
Results in Physics 29 (2021) 104581

Available online 10 August 2021
2211-3797/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Fractional order of pneumococcal pneumonia infection model with Caputo 
Fabrizio operator 

Olumuyiwa James Peter a,*, Abdullahi Yusuf b,c, Kayode Oshinubi d, Festus Abiodun Oguntolu e, 
John Oluwasegun Lawal a, Adesoye Idowu Abioye a, Tawakalt Abosede Ayoola f 

a Department of Mathematics, University of Ilorin, Ilorin, Nigeria 
b Department of Mathematics, Federal University Dutse, Jigawa, Nigeria 
c Department of Computer Engineering, Biruni University, Istanbul, Turkey 
d School of Foundation studies, Lagos State University, Lagos State, Nigeria 
e Department of Mathematics, Federal University of Technology, Minna, Nigeria 
f Department of Mathematics, Osun State University Oshogbo, Nigeria   

A R T I C L E  I N F O   

Keywords: 
Pneumonia model 
Caputo-Fabrizio fractional derivative 
Fixed point theorem 
Numerical results 

A B S T R A C T   

In this study, we present the Pneumococcal Pneumonia infection model using fractional order derivatives in the 
Caputo-Fabrizio sense. We use fixed-point theory to prove the existence of the solution and investigate the 
uniqueness of the model variables. The fractional Adams-Bashforth method is used to compute an iterative so
lution to the model. Finally, using the model parameter values to explain the importance of the arbitrary frac
tional order derivative, the numerical results are presented.   

Introduction 

Pneumonia is an acute breathing infection affecting the lungs. The 
lungs are composed of little bags called alveoli which, when a healthy 
person breathes, fill with air [1–3]. The greatest single infectious cause 
of death in children worldwide is pneumonia. In 2017, 808694 children 
under 5 years of age were infected by pneumonia, accounting for 15 
percent of all child deaths under 5. Children and families everywhere are 
affected by pneumonia, but it is most common in South Asia and sub- 
Saharan Africa. It can be avoided with easy procedures, and managed 
with low-cost, low-tech treatment and care [4]. Children can be pro
tected from pneumonia. There are a number of infectious agents, 
including viruses, bacteria and fungi, that cause pneumonia. In a variety 
of ways, pneumonia can be transmitted. The viruses and bacteria that 
are usually found in the nose or throat of a child will, if inhaled, infect 
the lungs. They can also spread from a cough or sneeze through air- 
borne droplets. Moreover, pneumonia, particularly during and shortly 
after birth, can spread through the blood. The prevention of pneumonia 
in children is an important component of an infant mortality mitigation 
plan. Hib, pneumococcus, measles and whooping cough (pertussis) im
munizations are the most effective way to stop pneumonia [5,6]. Many 
researchers have suggested models for understanding the dynamics of 

infectious diseases and for quantitative forecasts of various preventive 
measures and their efficacy. [6–12]. In the last decade, very few sig
nificant studies have been performed on the transmission dynamics of 
pneumonia[13–17]. A deterministic and stochastic mathematical model 
of pneumonia transmission dynamics was developed in all the above 
studies, but none of them considered the fractional order aspect of the 
model.However, up till now, there is no work which has been designed 
to analyze Fractional Order of Pneumococcal Pneumonia Infection 
Model with Caputo Fabrizio Operator. This, therefore, motivated us to 
undertake this study to fulfill this gap. The emerging field of mathe
matical modelling with fractional order derivatives has been used as a 
powerful method to investigate the complex dynamics of different real 
phenomena in various areas of science and engineering [18–27]. Several 
fractional operators of Order ε ∈ [0, 1] are presented in the literature. 
The definition of the most common derivative of Caputo fractional order 
and relevant concepts has been established [28–31]. The Caputo frac
tional order derivative has been used to express a variety of problems 
that can be found in different fields [32–37]. The remaining part of this 
paper is organized as follows: the Section “Formulation of the model” 
deals with the formulation of the model, Section “Fractional model” 
deals with the analysis of the fractional order model, in Section “Nu
merical scheme and simulations”, A numerical scheme and simulations 
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based on Adams-Bashforth approach is presented, Section “Discussion of 
results” is the discussion of results, finally, we give a brief conclusion in 
the last section. 

