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Abstract - In this study, an expression for the discriminant rule in the situation of two groups was derived. This was used to identify the
relative contributions of the subjects to the separation of the groups. Group dependent Fisher discriminant analysis was employed in
classifying students into various departments on the basis of their cumulative results for one year foundation programme (Preliminary
Degree Programme in a University of Technology). The discriminant scores for each department was predicted with probability of correct

classification of 0.796 and apparent error rate of 0.204.

Keyword - Linear Discriminant Coefficients, Classification Rules, Apparent Error Rate, Group Means, and multivariate.

1. INTRODUCTION

Discriminant analysis is an exploratory multivariate
procedure of determining variables and a reduced set of
functions called discriminants or discriminant functions.
Discriminants that are linear functions of the variables are
caled linear discriminant functions (LDF). The number of
functions required to maintain maximum separation for a
subset of the original variables is called the rank or
dimensionality of the separation. At the basis of observations
with known group membership, the training data, called
discriminant functions are constructed aiming at separating
the groups as much as possible. These discriminant functions
can then be used for classifying new observations to one of
the populations. Discriminant analysis is used in situations
where the groups are known a priori. For example, in
personnel management one may want to discriminate among
groups of professionals based upon a skills inventory. In
medicine one may want to discriminate among persons who
are at high risk or low risk for a specific disease. In a
community, the mayor may want to evaluate how far apart
several interest groups are on specific issues and to
characterize the groups. In industry, one may want to
determine when processes are in-control and out-of-control.
A multivariate technique closely associated with discriminant
analysis is classification analysis. Classification analysis is
concerned with the development of rules for allocating or
assigning observations to one or more groups. While one may
intuitively expect a good discriminant to also accurately
predict group membership for an observation, this may not be
the case. A classification rule usually requires more
knowledge about the parametric structure of the groups.
Because linear discriminant functions are often used to
develop classification rules, the goals of the two processes
tend to overlap and some authors use the term classification
analysisinstead of discriminant analysis. Because of the close
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association between the two procedures we treat them
together in this study.

The Fisher’s method for two populations leading to linear
discriminant functions was adopted to design a classification
rule for predicting which course/department a preliminary
degree student is most likely to be admitted into at the end of
the one year preparatory programme. The main objectives of
this study are to find a set of rules, based on the student’s
results in classifying them into the five departments of the
faculty, identify the relative contribution of the variables
(subjects) to separation of the groups, and evaluate how well
the rule performs in assigning a student to the correct
programme.

2LITERATURE REVIEW

Universities admissions processes often depend on the
ability to predict student success. However, the use of a test
to help determine admission has traditionally been
problematic and continues to be so. Fisher (1938) introduced
discriminant analysis as a statistical method for separating
two groups of populations. Rao (1948) extended this
multivariate technique to multiple populations.Charles and
June (1970) carried out a study to determine if a
differentiation or separation among students graduating,
withdrawing or failing could be identified. Adebayo and
Jolayemi (1998, 1999), applied thet statistic to investigate
how predictable the final year result would be using the first
year result or Grade Point Average (GPA) of some selected
University graduates.

It was cited in (Selingo & Brainard, 2001) that, the
chancellor of the University of California called for the end
of using testing for admissionsto college. This was not a new
call: a plethora of research has shown that standardized tests
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do not predict success equally well for al groups (Cleary,
Humphreys, Kendirick, & Wesman, 1975; Melnick, 1975;
Nettles, Thoeny, & Gosman, 1986; Tracey & Sedlacek, 1985)
and that standardized tests do not measure what they claim to
measure (Riehl, 1994; Sturm & Guinier, 2001). As an
aternative to standardized tests, Sturm and Guinier (2001)
suggested the use of multiple measures as a better way of
deciding entry into law school.

