Computer Engineering and Intelligent Systems —
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) \\Sﬁﬂg
Vol.5, No.12, 2014 HSiE

Algorithmic Framework for Frequent Pattern Mining wig,
FP-Tree

Georgina N. Obunadike'®® Audu Isah® Arthur 'Ume'h3 H. C. Inyiamah*
1. Department of Mathematical Sciences and IT, Fedeyal U_mversny, Dutsm-ma,_Katsina State
2. Department of Mathematics and Statistics, Federal University o_f Technology, Minna, Niger St
3. Department of Information and Media Technology, Fefiera'l l.vaers‘lty of Technology, Minna, Niger g
4. Department of Computer Electronics, NNamdi Azikiwe University, Awka, Anambra Stae Aie
*Email: nkoliobunadike@yahoo.com

Abstract ; oty
The FP-tree algorithm is currently one of the fastest approaches to frequent item set mining. Studies 1,

shown that pattern-growth method is one of the most efﬁcient.methods for frequent pattern mining, It jg
a prefix tree representation of the given database of transactions (FP-tree). and can save substantia] amoungg
memory for storing the database. The basic idea of the FP-growth algorithm can be described as g reCUrs'Of
elimination scheme which is usually achieved in the preprocessing step by deleting all items from ;Ze
transactions that are not frequent. In this study, a simple framework for mining frequent pattern is presente e e
FP-tree structure which is an extended prefix-tree structure for mining frequent pattern without cap did:&h
generation, and less cost for better understanding of the concept for inexperienced data analysts anq Othee
organizations interested in association rule mining.)
Keywords: Association Rule, Frequent Pattern Mining, Apriori Algorithm, FP-tree

ave 3180
baseq o,

1. Introduction

Data mining is the process of discovering interesting knowledge from large amounts of data stored in databages
data warehouses, or other information repositories. Data mining is an emerging field that has gained attentiop ir;
research and industry and has recently also attracted considerable attention from database practitioners
researchers and data analysts. It has application in many fields such as marketing, financial forecasts ané
decision support (Jiawei, Micheline, and Jian, 2011). Data-mining algorithms and visualization tools are being
used to find important patterns in data and to create useful forecasts. This technology is being applied in virtually
all business sections including banking, telecommunication, manufacturing, marketing, and e-commerce (Zhao

Hui and Jamie, 2005).

In performing data mining tasks such as association, clustering, classification/prediction and outlier detection,
various methods and techniques are used for knowledge discovery from databases. Association rule is one of the
important tasks of data mining which identifies interesting association and correlation among large data sets
(Intan and Rolly, 2005). Mining frequent patterns is an important aspect in association rule mining. The FP-tree
algorithm is currently one of the fastest approaches to frequent item set mining. FP-Tree was first proposed by
Han, Pei, and Yin (2000). FP-Tree is a compact representation of transaction database that contains frequency

information of all relevant patterns in a dataset.

Association rule mining has many important applications in life. An association rule is of the form X =>Y, and
each rule has two measurements: support and confidence. The association rule mining problem is to find rules
that satisfy user-specified minimum support and minimum confidence. It mainly includes two steps: finding all
frequent patterns; and generating association rules through the frequent patterns.

The identification of sets of items, products, symptoms, characteristics, and so forth, which often occur together
in a given database, can be seen as one of the most basic tasks in Data Mining (Intan and Rolly, 2005).

Let I = (I3, I....Irx) be a set of item. Let D be a set of database transactions where each transaction T is @
nonempty item set such that T < I. Each transaction has an identifier, called a TID. Let 4 be a set of items. A
transaction T is said to contain & if A S T. An association rule is of the form 4— B, where
Acl Bcl, A#0, B=0 and ANE = 0. The rule A~ B holds in the transaction set D with support S,
where s is the percentage of transactions in D that contain A U B (i.e., the union of sets A and B). This is taken 0
be the probability, P{A U B). The rule A — B has confidence ¢ in the transaction set D, where ¢ is the
percentage of transactions in D containing A that also contain B. This is taken to be the conditional probability;
P(B\A). Thatis:

support (A— B) =P(AUB). 1

Cofidence (A— B) = P(B\A). -

18

Computer Engincering and Intelligent Systems www.iiste.org
[SSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

wwwiiste.org
JiTi
Vol.5, No.12,2014 II E

Rules that satisfy both a minimum support threshold (min sup) and a minimum confidence threshold
(min conf) are called strong (Jiawei ef al, 2011). By convention, we write support and confidence values so as
to occur between 0% and }00%, rather than 0 to 1.0 (Jiawei er al, 201 1). A set of items is referred to as an item
set. An itemset that contains k items is a k-itemset. The set (computer, antivirus software) is a 2-itemset. The
occurrence frequency of an itemset is the number of transactions that contain the item set. This is also known,

simply, as the frequency, support count, or count of the item set. The set of frequent -item sets is commonly
denoted by L. From equation (1) it follows that:

) 4 »B) = P(B\4) = SEPOTT(AUB) _ suppor t-coum (AuD)
Confidence @) \4) support (A) support -count {A) @)

To define support and confidence more formally, let the total number of transactions be N. Support of X is the
number of times it appear in the database divided by N and support of X and ¥ together is the number of times
they appear together divided by . Therefore, using P(X) to mean probability of X in the database, we have:

{Number of times X cppears)

= = P(X) @

Support oy) = (Number of times Xt::d!’appeur together) = P(XNY))

Support () =

Confidence of X = ¥ is defined as the ratio of support of X and ¥ together with the support of X.

Confidence of (¥ — ¥) = ZEEZLEN . 20N _ pypy gy ©)

P(¥\X) is the probability of ¥ once X has taken place, it is therefore called conditional probability of ¥ given X.
The objectives of the study is to construct an algorithm for FP-Tree that will be used to mine frequent itemsets
without generating candidates, to reduce the search cost in frequent pattern-mining and apply the algorithm to a
set of alphabets. The outline of the paper is as follows: section 1 introduces the FP-Tree in comparism with other
methods. Section 2 is on review of related literature while section 3 discusses the FP-Tree Construction
methodology. Section 4 highlights the application of FP-Tree Algorithm in a transaction database. Section 5 is on
implementation with real datasets while section 6 is on conclusion.

2. Literature Review
Apriori algorithm is one of the oldest algorithms for association rule mining developed by Agrawal, Imielinski,
Swami (1993). The algorithm has received a great deal of attention since it’s introduction, many works has been

done to improve the algorithm. The apriori algorithm is resource intensive for large databases that have large set
of frequent items.

The FP-Tree was introduced to handle the lapses in apriori algorithm. Recent studies show that pattern-growth
method is one of the most efficient methods for frequent pattern mining (Agarwal, Aggarwal, and Prasad, 2001a;
Agarwal, Aggarwal, and Prasad, 2001b; Agrawal and Srikant, 1994; Bayardo, 1994; Burdick, 2001; Han and
Pei, 2001; Han, Pei, and Yin, 2000; and Pei, Han, Lu, Nishio, and Shiwei Tang, 2001). As a divide-and-conquer
method, this method partitions (projects) the database into partitions recursively, but does not generate candidate
sets. Efficiency can be achieved in mining with FP-tree using three techniques (Han, Pei, and Yin, 2000).

A performance study shows that the FP-tree method is efficient and scalable for mining both long and short
frequent patterns, and is about an order of magnitude faster than the apriori algorithm and also faster than some
recently reported new frequent pattern mining methods such as CHARM and Tree Projection methods (Jaiwei et
al, 2011).

This algorithm (FP-tree) mines frequent pattern without candidate generation. It uses an approach that is
different from that used in Apriori algorithm.

