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Abstract ; oty
The FP-tree algorithm is currently one of the fastest approaches to frequent item set mining. Studies 1,

shown that pattern-growth method is one of the most efﬁcient.methods for frequent pattern mining, It jg
a prefix tree representation of the given database of transactions (FP-tree). and can save substantia] amoungg
memory for storing the database. The basic idea of the FP-growth algorithm can be described as g reCUrs'Of
elimination scheme which is usually achieved in the preprocessing step by deleting all items from ;Ze
transactions that are not frequent. In this study, a simple framework for mining frequent pattern is presente e e
FP-tree structure which is an extended prefix-tree structure for mining frequent pattern without cap did:&h
generation, and less cost for better understanding of the concept for inexperienced data analysts anq Othee
organizations interested in association rule mining. )
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1. Introduction

Data mining is the process of discovering interesting knowledge from large amounts of data stored in databages
data warehouses, or other information repositories. Data mining is an emerging field that has gained attentiop ir;
research and industry and has recently also attracted considerable attention from database practitioners
researchers and data analysts. It has application in many fields such as marketing, financial forecasts ané
decision support (Jiawei, Micheline, and Jian, 2011). Data-mining algorithms and visualization tools are being
used to find important patterns in data and to create useful forecasts. This technology is being applied in virtually
all business sections including banking, telecommunication, manufacturing, marketing, and e-commerce (Zhao

Hui and Jamie, 2005).

In performing data mining tasks such as association, clustering, classification/prediction and outlier detection,
various methods and techniques are used for knowledge discovery from databases. Association rule is one of the
important tasks of data mining which identifies interesting association and correlation among large data sets
(Intan and Rolly, 2005). Mining frequent patterns is an important aspect in association rule mining. The FP-tree
algorithm is currently one of the fastest approaches to frequent item set mining. FP-Tree was first proposed by
Han, Pei, and Yin (2000). FP-Tree is a compact representation of transaction database that contains frequency

information of all relevant patterns in a dataset.

Association rule mining has many important applications in life. An association rule is of the form X =>Y, and
each rule has two measurements: support and confidence. The association rule mining problem is to find rules
that satisfy user-specified minimum support and minimum confidence. It mainly includes two steps: finding all
frequent patterns; and generating association rules through the frequent patterns.

The identification of sets of items, products, symptoms, characteristics, and so forth, which often occur together
in a given database, can be seen as one of the most basic tasks in Data Mining (Intan and Rolly, 2005).

Let I = (I3, I....Irx) be a set of item. Let D be a set of database transactions where each transaction T is @
nonempty item set such that T < I. Each transaction has an identifier, called a TID. Let 4 be a set of items. A
transaction T is said to contain & if A S T. An association rule is of the form 4— B, where
Acl Bcl, A#0, B=0 and ANE = 0. The rule A~ B holds in the transaction set D with support S,
where s is the percentage of transactions in D that contain A U B (i.e., the union of sets A and B). This is taken 0
be the probability, P{A U B). The rule A — B has confidence ¢ in the transaction set D, where ¢ is the
percentage of transactions in D containing A that also contain B. This is taken to be the conditional probability;
P(B\A). Thatis:

support (A— B) =P(AUB). 1

Cofidence (A— B) = P(B\A). -
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Rules that satisfy both a minimum support threshold (min sup) and a minimum confidence threshold
(min conf ) are called strong (Jiawei ef al, 2011). By convention, we write support and confidence values so as
to occur between 0% and }00%, rather than 0 to 1.0 (Jiawei er al, 201 1). A set of items is referred to as an item
set. An itemset that contains k items is a k-itemset. The set (computer, antivirus software) is a 2-itemset. The
occurrence frequency of an itemset is the number of transactions that contain the item set. This is also known,

simply, as the frequency, support count, or count of the item set. The set of frequent -item sets is commonly
denoted by L. From equation (1) it follows that:

) 4 »B) = P(B\4) = SEPOTT(AUB) _ suppor t-coum (AuD)
Confidence @ ) \4) support (A) support -count {A) @)

To define support and confidence more formally, let the total number of transactions be N. Support of X is the
number of times it appear in the database divided by N and support of X and ¥ together is the number of times
they appear together divided by . Therefore, using P(X) to mean probability of X in the database, we have:

{Number of times X cppears)

= = P(X) @

Support oy) = (Number of times Xt::d!’appeur together) = P(XNY) )

Support () =

Confidence of X = ¥ is defined as the ratio of support of X and ¥ together with the support of X.

Confidence of (¥ — ¥) = ZEEZLEN . 20N _ pypy gy ©)

P(¥\X) is the probability of ¥ once X has taken place, it is therefore called conditional probability of ¥ given X.
The objectives of the study is to construct an algorithm for FP-Tree that will be used to mine frequent itemsets
without generating candidates, to reduce the search cost in frequent pattern-mining and apply the algorithm to a
set of alphabets. The outline of the paper is as follows: section 1 introduces the FP-Tree in comparism with other
methods. Section 2 is on review of related literature while section 3 discusses the FP-Tree Construction
methodology. Section 4 highlights the application of FP-Tree Algorithm in a transaction database. Section 5 is on
implementation with real datasets while section 6 is on conclusion.