Often, colleges may rely on two tests as a means of using
multiple criteria, but if the two tests are highly correlated
with each other, there is needless duplication in measuring
the same aspect of a construct (Anastasi, 1982). Because the
use of standardized tests has been shown to be problematic,
multiple selection methods are being used to predict student
success (Ebmeir & Schmulbach, 1989). The use of using
multiple measures is called triangulation, the goal of whichis
to “strengthen the validity of the overal findings through
congruence and/or complementarity of the results of each
method” (Greene & McClintock, 1985, p. 524). This method
is used extensively in education for admissions (Markert &
Monke, 1990; McNabb, 1990) and involves using a variety of
techniques simultaneously to measure a student’s knowledge,
skills, and values (Ewell, 1987).

Colleges can benefit from combining cognitive and non
cognitive variables in predicting student academic success
(Young & Sowa, 1992). Because the essence of triangulation
is to measure the same construct in independent ways
(Greene & McClintock, 1985), the more non-related
information gathered, the better the prediction. Triangulation
can aso minimize or decrease the bias inherent in any
particular method by counterbalancing another method and
the biases inherent in the other methods (Mathison, 1988).
For instance, most researchers rely heavily on survey
research; however, the assumptions of survey research (e.g.,
the survey asked all the pertinent questions in a format the
respondent can understand) are usually never questioned as a
study is designed (Stage & Russell, 1992) which may lead to
incomplete or inaccurate conclusions.

In the California Community Colleges, the required
assessment process dictates the use of multiple measures in
placing students into courses. Though the use of atest as one
of the multiple measures is highly regulated, the use of
multiple measures is not — unless using another test. Because
of this, most multiple measures are chosen based on
anecdotal or gut reactions and rarely on statistical evidence. It
is the lack of research-based decisions for using multiple
measures that inspired this study.

3. MATERIALSAND METHODS

3.1 Derivation of Expressionsfor First choice and Second
choice and Discriminant Rules in the Setup of the
Preliminary Degree Admission.

The preliminary degree final scores of students that applied
to five departments of School of Engineering and
Engineering Technology data set, X , contains five courses.
Let us denote all the students that make first choice and

second choice by X; andX,, respectively. The
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corresponding linear combinationsarey = Xa, y; = X;a
andy, = X_a.
The within-group sum of squares satisfies the relation
T T T
nyfyf +ysHsys:awa
(3.1.1)
where H, and H,_ denote the appropriate centering

matrices of dimensions N, =N, =100 . Observe that

a'Wa=a"(X{H, X, +XIHX)a
(3.1.2)
And, hence, the matrix W can be written as:

W =X[H, X, +X/HX,
(3.1.3)
=H, X{H, X, +HXIHX,
=Nn;S; + NS
=100(S; +S,)
where S; and S, denote the empirical covariances w. r. t.

the f and s.
For the between-group sum of squares we have

a'Ba=n, (¥, - y)* +n,(¥, - y)’
(3.1.4)
wherey, Y, and Y, denote respectively the sample

meansy, Y, and Y. It followsthat

a'Ba=a'{n, (X, —X)(X, —X)" +n,(X, - X)(X,~X)"}a
v;/here X, X; and X, denote respectively the column
vectors of sample means of X, X, and X,. Hence, we
obtain
B=n (X, —X)(X; =X)" +n, (X, -X)(X, - X)"
(3.1.5)
=100{ (X; = X)(X; =X)" + (X, —X)(X, - X)"}

X, +X X, +X
~100{ (X, - fzxsxx— fZXS)T
X, +X X, +X
HR - fzxsxz— fZXS)T}

100

= T{ (X =X)(X _is)T +(X =X, ) (X — X )"}
= 25(X, - X)(X; = X)"
The vector & maximizing the ratio a' Ba/ a'Wa can be

calculated as the eigenvector of W ™B corresponding to the
largest eigenvalue. It is easy to see that the matrix W™'B
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can have at most one none zero eigenvalue sincerank B <1.
The nonzero eigenvalues A, can be calculated as