A performance evaluation carried out by Han, et al (2000) on a number of different algorithms for association
mining which include Apriori, CHARM, FP-Tree algorithm revealed that:
1) FP-Tree method was usually better than the best implementation of the Apriori algorithm
2) CHARM was usually better than Apriori and in some cases CHARM was better than FP-tree method
3) Apriori was generally better than other algorithms if the support required was high since high support
leads to a smaller number of frequent items which suits the Apriori algorithm

19

Wy

Wi
. stems "
Compusz;lng(Papef) IsSN 22 HSIE
SN 222 large and none of the algor;
Vol 5, No 12 o per of fre uent items became 1arS gorlthms Were abje
the et al, 2011) to
e lﬂwt;ZFgracefull (Jiawei et a5
£ and then mining the tree. .
p-Tree GroW MethOdo::ﬁlyg frequent pattern ¢¢ (EPree) . The algorithy, Wor
A J et by gener .
algorithm WOk e ; find all the frequent it ,
FPfZ:lg:WS: base once, a8 in the Aprior! a]gor;tthm . & St gy Suppq
211; Sean the transactio’ dat; Zescending order-of their SuppO It

ot :
n frequent i .

:on from the transaction database. Remove all no q tems and list he .
saction Ak n
1) Gt the first tra® e sorted frequent 1tem A,

item according t t the first pranch of the tre —— - N
5) Use the ransaction o | |
and showing thenl;:gacs:tg)?fromythe transaction database- Remove all non frequent items and list the Bk
6) Get the next

it)em according to the sorted order.

7) Insert the transaction in the tree

g; ln;rgziz t\l:,?t}i,tes:;%ull::\ﬁ] all the transactions in the database are processed (J aiwei et al, 2000).
cO

tion to construc

using any common prefix that may appear.
o

jvati ithm is as follows:
tivation for the FP-growth algorithm is as 2] .
'{;1%21& 1‘he frequent items are needed to form the association rule. So, it finds frequent items and i &

others L ;
2) The frequent items can be stored in compact structure, thus, the original transaction database does not pee dto

be used repeatedly. ‘ . . .
3) If multiple transactions share a set of frequent items, it may be possible to merge shared sets with the Number
of occurrences registered at count.

The advantages of the FP-tree algorithm are:
1) itavoids scanning the database more than twice to find the support count.
2) It completely eliminate the costly candidate generation
3) Itis better than Apriori algorithm when the transaction database is huge and minimum support coun ;
low t1s

4) FP-Growth uses a more efficient structure to mine pattern when the database grows

4. FP-Tree Application

gr) g

FP- owlh pl’epr“(esses the transaction database by lnltla“y Sca"n“lg tlle database In scannin; database ﬂ 4

ﬁequelICIES Of the items (suppOIt 1ngle elel"e"t item Sets) are deteI lnﬂled. 1%11 “lﬁ q nt items (that 18, ll
Of S equent 1te; , a

items that appear in fewer transactions th i
h) ' an a user-specified minimum i
transactions, since, obviously, they can never be part of a frequent item set R sl e

In addition, the items in each transacti
), saction are sorted th i i
e ! , 50 that they are in descendin i i
databaseyon o leagfat?hsee.fl:;g:re 1and ﬁgur; 2 shows an FP-tree construction procesg ;;dif afc‘;‘rdmg 5 thellr
middle. Using a user specif;l ; neies of the items in this database, sorted in descendir gclr e 5o st I
deletion and sorti il If‘lmmal support of 3 transactions: it f 3 e’r AL
ing the items in each transaction in th i el A

frequencie : e : 4
q S, areduced database is obtained as shown on the ri;l?tt?;ga;e = ld escending order according to their
igure 1.

20

Computer Engineering and Intelligent Systems www.iiste.org
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) J»Lil
Vol.5, No.12, 2014 "s E

adf a8 da
acde b1 7 dcae
bd db
¢ |5
bcd dbc
aj| 4
bc e bc
abd dba
bde dbe
bceg gl bce
cdf dc
abd Middle dba
Left Right

Figure 1: Transaction database and Frequency table sorted in ascending order according to their frequency
support

Node
Support
PPOR | ink

Item Count f

8

-J

d
b
C
a

PO

e| 3

Figure 2: FP-Tree for the reduced Transaction database (Main FP-Tree)

The FP-tree in figure 2 was constructed from the (reduced) database shown in figure 1 on the right. After the
deletion of the infrequent items from the transaction database, the database is turned into an FP-tree as shown in
figure 2. Also in figure 2 above, each path represents a set of transactions that share the same prefix; each node
corresponds to one item, and all nodes referring to the same item are linked together in a list, so that all
transactions containing a specific item can easily be found and counted by traversing this list. The list can be
accessed through a head element, which also states the total number of occurrences of the item in the database.