2. Literature Review
Apriori algorithm is one of the oldest algorithms for association rule mining developed by Agrawal, Imielinski,
Swami (1993). The algorithm has received a great deal of attention since it’s introduction, many works has been

done to improve the algorithm. The apriori algorithm is resource intensive for large databases that have large set
of frequent items.

The FP-Tree was introduced to handle the lapses in apriori algorithm. Recent studies show that pattern-growth
method is one of the most efficient methods for frequent pattern mining (Agarwal, Aggarwal, and Prasad, 2001a;
Agarwal, Aggarwal, and Prasad, 2001b; Agrawal and Srikant, 1994; Bayardo, 1994; Burdick, 2001; Han and
Pei, 2001; Han, Pei, and Yin, 2000; and Pei, Han, Lu, Nishio, and Shiwei Tang, 2001). As a divide-and-conquer
method, this method partitions (projects) the database into partitions recursively, but does not generate candidate
sets. Efficiency can be achieved in mining with FP-tree using three techniques (Han, Pei, and Yin, 2000).

A performance study shows that the FP-tree method is efficient and scalable for mining both long and short
frequent patterns, and is about an order of magnitude faster than the apriori algorithm and also faster than some
recently reported new frequent pattern mining methods such as CHARM and Tree Projection methods (Jaiwei et
al, 2011).

This algorithm (FP-tree) mines frequent pattern without candidate generation. It uses an approach that is
different from that used in Apriori algorithm.

A performance evaluation carried out by Han, et al (2000) on a number of different algorithms for association
mining which include Apriori, CHARM, FP-Tree algorithm revealed that:
1) FP-Tree method was usually better than the best implementation of the Apriori algorithm
2) CHARM was usually better than Apriori and in some cases CHARM was better than FP-tree method
3) Apriori was generally better than other algorithms if the support required was high since high support
leads to a smaller number of frequent items which suits the Apriori algorithm
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Figure 1: Transaction database and Frequency table sorted in ascending order according to their frequency
support
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Figure 2: FP-Tree for the reduced Transaction database (Main FP-Tree)

The FP-tree in figure 2 was constructed from the (reduced) database shown in figure 1 on the right. After the
deletion of the infrequent items from the transaction database, the database is turned into an FP-tree as shown in
figure 2. Also in figure 2 above, each path represents a set of transactions that share the same prefix; each node
corresponds to one item, and all nodes referring to the same item are linked together in a list, so that all
transactions containing a specific item can easily be found and counted by traversing this list. The list can be
accessed through a head element, which also states the total number of occurrences of the item in the database.

4.1 Mining Frequent Items

To mine the frequent pattern from FP-tree start from the lowest level of the FP-tree (as an initial suffix pattern),
construct its conditional pattern base (a “sub-database,” which consists of the set of prefix paths in the FP-tree
co-occurring with the suffix pattern), then construct its (conditional) FP-tree, and perform mining recursively on
the tree. The pattern growth is achieved by the concatenation of the suffix pattern with the frequent patterns
generated from a conditional FP-tree.
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Figure 5: Generated FP-Tree after deletion of node e from the conditional FP-Tree in figure 4

The FP-growth method transforms the problem of finding long frequent patterns into searching for shorter ones
in much smaller conditional databases recursively and then concatenating the suffix. It uses the least frequent
items as a suffix, offering good selectivity. The method substantially reduces the search costs. When the database
is large, it is sometimes unrealistic to construct a main memory based FP-tree. An interesting alternative is to
first partition the database into a set of projected databases, and then construct an FP-tree and mine it in each

projected database. This process can be recursively applied to any projected database if its FP-tree still cannot fit
in main memory.

54 Implementation with Real Datasets

In order to implement the FP-Tree algorithm the standard benchmark datasets from the UCI Machine Learning
Repository termed Supermarket was used in Weka Environment. The analysis was performed in comparism with
apriori algorithm with the real supermarket dataset, it was observed that the FP-tree algorithm is faster and more
effective than the apriori algorithm in mining association rule. All reports of the iterations and number of rules
generated are as shown in Figure 7 and figure 8. The graph in figure 9 shows that the FP-Tree outperforms the
apriori algorithm as the number of iteration performed in finding frequent pattern is less and less time was also
used to complete the iterations.

| === Run informatica me=
|

Scheme: weka.2ssociations.FEGrewth -P 2 -1 -1 -K 10 ~T 0 -C 0.9 =D 0.05 -0 1,0 =¥ 0.1
Relation: superzarket

|Instances: 4827

|aceributes: 217

| (113t of artributes critted]

lv-— Associator zodel (full training set) m==

|

| FPGrowth fcund 16 rules {displaying top 10)

|

| . [fruitst, frozan foodss=t, biscuitsst, totalshigh]: 788 ==> [bread and cake=t]: 723 <conf:{0.92)> 1ift:{1.27) lev:(0.03) coav:{3.35)