5
A= 2 =trW?B=trW25(X, —X)(X, —X,)"

=1

(3.1.6)
= 25tr (X, —X)"W (X, X))
= 25(X, = X)W (X, —X)
From the equation (3.1.6)

WHBW ™ (X, —X) = 25(X, —X.)"W (X, —X )W (X, —X.)
In the context of the pre-degree result data set, the “between-
group-sum of squares” is defined as

100{(y, -y)*+ (V.- ¥)’} =a'Ba
for some matrix B. Here, Y, and Y denote the means for

the first choice and second choice andy = J/Z(Vf + 75) .

The “within-group-sum of squares” is

lZ{(yf yf}+Z CARSAS

with (Y;), = a’ X and (Yy),
fori=1, 2, ..., 100

It follows that the eigenvector of W ™'B corresponding to the
largest eigenvalueis a=W (X, = X.).

The resulting discriminant rule consists of alocating student
to the first choice programme if

R ={x:(X, - X)'W*(x-X)>0 (317

and of alocating student to the second choice programme
when the oppositeistrue.
Considering ABE programme and analyse, we get

a=(-0.066, 0.000, 0.171, 0.304, 0.380)"

Thus, substituting these values of the linear discriminant
coefficients, in equation (3.1.7), we get:

=a'Wa

=a' X100

To test the Hypothesis
Hot sy —

Using F-transformation of Hotelling’s T?, as our test
statistic.

F=(n +n,—p-)T?/{(n, +n,-2)p}

/n; +n)D? and D? is Mahalancbis
distancewith pand (N, +n,— p—1)df.

Reject H, if F, >F

At the 0.05 level of significance, we rejected the hypothesis
of equality of group means. This implies that there exist
significant differences between the group means.

=0 against 4, —pu,#0

where T2 =(n,n,

p, ng +ng—p-1, I-a

3.2.2 Equality of Covariance Matrices
To test the Hypothesis
Hy:2; —2.=0 against >, ->_#0
The test statistic is Box’s M test approximation to W using
2

ay”.
Kk
W = (n-k)Log|§-> v.Log|S|
i=1

where Szivﬁ/(n—k)

This approximation is reasonable provided N, > 20 and both

p and k are less than 6. Multiplying W by p =1—C where
_ 2p*+3p-1 { k1 1 }
T6(p+Dk-)| SV, n-k

the quantity

X?=(1-C)W = -2pLogM —— »?(h)

where h= p(p+1)(k-1)/2.

Reject H, if X*> X7 _(h)

At the 0.05 level of significance, as expected, we accepted

the hypothesis of equality of variance-covariance matrices.
This analysis shows that the equality of variance assumption

R, = —0.066(Eng) + 0.000(Maths) + 0.171(Phy) + 0. 304(6?%‘8:'115" LRAling's T satisicsistenable

Classification Rules

R, =—0.066(46.20)+o.000(48.00)+o.171(5o.40)+o.3045O 61?(%380 ggsggypation rule for classifying an

R, =43

3.2 Test of significance with Multivariate Data
Several tests of significance are useful in conjunction with a

discriminant function analysis. In this study, the T2 test for
equality of group means and Box’s M test approximation to

W using ;{2 were employed for each of the five courses
(English Language, Mathematics, Physic, Chemistry, and
Agricultural Science).

321 Equality of Group Means
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|nt one or the other population in the two

group case requires some new notation. First, we let g,(Y)
and 0,(y) represent the probability density functions
(pdfs) associated with the random vector X for
populations X, and X, respectively. Welet p, and p,be
the prior probabilities that y is a member of P, and p,,
respectively, where p, + P, =1. And, we let C, = C(2|1)
and C, =C(1|2) represent the misclassification cost of

assigning an observation from X_ to X;, and from X,
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to X
0, (Y) are known, the total probability of misclassification

respectively. Then, assuming the pdfs g,(y) and

s

(TPM) is equal top, times the probability of
assigning an observation to X, given that it is from
X, P=C(2|1), plus P, times the probability that
an observation is classified into X, given that it is from
X,, P= C(1|2) . Hence,

