3/1 very dark gray	4	2sbk	5ml
Btl	19-56	10YR4/4 dark yellowish brown	mottled	2sbk	5m
Bt2	56-103	10YR5/2 grayish brown	mottled	Ms	3mf
BC	103-147	10YR5/2 grayish brown	mottled	Ms	1f
C	147-200	10YR5/2 grayish brown	mottled	Ms	1f

^{*}Structure: 2=moderate; cr=crumb; sbk=sub-angular blocky; ms=massive.

B. Physical properties

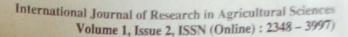
Data on particle-size distribution of the soils studied are shown on Table 2. Particle-size analysis revealed that sand particles dominated the mineral fraction in soils of the two land use types studied probably because the soils were formed from decomposition of granitic parent materials rich in quartz and feldspars. The sand values in both land use types decreased down the profiles. The trend may be attributed to sorting of fine materials, silt and clay, from surface horizon through action of erosion or eluviation and illuviation processes [13]. Sand contents was higher (P<0.05) in profile of arable farmland than in teak plantation. Annual cultural operations on arable farmland probably contributed to structural degradation of surface soils and predisposed them to wind and water erosion, hence, explained the differences in the surface textures of both land use types. Unlike sand, the distribution of silt was irregular, however, silt content also differed significantly (P<0.05). Soils of the two land use types showed evidence of clay migration from surface horizon (Ap) to horizons below (Bt1 and Bt2). The soils under arable farmland, had 2.37 and teak plantation 1.48 times, higher clay content than the surface horizons. Although, clay contents in teak plantation was higher, both land use types were not statistically different (P>0.05) implying that the land use types had no significant effect on clay content of the studied soils. However, the relatively higher clay content within the profile of teak plantation over that of arable farmland may be attributed to further weathering of the soil mineral fractions. [14] observed similar trend in a study of 30 year old teak plantation in which sand-size fractions weathered resulting to clay accumulation in Ahorizon and silt in subsurface horizons. Averagely, the silt/clay ratios were 0.35 and 0.43 respectively for arable farmland and teak plantation. These values inferred that the studied soils were highly weathered. According to [15], values below 0.75 indicates old age of soils, between 0.75 and 1.5 indicates moderate pedogenic weathering processes, while high values > 1.5 indicate recent pedogenic processes.

C. Chemical properties

The result of the chemical properties of the soils studied is shown in Table 3. The soil reaction was moderately to slightly acidic in both land use types studied. The result implied that the soil pH was influenced more by parent material, granite which weathered to produce acidic soils, rather than the influence of land use. The pH value ranged from 5.5 to 6.5 for arable farmland and 5.8 to 5.9 for teak plantation. However, [16] reported that slightly acidic nature of the soils of Minna could be attributed to low level of leaching of basic cations and these nutrients will be readily available to crop roots. Generally, the organic carbon content in soils decreased with the soil depth for each of land use studied. The higher organic carbon in the surface horizon was as a result of increased organic matter inputs and its decomposition as reported by [17], [18].

^{**}Roots: 0=null; 1=few; 3=some; 5=many, fine; m=medium; l=large

Table 2: Particle-size distribution in soils of the two land use types


Horizon		P	istribution in soi article Size (g k	Nitt/Clay	Textural	
	(em) =	Sand	SIII	Clay	Itatio	Class*
40	0.24		Arable Farmla	nd		
Ap Bil	0-24 24-54	794	90	116	0.77	SI
B(2	54-120	629	95	276	0.34	Sel
BCI	120-157	569	55	376	0.15	Se
BC2	157-206	509	105	386	0.27	Se
DUG	191-500	529	90	381	0.24	Se
An	0.10		Tenk Plantatio	m		
Ap	0-19	607	144	249	0.58	Scl
Bel	19-56	497	134	369	0.36	Sc
Bi2	56-103	417	144	439	0.33	C
BC	103-147	397	164	439	0.37	C
C	147-200	457	184	359	0.51	Se