. [fruitst, baking needsst, biscuits=t, totzl=highj: 760 ==> {bread and cakest]: €96 <conf:{0.92)> lifr:(1.27) lev:{0.03) conv:(3.28)

. [fruitet, baking needsst, frozen foods=t, totalshigh]: 770 ==> [bread and cakest]: 705 <conf:{0.92)> 1ift:{1.27) lav:{0.03) conv:{3.27)
fraitst, vegetablesst, biscuits=t, total=high]: £15 ==> [bread and cake=t]: 746 <conf:{0.92)> 11fr:{1.27) lev:{0.03) coav:(3.28)
fruiter, perty snack focdsst, total=high]: 854 =m=> [bread and cakest]: 779 <conf:{0.91)> 11fr:{1.27) lev:{0.04) coav:(3.15)

. [vegetzblesst, frozen fcods=t, biscuits=t, totalehigh]: 797 ==> [bread and cakest]: 725 <coaf:{0.51)> 14fr:{1.26) lev:{0.03) conv:(3.0¢)
. [vegetables=t, baking needssc, biscuitsst, total=high]: 772 ==> [bread and cakest]: 701 <conf:{0.91)> 11f2:{1.26) lev:{(0.03) coav:{3.01}
{fruitst, biscuits=t, totel=high]: 354 ==> (bread and cake=t]: €66 <con;(0.31)> 11ft:(1.26) lev:{0.04) conv:{3)

[fruit=t, vegetables=t, frozen Ioods=t, totalshigh]: £34 ==> [bread and cake=t]: 757 <conf:{0.81)> 1ifr:{1.2€) lev:(0.03) coav:(3)

. [fruit=t, frozen foods=t, total=high]: 969 ==> [bread and ceke=t]: 877 <conf:{0.91)> 1ift:{1.26) lev:{0.04) conv:{(2.92)

W N e

|
|
i
|

-
D W@

|

yFigure 7: Report of the FP-Tree algorithm
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Atcributes: 217
[list of attributes omitted]
=== Associator model (full training set) ===

Apricri

Minirux support: 0.15 {694 instances)
N¥inipum wetric <confidenced: 0.9
Nurber of cycles performed: 17

Generated sets of large itemsecs:
Size of set of large itemsets L{1): 44
Size of set of large itemsets L{2): 360
Size of zet of large itemsets L{3): 910
Size of set of large itemsets L{4): 633
Size of set of large itemsets L{5): 10§
Size of set of large itemsets L{6): 1
Best rules found:
p %
2.
3.
4.
S.

s.
7.

biscuits=t frozen foods=t fruit=t totalshigh 788 ==> bread and cake=t 723 conf: (0.92)
baking needs=t biscuits=t fruit=t total=high 760 ==> bread and cakest §36 conf: (0.92)
baking needs=t frozen Ioods=t fruitst totalshigh 770 ==> bread and cake=t 705 coni: (0.92)
biscuits=t fruit=t vegetables=t total=high 815 ==> bread and cake=t 746  conf: {0.82)

party snack fcods=t fruitet total=high 854 ==> bread and cake=t 779 conf: {0.91)
biscuits=t frozen foods=t vegetables=t total=high 737 ==> bread and cakest 725 conf: {0.91)
baking needs=t biscuitsst vegetzbles=t total=high 772 ==> breed and cake=t 701 conf: (0.91)
€. biscuits=t fruit=t total=high 354 ==> bread and cakest 86§ conf: (0.91)

8. frozen Zoodset fruitst vegetableser total=high 834 ==> bread and cakest 757 conf: {0.91)
10. Irozen foods=t Iruiv=t totzl=shigh 963 ==> bread and cake=t 877  conf:({0.31)

Figure 8: Report of the Apriori Algorithm

e FP-TrEE e ADTIOC

29

17

/s

Reration Time in Secs

Figure 9: No of Iteration versus time taken to complete the iterations

6. Conclusion

FP-tree algorithm directly mines frequent item sets without generating candidates. By gathering Sufﬁd,em
statistics into a suitable data structure (called an FP tree), all the frequent patterns are' generated without goins
back to the database. Only two passes through the database that are required to generate the FP Tree, and from
the FP Tree, all frequent patterns are generated. The FP-tr £

A to data
s : ee encourages a divide and conquer approach
mining. The FP-Tree is a compressed representation of the database 5 e 4 -

The FP-growth method transforms the problem of finding long frequent patterns into searching for shorter ones

in much smaller conditional databases recursively and th frequent
items as a suffix, offering good selectivity. The metho,
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regarded as one of the most efficient methods for frequent pattern mining. The algorithm of the FP-Tree and its

application is hereby simplified for better understanding by anyone interested in data mining that will want to
understand the concept of this method.
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