Formulation of the model 

The model consists of four compartments that categorize individuals 
with respect to the disease based on their status. S(t) represents sus
ceptible individuals at risk of contracting infection with pneumonia at 
time t. C(t) represents carrier individuals that bear the bacteria of 
pneumonia and are able to spread the infection at t. I(t) represents 
contagious persons capable of transmitting the infection to persons at 
risk at time t and R(t) is the recovered individuals treated with pneu
monia at the time of t. The following system of ordinary equations is 
obtained based on assumptions and definitions of variables and pa
rameters described in Table 1. 

S′

= Λ − (α + μ)S + ηR,
C′

= αθS − (μ + β + π)C,

I
′

= α(1 − θ)S + πC − (τ + μσ)I,
R′

= βC + τI(μ + η)R,

⎫
⎪⎪⎬

⎪⎪⎭

(1)  

where α = δ(1+wC
N ), δ = kp 

Definition 1. The function y ∈ H′

(m, n), n > m, ε ∈ [0, 1] for the frac
tional derivatives in the Caputo sense [39] is defined as 

Dε
t (y(t)) =

A(ε)
1 − ε

∫ t

m
Y

′

(y)exp
[
− ε t − y

1 − ε

]
dy (2)  

A(ε) represents the normalized function satisfying A(0) = A(1) = 1 [16]. 
The Caputo derivatives for the case y ∈ H′

(m, n) can be express as 

Dε
t (y(t)) =

εA(ε)
1 − ε

∫ t

m
(Y(t) − Y(y)exp

[
− ε t − y

1 − ε

]
dy. (3)   

Remark 2. If β = 1− ε
ε ∈ [0,∞], ε = 1

1+β ∈ [0, 1], then (3) can be written as 

Dβ
t (y(t)) =

B(β)
ε

∫ t

m
(Y ′

(y)exp
[

−
t − y

β

]

dy; B(0) = B(∞) = 1. (4)  

that is 

lim
β⟶0

1
β

exp
[

−
t − y

β

]

= δ(y − t). (5)  

Definition 3. Let 0 < ε < 1, and the fractional derivative is expressed 
as 

Dε
t (Y(t)) = h(t), (6)  

then the corresponding integral of fractional order ε is defined as 

Fε
t (Y(t)) =

2(1 − ε)
(2 − ε)A(ε) h(t)+

2ε
(2 − ε)A(ε)

∫ t

0
h(s)ds, t⩾0. (7)   

Remark 4. By using the result 

2
2A(ε) − ε(A)ε = 1, (8)  

this implies that A(ε) = 2
2− ε,0 < ε < 1, from [36] the new CF fractional 

derivative of order 0 < ε < 1 is expressed as 

Dε
t (Y(t)) =

1
1 − ε

∫ t

0
Y

′

(y)exp
[
− ε t − y

1 − ε

]
dy (9)  

Fractional model 

The fractional pneumonia model in the Caputo sense is given below. 

CFDε
t S = Λε − (αε + με)S + ηεR,

CFDε
t C = αεθεS − (με + βε + πε)C,

CFDε
t I = αε(1 − θε)S + πεC − (τε + μεσε)I,

CFDε
t R = βεC + τεI(με + ηε)R,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(10)  

with the initial conditions 

S(0) = a1,C(0) = a2, I(0) = a3,R(0) = a4. (11)  

Existence and uniqueness 

In this section, we apply the fixed point results to show the existence 
and the uniqueness of the fractional model in (10). 

System (10) can be expressed in the equivalent form as, 

CFDε
t [S(t)] = P1(t, S),

CFDε
t [C(t)] = P2(t,C),

CFDε
t [I(t)] = P3(t, I),

CFDε
t [R(t)] = P4(t,R).