4.1 Mining Frequent Items

To mine the frequent pattern from FP-tree start from the lowest level of the FP-tree (as an initial suffix pattern),
construct its conditional pattern base (a “sub-database,” which consists of the set of prefix paths in the FP-tree
co-occurring with the suffix pattern), then construct its (conditional) FP-tree, and perform mining recursively on
the tree. The pattern growth is achieved by the concatenation of the suffix pattern with the frequent patterns
generated from a conditional FP-tree.

21

omputer Engineering and Intelligent Systems
aper) ISSN 2222-2863 (Online)
Yy,
\%Z
Iy

C
ISSN 2222-1719 (P
Vol.5, No.12, 2014
I

Node
support Link

n
tem Count

gl
d| 8
o) &
5
4
[

e
Figure 3: The identified paths to node €

sub-trees were genel
rated by .
consider;
€r'ing

and figure 4; the
S item e

Mining of the FP-tree is summarized in figure 3
figure 2). @ occurs In three FP-tree branches of Fj
12u

which is the last item in the bottom of the tree (in
occurrences of e can easily be found by following its chain of node-link
-links.) as shown i re
:(:)m;: bl),, thes:d branches are dbe, bee, dcae. Considering € as a suffix, its COrresponc;Ii]n ﬁgﬁ:e 3. The-(y
o dbe, bce and dcae W ern base. Using thi S d
” . this conditi prefi
il I X SSg ndition X
i ;:3::11_ d?}tlz_ibase, we build an e-con hich contains three single pathsz;] pattern bage paiths
e ,th is FP-tree fil] items are infrequent (and thus all item sets containing item e s shown in figure :
quent). Hence in this example, N0 recursive processing would take place. This is a:: one other itema,i'
: course, dye
> due to gy

chosen example database and the support threshold.

hich form its conditional patt
ditional FP-tree, W

%)
d| 8
b | 7 | e
4 N
al| 4
e| 3 Sty

Figure 4: A iti
conditional FP-Tree Extracted from the main FP-T;
-Tree in figure 2

22

Computer Engineering and Intelligent Systems

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) lﬂgl,l
Vol.5, No.12, 2014 NS'E

Node
Support jnk

Item Count

Figure 5: Generated FP-Tree after deletion of node e from the conditional FP-Tree in figure 4

The FP-growth method transforms the problem of finding long frequent patterns into searching for shorter ones
in much smaller conditional databases recursively and then concatenating the suffix. It uses the least frequent
items as a suffix, offering good selectivity. The method substantially reduces the search costs. When the database
is large, it is sometimes unrealistic to construct a main memory based FP-tree. An interesting alternative is to
first partition the database into a set of projected databases, and then construct an FP-tree and mine it in each

projected database. This process can be recursively applied to any projected database if its FP-tree still cannot fit
in main memory.

54 Implementation with Real Datasets

In order to implement the FP-Tree algorithm the standard benchmark datasets from the UCI Machine Learning
Repository termed Supermarket was used in Weka Environment. The analysis was performed in comparism with
apriori algorithm with the real supermarket dataset, it was observed that the FP-tree algorithm is faster and more
effective than the apriori algorithm in mining association rule. All reports of the iterations and number of rules
generated are as shown in Figure 7 and figure 8. The graph in figure 9 shows that the FP-Tree outperforms the
apriori algorithm as the number of iteration performed in finding frequent pattern is less and less time was also
used to complete the iterations.

| === Run informatica me=
|

Scheme: weka.2ssociations.FEGrewth -P 2 -1 -1 -K 10 ~T 0 -C 0.9 =D 0.05 -0 1,0 =¥ 0.1
Relation: superzarket

|Instances: 4827

|aceributes: 217

| (113t of artributes critted]

lv-— Associator zodel (full training set) m==

|

| FPGrowth fcund 16 rules {displaying top 10)

|

| . [fruitst, frozan foodss=t, biscuitsst, totalshigh]: 788 ==> [bread and cake=t]: 723 <conf:{0.92)> 1ift:{1.27) lev:(0.03) coav:{3.35)