TPM = p,P(2[1) + p,P(1]2)
(33.1)
The optimal error rate (OER) isthe error rate that minimizes

theTPM . Taking costs into account, the average or
expected cost of misclassification is defined as

ECM = p,P(2[DC(2[1) + p,P(12)C(1]2)

332

A reasonable classification rule is to make the ECM as small
as possible (Neil, 2002). In practice costs of misclassification
are usually unknown.

Assuming that Y > Y, the classification rule becomes
Assignstudentto X, if T? > R,

Assign studentto X_ if T? <R,
3.4 Evaluating Classification Rules

Given a classification rule and g;(y) and Q,(y) are

known (dong with their associated population parameters),
the TPM expression given in (3.3.1) may be evaluated to
obtain the actual error rate (AER) . Because the specification

of g,(y) and g,(Y) isseldom known one generally cannot

obtain the AER, but must be satisfied with an estimate. The
simplest nonparametric method is to apply the classification
rule to the sample and to generate a classification table. This
is called the substitution or resubstitution method.

Then, the observed error rate or apparent error
rate (APER) is defined as the ratio of the total number of
misclassified observations to the total

APER = Mo + Moermor. (34.1)
n+n

3.5 Application
3.5.1 Datacollection

The data used for this study is the final score of preliminary
degree students of Centre for Preliminary and Extramural
Studies (CPES) that applied to school of Engineering and
Engineering Technology, obtained from the average of the
scores of the 1% and 2™ semesters 2011/ 2012 academic
session in a university of technology. There are five courses
offered by every preliminary degree student and these courses
were used in constructing the discriminant rules. These
include: English language, Mathematics, Physics,
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Chemigtry, and Agricultural Science. The school of
Engineering and Engineering Technology has five
departments  namely:  Agricultural and  Bioresources
Engineering (ABE), Chemical Engineering (CHEME), Civil
Engineering (CIE), Electrical/Electronic Engineering (EEE),
and Mechanical Engineering (MECE)

3.5.2 Method of analysis

The two group Fisher’s linear discriminant rule (Fisher,
1936) based on the maximization of the ratio of the between

(B) to the within variance (W) of a projection a' X isused
in this study. Every student makes two choices of
departments/courses  for admission. The first choice
(department) is the first group and the second choice (defer
from first department) is the second group.

Since the discriminant analysis technique, essentialy is used
to distinguish between two or more groups using
characteristics on which the groups are expected to differ.
These groups are expected to be statistically different from
each other. Thisis achieved by forming a linear combination
of the discriminating variables (independent variables) the
coefficients are estimated so that they are in the best
separation between the groups. Normally the first group gives
the best discriminating coefficients. However, five different
parameters arre used to adjudge which function gives the best
discriminating coefficient, these are: wilks lambda,
eigenvalue, canonical correlation, p-value and percentage
variation.

4 RESULTSAND DISCUSSIONS

The data were analyzed using R software. The function used
to carry out linear discriminant analysis is available in the
MASS library and the results are shown in tables 4.1 to 4.3
below.

Table4.1: Prior Probabilitiesof Groups

Programme X (First Choice) X (Second Choice)
ABE 0546 0.454
CHME 0.523 0477
CIE 0500 0.500
EEE 0.613 0.387
MECE 0540 0.460

Table 4.1 show that prior probabilities for al the departments
are higher for the first choice courses as compared to the
second choice courses except for civil engineering in which
they are equal.