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(12) 

Following the definition of Caputo fractional integral operator 
defined in [36], (12) can be written in the following integral equation 
and with Caputo fractional interval order as 0 < ε < 1, 

S(t) − S(0) = 2
1 − ε

(2 − ε)N(ε)P1(t, S) + 2
ε

(2 − ε)N(ε)

∫ t

0
P1(ϕ, S)dϕ,

C(t) − C(0) = 2
1 − ε

(2 − ε)N(ε)P2(t,C) + 2
ε

(2 − ε)N(ε)

∫ t

0
P2(ϕ,C)dϕ,

I(t) − I(0) = 2
1 − ε

(2 − ε)N(ε)P3(t, I) + 2
ε

(2 − ε)N(ε)

∫ t

0
P3(ϕ, I)dϕ,

R(t) − R(0) = 2
1 − ε

(2 − ε)N(ε)P4(t, R) + 2
ε

(2 − ε)N(ε)

∫ t

0
P4(ϕ,R)dϕ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)  

Theorem 5. The kernel P1 is said to satisfied the Lipchitz and contraction if 
the inequality below holds. 

Table 1 
Details of parameters [38].  

Parameter Initial Value Description 

μ  0.0002/day Natural death rate 
Λ  10.00/day Recruitment rate 
θ  0.34/day Proportion of vunerable people that join the carrier 

group 
σ  0.33/day Disease induced death rate 
β  0.0.011/day Rate of recovery for carrier individuals 
α  0.03/day Force of infection 
τ  0.07/day Rate of recovery rate for infected people 
π  0.01/day Symptom rate for carrier individuals 
η  0.0241/day Rate of loosing immunity for treated individuals 
γ  0.06/day Vaccination rate for susceptible people 
ϕ  9.4/day Vaccination rate for treated people 
ω  0.00112/ 

day 
Transmission coefficient for asymptomatic people 

δ  7.6/day Rate of transmission 
k 1–10/day Rate of contact 
p 0.0–1/days Rate of infection per contact  
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Proof. Let S and S1 be the two function for P1, then 

||P1(t,S) − P1(t,S1)|| = || − δ(S(t) − S(t1)+δw(t)(S(t) − S(t1)) − μ(S(t) − S(t1)||

by applying property of norm, 

||P1(t, S) − P1(t, S1)||⩽{δwq+ μ+ δ}||{S(t) − S(t1)}|| (14)  

⩽τ1||{S(t) − S(t1)}|| (15)  

taking τ1 = {δwq + μ + δ}, where ||C(t)||⩽δw is bounded function, 
therefore, 

||P1(t, S) − P1(t, S1)||⩽τ1||{S(t) − S(t1)}||. (16) 

Therefore, for P1 the Lipschitz condition is obtained and if an addi
tionally 0⩽(δwq+μ+δ) < 1 which gives a contraction. We can therefore 
verify the Lipschitz condition for other equations. 

||P2(t,C) − P2(t,C1)||⩽τ2||C(t) − C(t1)||

||P3(t, I) − P3(t, I1)||⩽τ3||I(t) − I(t1)||

||P4(t,R) − P4(t,R1)||⩽τ4||R(t) − R(t1)||

⎫
⎬

⎭
(17)  

□ Next, we write the difference between the successive term in 
(11) in a recursive form, this can be expressed as  

subject to the following initial conditions S0(t) = S(0),C(t) = C(0), I0(t)
= I(0) and R0(t) = R(0). 

Applying norm on (18), 

||θ1n(t)|| = ||Sn(t) − Sn− 1(t)||

= ||2
(1 − ε)

(2 − ε)N(ε)(P1(t, Sn− 1)) − P1(t, Sn− 2)

+2
ε

(2 − ε)N(ε)

∫ t

0
(P1(ρ, Sn− 1) − P1(ρ, Sn− 2)dρ||

(19) 

By applying the triangular inequality, we expressed (19) as. 
||Sn(t) − Sn− 1(t)||⩽2 (1− ε)

(2− ε)N(ε)||(P1(t,Sn− 1)) − P1(t,Sn− 2)|| + 2 ε
(2− ε)N(ε)||

∫ t
0 

(P1(ρ,Sn− 1) − P1(ρ,Sn− 2)dρ||
By applying the Lipschitz condition in (16), 
||Sn(t) − Sn− 1(t)||⩽2 (1− ε)

(2− ε)N(ε)τ1||Sn− 1 − Sn− 2|| + 2 ε
(2− ε)N(ε)τ1 ×

∫ t
0 ||Sn− 1 

− Sn− 2||dρ 
Therefore 

||ϕ1n(t)||⩽2
(1 − ε)