. [fruitst, baking needsst, biscuits=t, totzl=highj: 760 ==> {bread and cakest]: €96 <conf:{0.92)> lifr:(1.27) lev:{0.03) conv:(3.28)

. [fruitet, baking needsst, frozen foods=t, totalshigh]: 770 ==> [bread and cakest]: 705 <conf:{0.92)> 1ift:{1.27) lav:{0.03) conv:{3.27)
fraitst, vegetablesst, biscuits=t, total=high]: £15 ==> [bread and cake=t]: 746 <conf:{0.92)> 11fr:{1.27) lev:{0.03) coav:(3.28)
fruiter, perty snack focdsst, total=high]: 854 =m=> [bread and cakest]: 779 <conf:{0.91)> 11fr:{1.27) lev:{0.04) coav:(3.15)

. [vegetzblesst, frozen fcods=t, biscuits=t, totalehigh]: 797 ==> [bread and cakest]: 725 <coaf:{0.51)> 14fr:{1.26) lev:{0.03) conv:(3.0¢)
. [vegetables=t, baking needssc, biscuitsst, total=high]: 772 ==> [bread and cakest]: 701 <conf:{0.91)> 11f2:{1.26) lev:{(0.03) coav:{3.01}
{fruitst, biscuits=t, totel=high]: 354 ==> (bread and cake=t]: €66 <con;(0.31)> 11ft:(1.26) lev:{0.04) conv:{3)

[fruit=t, vegetables=t, frozen Ioods=t, totalshigh]: £34 ==> [bread and cake=t]: 757 <conf:{0.81)> 1ifr:{1.2€) lev:(0.03) coav:(3)

. [fruit=t, frozen foods=t, total=high]: 969 ==> [bread and ceke=t]: 877 <conf:{0.91)> 1ift:{1.26) lev:{0.04) conv:{(2.92)

W N e

|
|
i
|

-
D W@

|

yFigure 7: Report of the FP-Tree algorithm

23

Computer Engineering and Intelligent Systems
ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online)

Atcributes: 217
[list of attributes omitted]
=== Associator model (full training set) ===

Apricri

Minirux support: 0.15 {694 instances)
N¥inipum wetric <confidenced: 0.9
Nurber of cycles performed: 17

Generated sets of large itemsecs:
Size of set of large itemsets L{1): 44
Size of set of large itemsets L{2): 360
Size of zet of large itemsets L{3): 910
Size of set of large itemsets L{4): 633
Size of set of large itemsets L{5): 10§
Size of set of large itemsets L{6): 1
Best rules found:
p %
2.
3.
4.
S.

s.
7.

biscuits=t frozen foods=t fruit=t totalshigh 788 ==> bread and cake=t 723 conf: (0.92)
baking needs=t biscuits=t fruit=t total=high 760 ==> bread and cakest §36 conf: (0.92)
baking needs=t frozen Ioods=t fruitst totalshigh 770 ==> bread and cake=t 705 coni: (0.92)
biscuits=t fruit=t vegetables=t total=high 815 ==> bread and cake=t 746 conf: {0.82)

party snack fcods=t fruitet total=high 854 ==> bread and cake=t 779 conf: {0.91)
biscuits=t frozen foods=t vegetables=t total=high 737 ==> bread and cakest 725 conf: {0.91)
baking needs=t biscuitsst vegetzbles=t total=high 772 ==> breed and cake=t 701 conf: (0.91)
€. biscuits=t fruit=t total=high 354 ==> bread and cakest 86§ conf: (0.91)

8. frozen Zoodset fruitst vegetableser total=high 834 ==> bread and cakest 757 conf: {0.91)
10. Irozen foods=t Iruiv=t totzl=shigh 963 ==> bread and cake=t 877 conf:({0.31)