^{*}sl=sandy loam; scl=sandy clay loam; sc=sandy clay; e=clay

While the lower organic carbon values in the underlying horizons might be attributed to decreased faunal activities with soil depth as suggested by [19], [18]. The decrease in the content of the organic carbon down the soil profile was an indication of the maturity of the profile developed on a very stable platform. Soil total N was very low irrespective of the land use studied (0.37 and 0.14 g kg for arable farm land and teak plantation respectively) and decreased down the soil depth similar to what was obtained for soil organic carbon. Organic matter is the sole source of N in the soil, accounting to between 90-98 % [20]. The organic carbon contents in both land use types were low and the inadequacy needs to be taken into consideration in managing these soils. Available P content of the soils was rated moderate for arable farmland and low for teak plantation, with mean values of 11 and 7 mg kg1 respectively. The lower value obtained for teak plantation relative to that of arable farmland might be attributed to higher nutrient utilization, thus, agreeing with [21] that trees depended on P for biomass production and teak immobilizes P thus depleting soil available P. The underlying horizons of both land use type recorded lower available P values which generally decreased with profiledepth, a trend with organic C (Table 3). This observation was also confirmed by [22]. Relatively low to moderate amounts of exchangeable bases were observed in some of the soils studied. However, irrespective of the land use system studied, the exchangeable basic cations in terms of abundance in the soil was in the orderCa> Mg > K. Higher values were obtained for arable farmland compared to the values for the teak plantation. The low values of exchangeable bases of these soils may be attributed to the nature of underlying rocks, high rainfall weathering intensities, leaching and lateral translocation of bases [23]. Also, [24] observed that dry land soils (formed from sedimentary rocks) generally have high levels of total Ca, reaching more than 5 % of the soil by weight and occupied 75 - 85 % of the CEC sites. The dominance of Ca on the exchange sites may also be attributed to Ca being the least easily lost from the soil exchange site [2]. The mean values for Exchangeable Acidity (Al and H) were generally low (< 1.0 cmol(+) kg⁻¹) in arable farmland and was observed to decreased with profile depth. However, higher values (1.80 cmol(*) kg-1) was observed in surface horizon of teak plantation which also decreased with profile depth. This is expected as teak plantation may have higher nutrient utilization, thus depleting the soil exchangeable bases [25]. The ECEC values of these soils were generally low. The low values of ECEC indicate low activity clay characteristics of kaolinite [26].

Pable 3: Some chemical properties of soils of the study site

Land use	Horizon	Depth	pH	Org. C	TN	Av. P	Exch	angeable o	cations	Exch.	ECEC
		(cm)	(CaCl ₁) 1:2,5	(g kg ⁻¹)	(g kg ⁻¹)	(mg kg	Cu ¹	Mg ³ *	K'	Acidity (H+Al)	
-						LE CONTRACTOR DE LA CON	4		(cmol(+) kg ⁻¹)		-
Arable Farmland	Ap	0-24	6.0	22.05	0.65	9	8.00	3.50	0.15	0.89	4.35
	Bil	24-54	5.6	22.05	0.61	14	8,00	4.00	0.15	0.76	5.72
	B12	54-120	5.5	15.44	0.37	10	6.40	3.10	0.46	0.71	6.69
	BCI	120-157	6.4	15.44	0.19	10	7.20	2.85	0.35	0.65	5.70
	BC2	157-206	6.5	8.82	0.05	13	10.20	4.28	0.03	0.63	6.31
		Menn = *SD =	6.0	16.76 ±5.53	0.37 ±0.26	11 ±2.17	7.96 ±1.42	3.55 ±0.60	0.23 ±0.17	0.73 ±0.10	5.75 ±0.89
Teak Plantation	Ар	0-19	5,9	19.30	0.30	8	2.76	0.38	0.05	1.80	13.86
	Bil	19-56	5.8	14.30	0.10	7	3.68	0.98	0.04	1.20	13.74
-	Bt2	56-103	5.8	9.30	0.10	6	3.90	1.76	0.05	1.16	13.74

BC	103-147	5.9	8.30	0.10						
C	147-200	5.9	7.10	0.10	7	3.84	1.06	0.03	1.36	12.14
	Mean = *SD =	5,9 ±0.05	11.66	0.14	7	4.06 3.65	1.48	0.02	1.20	13.41
THE !		20.00	±5.07	±0.09	±0.71	+0.51	+0.53	+0.01	±0.27	±1.67

IV. CONCLUSION

Soil organic carbon and pH are the main factors influencing the variations in exchangeable bases, total nitrogen, available phosphorus and ECEC of the studied land use system. The moderate soil contents of organic carbon, available Phosphorus and low total nitrogen and ECEC will have implications for sustainable crop production on these soils. The deficient quantity of some of these elements especially in the subsurface horizons indicate the necessity of conscientiously protecting the surface soils from becoming deficient in these elements. Effort must be geared towards improving the soil organic matter through practices such as; planting of cover crops, crop residues management, application of organic manure, avoidance of indiscriminate bush burning, etc. adoption of these practices will not only improve the chemical properties of the soils but also improve microbial retentioncapacities and water improvement of the soil. Full recommended rates of nitrogen and phosphorus from inorganic fertilizer may also be advantageous for boosting the fertility of the soil.