(2 − ε)N(ε)τ1||θn− 1(t)|| + 2
ε

(2 − ε)N(ε)τ1

∫ t

0
||θ(n− 1)(ρ)||dρ

(20) 

In a similar way, from (18), we obtain 

||ϕ2n(t)||⩽2
(1 − ε)

(2 − ε)N(ε)τ2||θ2(n− 1)(t)|| + 2
ε

(2 − ε)N(ε)τ2

∫ t

0
||θ2(n− 1)(ρ)||dρ

||ϕ3n(t)||⩽2
(1 − ε)

(2 − ε)N(ε)τ3||θ3(n− 1)(t)|| + 2
ε

(2 − ε)N(ε)τ3

∫ t

0
||θ3(n− 1)(ρ)||dρ

||ϕ4n(t)||⩽2
(1 − ε)

(2 − ε)N(ε)τ4||θ4(n− 1)(t)|| + 2
ε

(2 − ε)N(ε)τ4

∫ t

0
||θ4(n− 1)(ρ)||dρ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(21) 

From (21), we write that 

Sn(t) =
∑n

i=1
θ1i(t),

Cn(t) =
∑n

i=1
θ2i(t),

In(t) =
∑n

i=1
θ3i(t),

Rn(t) =
∑n

i=1
θ4i(t),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(22)  

Theorem 6. The system of solution of fractional pneumococcal pneumonia 

infection Caputo-Farizio model exist if an only if the inequality below hold 
and one can find t1 

2
(1 − ε)

(2 − ε)N(ε)τ1 + 2
εt1

(2 − ε)N(ε)τi < 1, for i = 1,…, 4.

Proof. By considering Eq. (21), and applying the recursive technique, 
the following succeeding results are obtained. 

||θ1n(t)||⩽||Sn(0)||
[(

2(1 − ε)
(2 − ε)N(ε)τ1

)

+

(
2ε

(2 − ε)N(ε)τ1t
)]n

||θ2n(t)||⩽||Cn(0)||
[(

2(1 − ε)
(2 − ε)N(ε)τ2

)

+

(
2ε

(2 − ε)N(ε)τ2t
)]n

||θ3n(t)||⩽||In(0)||
[(

2(1 − ε)
(2 − ε)N(ε)τ3

)

+

(
2ε

(2 − ε)N(ε)τ3t
)]n

||θ4n(t)||⩽||Rn(0)||
[(

2(1 − ε)
(2 − ε)N(ε)τ4

)

+

(
2ε

(2 − ε)N(ε)τ4t
)]n

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(23) 

Hence, the solution of the system exist and continuous. Furthermore, 
we consider the uniqueness of solution. Suppose there exists another 
solution of the model, say, S1(t), C1(t), I1(t), and R1(t), then 

S(t) − S1(t) = 2
(1 − ε)

(2 − ε)N(ε)(P1(t, S) − P1(t, S1))

×

∫ t

0
(P1(ρ, S) − P1(ρ, S1))dρ (24) 

θ1n(t) = Sn(t) − Sn− 1(t) =
2(1 − ε)

(2 − ε)N(ε)(P1(t, Sn− 1)) − P1(t, Sn− 2) + 2
ε

(2 − ε)N(ε)

∫ t

0
(P1(ρ, Sn− 1 − P1(ρ, Sn− 2)))dρ

θ2n(t) = Cn(t) − Cn− 1(t) =
2(1 − ε)

(2 − ε)N(ε)(P2(t,Cn− 1)) − P2(t,Cn− 2) + 2
ε

(2 − ε)N(ε)

∫ t

0
(P2(ρ,Cn− 1 − P2(ρ,Cn− 2)))dρ

θ3n(t) = In(t) − In− 1(t) =
2(1 − ε)

(2 − ε)N(ε)(P3(t, In− 1)) − P3(t, In− 2) + 2
ε

(2 − ε)N(ε)

∫ t

0
(P3(ρ, In− 1 − P3(ρ, In− 2)))dρ

θ4n(t) = Rn(t) − Rn− 1(t) =
2(1 − ε)

(2 − ε)N(ε)(P4(t, Rn− 1)) − P4(t,Rn− 2) + 2
ε

(2 − ε)N(ε)