Figure 8: Report of the Apriori Algorithm

e FP-TrEE e ADTIOC

29

17

/s

Reration Time in Secs

Figure 9: No of Iteration versus time taken to complete the iterations

6. Conclusion

FP-tree algorithm directly mines frequent item sets without generating candidates. By gathering Sufﬁd,em
statistics into a suitable data structure (called an FP tree), all the frequent patterns are' generated without goins
back to the database. Only two passes through the database that are required to generate the FP Tree, and from
the FP Tree, all frequent patterns are generated. The FP-tr £

A to data
s : ee encourages a divide and conquer approach
mining. The FP-Tree is a compressed representation of the database 5 e 4 -

The FP-growth method transforms the problem of finding long frequent patterns into searching for shorter ones

in much smaller conditional databases recursively and th frequent
items as a suffix, offering good selectivity. The metho,

4

Vol.5, No.12, 2014 %Qﬁ(

Computer Engineering and Intelligent Systems www.iiste.org

ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) -
Vol.5, No.12, 2014 “sT[l

regarded as one of the most efficient methods for frequent pattern mining. The algorithm of the FP-Tree and its

application is hereby simplified for better understanding by anyone interested in data mining that will want to
understand the concept of this method.

References

Agrawal IS Imielmski, T. Swami A., (1993): "Mining Associations rules between Sets of Items in Large

ggtzbmes , Proceedings of the ACM SIGMOD Int'l Conference on ~ Management of Data, Washington D.C.,

Agrawal R. and Srikant R. (1994) “Fast algorithms for mining association rules”, InJ. B. Bocca, M. Jarke, and

C. Zaniolo, editors, Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pages 487-499. Morgan Kaufmann.

?garwal R. C., Aggarwal C. C., and Prasad V. V. V. (2001a) “Depth first generation of long patterns”. In
roc.

6th ACM SIGKDD Int. Conf. on Knowledge discovery and data mining, pages 108-118. ACM Press.

Agarwal R. C., Aggarwal C. C., and Prasad V. V. V. (2001b) “A tree projection algorithm for generation of

frequent item sets”, Journal of Parallel and Distributed Computing, 61:350-371,

Bayardo R. J. (1998), “Efficiently mining long patterns from databases”,. In 7998 ACM SIGMOD Intl.

Conference on Management of Data, pages 85-93. ACM Press.

Burdick D., Calimlim M., and Gehrke J. (2001), “MAFIA: A maximal frequent itemset algorithm for

transactional databases”, In 2001 Intl. Conference on Data Engineering,ICDE, pages 443-452.

Han J. and Pei J. (2001) “Mining frequent patterns by pattern-growth: Methodology and implications”. In ACM

SIGKDD Explorations. ACM Press.

Han J., Pei J., and Yin Y.(2000) “Mining frequent patterns without candidate generation. In W. Chen, J.

Naughton, and P. A. Bernstein, editors, 2000 ACM SIGMOD Intl. Conference On Management of Data, pages

1-12.ACM Press.

Intan and Rolly (2005). “A Proposal of an Algorithm for Generating Fuzzy Association Rule Mining in Market

Based Analysis”, Proceedings of the 3rd International Conference on Computational Intelligence,Robotics and

Autonomous System. Issues and an Application, Geographical Analysis 27:4, (2005) pp 286-305.

Jiawei H., Jian P., and Yiwen Y. (2000) “Mining Frequent Patterns without Candidate Generation”, In Proc.

Conf. on the Management of Data (SIGMOD’00, Dallas, TX), ACM Press, New York, NY, USA

Jiawei H., Micheline K., and Jian P. (2011)”Data mining: Concept and Techniques” 3" edition, Elsevier,

Pei J., Han J., Lu H., Nishio S., and Shiwei Tang D. Y. (2001) “H-mine:hyper-structure mining of frequent

patterns in large databases”, In 2001 IEEE Conference on Data Mining. 1EEE.

ZhaoHui T. and Jamie M. (2005), “Data Mining with SQL Server 2005”,Wiley Publishing Inc, Indianapolis,

Indiana, 2005.

25