Table4.2: Group Means

Programme | English | Mathem | Physics | Chemi | Agricultural
atics stry science
ABE 46.20 48.00 50.40 51.60 56.86
CHEME 51.69 62.83 52.35 55.06 51.09
CIE 56.00 52.70 56.10 52.10 45.20
EEE 50.55 54.35 53.20 54.15 51.65
MECE 57.25 56.87 59.37 65.37 49.75

Table 4.2 show the predicted group means for the five
subjects and for each department. The group means of
chemical engineering and electricall and electronic
engineering are higher for the five subjects as compared to
the other courses.
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Table4.3: Estimated Coefficients of Linear
Discriminants

ABE CHEME CIE EEE MECE
F2 F1 F2 Fl F2 Fl )] F1 F2
-0.103 -0.299 | -0240 0312 | -0.007 0402 | -0737 0.000 | 0.000
0.046 0836 (0522 0536 [ 0.029 1.006 | 0408 0384 | 1173
0.130 0390 0.153 0618 0.165 1422 | 0629 0343 1133
0.074 0734 | 0371 0214 0.103 | 0.063 0490 | 0.809
0227 -0.808 | -0.692 0314 | 0033 |-0615 |-0394 |-0059 |-1961

6220 | 0846 [0421 |-0038 7514 [ 3767 2841 | 9.403
60.06 | 9994 |[7159 |- | 9086 [ 9918 9228 | 3596
0552 | 0667 |0344 |1162 0736 |o0996 |0888 |0983 |0934
0251 | 0487|0338 | 9371 Jo203 [0032 |0072 |0234 |0259
4283|2055 | 1760 [ 0939 2226|3279 | 1327 | 1106 | 4030
0055 | 0002 |0044 ??3; 0130 |0026 |0059 |0003 |0003
0.053

Table 4.3 is the estimated discriminant function coefficients
for the departments, identifying the relative contribution of
the subjects to separation of the groups. ABE department
indicates that physics, chemistry, and agricultural science
have greater contribution to the discriminant function.
Mathematics has zero contribution and English which has
negative contribution. This may be due to the weak academic
background of the students in English and mathematics.
CHEME and EEE department show that English and
agriculture science contributed negatively to the prediction of
prospective students for chemical and electrical/electronic
engineering department. From the functions of CIE and
MECE departments, physics has the highest contribution to
the discriminating process of the function,of CIE and MECE
departments, physics has the highest contribution to the
discriminating process of the function, with mathematics and
English in that order. Chemistry and agricultural science have
negative contributions to these departments.

It could also be observed that the discriminating power is
better for the first choice candidates for civil engineering and
electrical  engineering  departments with  mechanical
engineering having the lowest. For the second choice,
electrical engineering aso has better discriminating power
while chemical engineering has the lowest discriminating
power.

Table 4.4: Assignment Rules

Programme Assign candidateto | Assign candidate
X, if to X, if
A>R, A <R
ABE R, =43 R, =43
CHEME
CIE R, =68 R, =68
EEE _ _
MECE R, =61 R, =61
R, =80 R, =80
R =71 R =71

APER = 0.204. Probability of Correct Classification = 80%.
Table 4.4 gives the assignment rules for the programmes. It
shows that ABE would admit first choice with at least 43
discriminant score, CHEME would admits first choice with at
least 68 discriminant score, CIE requires first choice with at
least 61 discriminant score, EEE requires at least 80
discriminant score for first choice, and MECE admits first
choice with at least 68 discriminant score.
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Evaluating the classification rules, there is misclassification
of 39 students into second choice departments and 63
students into first choice departments. The apparent

probability of error (APER) is: (39+ 63)/500 = 20.4%.

Hence, if a new student gets admission, he will be correctly
classified with probability approximately 80%.

CONCLUSION

The discriminant analysis in which students’ admission into
programmes of study is characterized by means of
discriminant rule was designed for each programme. Among
the 500 Pre-Degree students, only 400 students are apparently
classified correctly according to the first and second choices
of year one degree programmes. The remaining 100 students
are misclassified into year one degree programmes. This
gives the proportion of correct classification rate to be 0.796
and apparent error rate of 0.204.
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