∫ t

0
(P4(ρ,Rn− 1 − P4(ρ,Rn− 2)))dρ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(18)   
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Applying norm to (24), 

||S(t) − S1(t)|| ≤ 2
(1 − ε)

(2 − ε)N(ε)||P1(t, S) − P1(t, S1)|| + 2
ε

(2 − ε)N(ε)

×

∫ t

o
||P1(ρ, S) − P1(ρ, S1(t))||dρ. (25) 

Using the Lipschiz condition in (16), 

||S(t) − S1(t)|| ≤ 2
(1 − ε)

(2 − ε)N(ε)τ1||s(t) − S1(t)|| + 2
ε

(2 − ε)N(ε)
× τ1t||S(t) − S1(t))||. (26) 

This simplifies to 

||S(t) − S1(t)||
(

1 −
2(1 − ε)

(2 − ε)N(ε)τ1 −
2ε

(2 − ε)N(ε)τ1t
)

⩽0 (27)  

□ 

Theorem 7. If the condition below is valid, 
(

1 −
2(1 − ε)

(2 − ε)N(ε)τ1 −
2ε

(2 − ε)N(ε)τ1t
)〉

0  

then the solution of the fractional order model will be unique. 

Proof. Assuming the condition in (27), holds, then 

||S(t) − S1(t)||
(

1 −
2(1 − ε)
(2 − ε) τ1 −

2ε
(2 − ε)N(ε)τ1t

)

≤ 0 (28)  

therefore 

||S(t) − S1(t)||⩽0 (29) 

⇒ 

S(t) = S1(t) (30) 

Following the same approach, we can obtain a similar equality for 
the remaining equations. Hence, the solution of the fractional model is 
unique. □ 

Numerical scheme and simulations 

We present the approximate solution of the fractional order pneu
mococcal model using two-step fractional Adam-Bashforth approach for 
the Caputo-Fabrizio fractional derivatives [25]. First, we write the sys
tem of equations in the form of fractional volterra using the elementary 
theorem of integration. We consider the first equation of the model in 
order to arrive at the desired iterative scheme. From the first equation in 
(11), we obtain. 

S(t) − S(0) =
(1 − ε)
N(ε) P1(t, S) +

ε
N(ε)

∫ t

0
P1(ρ, S)d ρt = tn+1, suchthat, n

= 0, 1, 2,…
(31)  

we have 

S(tn+1) − Sn =
1 − ε
N(ε){P1(tn, Sn) − P1(tn− 1, Sn− 1)}+

ε
N(ε)

∫ tn+1

tn
P1(t, S)dt

(32) 

Approximating the function P1(t, S) by interpolation polynomial in 
the interval [tk, t(k+1)], we obtain 

Fig. 1. Comparison of each state variables in classical and CF sense for the values of the fractional order ε = 0.8890.  
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Qk(t) ≅
f (tk, xk)

j
(t − tk− 1) −

f (tk− 1, xk− 1)

hj
(t − tk) where tn − tn− 1. (33)  

by applying the polynomial in 33 to 32 and calculating the interest in 
(31), we obtain 
∫ tn+1

tn
P1(t, S)dt =

∫ tn+1

tn

P1(tn, Sn)

j
(t − tn− 1) −

P1(tn− 1), Sn− 1

j
(t − tn)dt (34)  

=
3j
2

P1(tn, Sn) −
j
2
P1(tn− 1, Sn− 1).

(35)  

substituting (35) into (31) and simplifying we obtain 

Sn+1 = Sn +

(
1 − ε
N(ε) +

3j
2N(ε)

)

P1(tn, Sn). (36) 

Using the same approach, the rest of system of Eq. (12) recursive 
formula can be obtained as 

Cn+1 = C0 +

(
1 − ε
N(ε) +

3j
2N(ε)

)

P2(tn,Cn) −

(
1 − ε
N(ε) +

εj
2N(ε)

)

P2(tn− 1,Cn− 1),

In+1 = I0 +

(
1 − ε
N(ε) +

3j
2N(ε)

)

P3(tn, In) −

(
1 − ε
N(ε) +

εj
2N(ε)

)

P3(tn− 1, In− 1)

Rn+1 = R0 +

(
1 − ε
N(ε) +

3j
2N(ε)