REFERENCES

- A. G. Ojanuga (2006). Agroecological Zones of Nigeria Manual. FAO/NSPFS, Federal Ministry of Agriculture and Rural Development, Abuja, Nigeria, 124 pp.
- B. A. Lawal, M. K. A. Adeboye, P.A. Tsado, M.G. Elebiyo. 121 andC. R. Nwajoku (2012). Properties, classification and agricultural potentials of lateritic soils of Minna in sub-humid agroecological zone, Nigeria. International Journal for Development and Sustainability, 1(3):903-911.
- A. M. Koojman, J. Jongejans and J. Sevink (2005). Parent 131 material effects on Mediterranean woodland ecosystem in NE Spain. Catena, 59:55 - 68.
- A. A. Amusan, A. K. Shitu, W. O. Makinde and O. Orewole (2006). Assessment of changes in selected soil properties under different land use in ObaferniAwolowoUniversity community, lle-He, Nigeria Electron J. Environ. Agric. Food Chem., 5:1174
- A. C. Odunze, G. Tarawal and J. Tanimu (2003). Effect of insitu grazing and stocking density of goats on soil management: a southern Guinea savanna of Nigeria experience. Nigerian Journal of Soil Research, 4:9 - 15.
- E. A. Olowolafe and J. E. Dung (2000). Soil derived from biotite-granites on the Jos Plateau, Nigeria: Their nutrient status and management for sustainable agriculture. Resources
 Conservation Recycling 21:89 – 99.
- FAO (2006). Guidelines for Soil Description. 4th edition. Food and Agriculture Organization of the United Nations. 97pp. [7]
- [8]
- Manual series No.12: 53pp
 E. O. McLean(1982). Soil pH and lime requirement. In: A.L. Page et al. (eds). Methods of soil analyses (No. 9, part 2), 199—224. Amer. Soc. of Agron., Soil Sci. Soc. Am; Inc. Madison, Wissonsin U.S.A. [9]
- I. E. Allison (1965). Organic carbon: In C.A. Black (ed). Methods of Soil Analysis Agron. 9 Amer. Soc. Agron. Madison Wispp 374 - 390

- [11] R.H. Bray and L.T. Kurtz(1945). Determination of total, organic and available forms of phosphorus in soils. Soil Sci., 59, 39 - 45.
- C. N. Egbuchua and B. O. Bosah (2011). Characterization of [12] some forest soils under teak (Tectonograndis) plantation in a humid forest region of Nigeria. International Journal of Science and Nature, 2 (3): 821-825.
- G.E. Akinbola, H. I. Anozie and J. C. Obi (2009). Classification and characterization of some pedons on basement complex in the forest environment of south-western Nigeria Nigerian Journal of Soil Science, 19 (1): 109-117
- L.Reitam (2001). Changes in the texture and exchange properties of skeletal quarry detritus under forest during thirty years. Proc. Acad. Sci. Biol. Ecol., 50:15-13.
- W. G. Sombroek andl. S. Zonneveld (1971). Ancient dune fields and fluviatile deposits in Rima-Sokoto River Basin (NW, Nigeria). Soil Survey Paper No. 5. Soil Survey Institute, Wageningen, The Netherlands, pp109.
- M. K. A. Adeboye, A. O. Osunde, M.I.S. Ezenwa, A. J. Odofin andA. Bala (2009). Evaluation of the fertility status and suitability of some soils for arable cropping in the southern Guinea savanna of Nigeria Nig. J. Soil Sci., 19(2):115 - 120.
- F. M. Groenendijk, L. M.Condron and W. C. Rijkse (2002). Effects of afforestation on organic carbon, nitrogen and sulphur concentrations. New Zealand Hill, New Zealand.
- A. M. Samndi and J. M. Jibrin (2012). Pedogenesis and classification of soils under Teak (TectonograndisLinn. f) plantation of various Ages in the southern Guinea savanna of Nigeria Asian Journal of Agricultural Sciences, 4(1): 16-25
- M. Browaldh (1995). The influence of trees on nitrogen dynamics in an agrisilvicultural system in Sweden Agroforest Syst., 30(3):301 - 313.
- M. M. Konnovora, T. Z. Mowakowskiand A. C. D. Newmann (1966). Soil organic matter, its nature, its roles in soil formation and soil fertility.Pergamon Press, New York.
- A. P. Aluko and J. A. Fagbenro (2001). The role of tree species [21] on land use systems in organic matter and nutrient availability in degraded ultisols of Onne, South-South-Nigeria. A paper presented at 26th Annual Conference of Soil Science Society of
- A. M. Samndi (2006). An evaluation of soil properties and development under Teak (Tectonagrandis) plantation of various ages in the southern Guinea savanna of Nigeria. Unpublished Ph.D Thesis Dissertation.Ahmadu Bello University, Zaria, Nigeria.
- B. Junge and A. Skowronek (2007). Genesis, properties, classification and assessment of soils in central Benin, West Africa. Geoderma, 139: 357-370.
- Y. Zhang, X. Zhuwen,J. Deming and J. Yong (2013). Soil exchangeable base cations along a chronosequence of Caraganamicrophilla plantation in a semi-and sandy land, China J. Arid Land, 5(1):42 - 50.
- S. Braise, C. C. Bergeron and D. Pare (1995). Changes in nutrient availability and forest floor characteristics in relation to stand age and forest composition in the North western Quebec. Forest Ecol. Manage., 76:181-189.
- T. Kparmwang, B.A. Raji, A.C. Odunze and V. O. Chude (2001). Properties, classification and agricultural potentials of Ustults and Tropepts on a sedimentary toposequence in Benue.Nig. J. Soil Res., 2:58 - 65.