)

P4(tn,Rn) −

(
1 − ε
N(ε) +

εj
2N(ε)

)

P4(tn− 1,Rn− 1)

Discussion of results 

This is the role in which we gain a deep insight into the model’s 
dynamic behavior. The current section provides numerical simulations 
of the model while using the biological parameters as described earlier. 
As it was explained in the introduction, for more than 2 million children 
under 5 years of age, pneumonia is the leading cause of respiratory 
morbidity, mainly in low-income countries. It is a lung infection caused 
by bacteria, fungi, viruses, or other pathogens. Streptococcus pneu
monia, also known as pneumococcus, is the most common cause of 
bacterial pneumonia. It is mainly marked by inflammation in the lungs’ 
air sacs filled with fluid or pus, making it difficult to breathe. Rather 
alarming is the subtle existence of this virus. In the analysis of the dy
namic of the virus, serious attention is needed. As a result, we intend to 
provide in-depth insights into the complex behavior of the Pneumo
coccal Pneumonia infection model in a fractional sense using Caputo 
Fabrizio operator. Fractional derivatives have been shown to be very 
successful in modeling real-world problems. In light of this, we employ 
the initial conditions as S(0) = 900,C(0) = 100, I(0) = 100 and R(0) =

10, and also the parameter values μ = 0.0002,Λ = 10.00, θ = 0.34, σ =

0.33, β = 0.011, α = 0.03, τ = 0.07, π = 0.01 and η = 0.0241. The 
propagation dynamics of an infectious ailment can be thoroughly com
prehended under different computational simulations of the proposed 
fractional version of the model for state variables of interest. To un
derstand the complex behavior of the model and to see the effect of the 
fractional order, we have carried out numerous simulations. In Fig. 1, a 
comparison between classical variant (υ = 1) and CF variant (υ =

0.8890) of the Pneumococcal Pneumonia infection model has been 
depicted. It can be observed that, the CF has given a better approximate 

Fig. 2. Profile of each state variables for different values of the fractional order ε = 1,0.9, 0.8,0.7,0.6.  
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solution than the classical variant. Moreover, the value of the fractional 
order υ has been varied for υ = 1,0.9, 0.8, 0.7,0.6 in Fig. 2, in order to 
analyze the impact of the fractional order υ on the model’s dynamic 
behavior for all the four compartments. When the S(t) decreases, the C(t)
as well as the I(t) get increased. However, at some point both the C(t)
and I(t) start to decrease. An important point should be noted in Fig. 2, 
and Fig. 2(c), for υ = 1, after increasing, the curves start to decrease and 
consequently get increased again. Whereas, for the fractional variant the 
curves continue to decrease. And this gets R(t) increased as seen in Fig. 2 
(c). This is one of the advantages of fractional calculus over classical 
calculus. Furthermore, one of the most important and effective param
eter called the force of infection α which is the rate at which susceptible 
individuals acquire an infectious disease has been varied for increasing 
and decreasing values in order to see further the dynamical character
istics of the model. The results depicted in Fig. 3, with the decreasing/ 
increasing values of α, it can clearly be observed how effective is the 
force of infection in the behavior of the model. 

Conclusion 

The Pneumococcal Pneumonia infection model was modelled in the 
current study by one of the robust non-local fractional operators called 
the Caputo Fabrizio. For more than 2 million children under 5 years of 
age, pneumonia is the leading cause of respiratory morbidity, especially 
in low income countries. A more critical study of the dynamics of this 
subtle virus is of vehement importance. In the literature for researching 
the transmission dynamics of a disease, the fractional operator 
employed has been shown to be ideally suited. The fractionalized order 
is υ and the dimensional consistency between the rest of the parameters 
was considered. As a consequence, many significant features of the 

proposed fractional version of the model, such as the formation of the 
model, the nature and uniqueness of the solution via the fixed point 
theorem, have been reported. It should be noted that the model of the 
fractional type disease under investigation understands the disease’s 
actions more correctly than the integer order version. In addition, by 
means of an effective numerical scheme, various numerical simulations 
were carried out in order to shed more light on the model’s character
istics. It will be in our best interests if we can have access to country- 
specific real data to validate our model 
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