AUTHOR'S PROFILE

TSADO, Philips Alkali

was been in Obadalla, Sliger Scale of Sligeria, S. Tech. Agric. (Soil Science) from Federal University of Technology, Minera, Sugar State, Singeria in 2000. M. Tech. (Scal Science) from Federal University of Technology in 2018 Ph.D Soil Chemistry University

He is currently a lecturer with the Department of Soil Science, Federal University of Technology, Minna, Nigeria, Invalved in learning both undergraduate and postgraduate and schemes courses. His second execution sees are phosphase mobilization in the presence of some selected organic wide in the southern Cuintes suvants Zone of Nigeris and Lies Seep placement technology demonstration in National Programme for Food Security in Niger State.

Memberships of professional body Sall Science Society of Nigeria (\$5511) International Union of Soil Science (IUSS)

Touto, P.A., Igure, C.A., Lawall, B.A., Ezerwa, M.I.S., Adehoye, M.X.A. and Exe. P.C. (2012). Desiribution of phosphorus along topologuence on an affined in Minna, Niger State J. Trop. Agric. Food, Env. Em. 11(1): 33

Toudo, P.A., Onunde, A. O., Ignes, C. A., Ezz, P. C. and Daniyan, E. (2012). Influence of organic acids on phosphate sorption and availability in an Alfinol of Nigerian Counce Savanna, Int. J. Agric, Rival Dev. 15(2):

Tsado, P. A., Lawel, B. A., Igwe, C. A., Adeboye, M. K. A., Odofin, A. J. and Adeliannibi, A. A. (2013). Effect of sources and levels of phosphorus on yield and quality of sugarcane in Southern Guinea Savanta Zone of Nigeria, Agric, Sci. Devr. 2(3): 25-27

LAWAL, Baba Abubakar

was born in Bida, Higer State, Higeria. B. Sc. Agriculture. 1989: M.Sc. Soil Science, 2011: Ph.DPetologyfin view) from UsmaniDurfolios

University Soliono, Nigeria. He workedos an AGRONOMIST and later headed the Research and Development Unit of the Nigerian

ngar Company, Bacita, Kwara State.

the is currently lecturing in the Department of Soil Science, Federal University of Technology, Minna Nigeria. His area of research interest in soil survey (mapping and classification) and agricultural land evaluation. Among his recent publications are:

2011 Chancerousen desification and agricultural potentials of soils in a representation in section Games servers of Nageria International James of Agricultural, Biotyments Science and Engineering, 7(5): 1 - 5.

Laval, B. A. Skielle, A.J., Adeboys, M.K.A. and Engineer M.L.S. (2):(2). fortunate of selected Fadama soils in Katcha Lucal Government Assa of yer State for armite cropping. Nigerical Journal of Soil Science, 13/2:

Land, B.A. Opmiga, A.G., Noma, S.S., Singh, A., Addreys, M.K.A. and Odelin. A.J. (2012) Prosperies, classification and agricultural Manufacts of the soils of lower Odelin river Scoolphints in Kwara Scate. ANTANAMINATION JOURNAL of Technological Research, 7: 25-31, 803-

McLanus in a member of Soil Science Society of Nigeria (\$53%) and Immunional Union of Soil Science (\$755).