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Abstract 

In this paper, an analytical simulation of cholera 
dynamics with control is presented. The model 
incorporates therapeutic treatment, water 
sanitation and Vaccination in curtailing the 
disease. We prove the existence and uniqueness 
of solution. The systems of equations were 
solved analytically using parameter-expanding 
method coupled with direct integration. The 
results are presented graphically and discussed. 
It shows clearly that improvement in treatment, 
water sanitation and Vaccination can eradicate 
cholera epidemic. It also observed that with 
proper combination of control measures the 
spread of cholera could be reduced. 
Keywords: Cholera model, control strategies, simulation, 
dynamical systems 

1. Introduction 

Cholera is a contagious infectious disease that is 
characterized by extreme vomiting, profuse 
watery diarrhea and leg pain. It has been found 
that transmission transpires mostly via 
absorption of contaminated drinking water or 
food. Worldwide, almost every year there is an 
estimated 3-5 million cholera cases and 100, 
000-130, 000 deaths due to cholera a year as of 
2010 [1]. It has a very short incubation period 
which starts from a few hours to five days. The 
health of an infected person disintegrates rapidly 

and death may occur if treatment is not promptly 
given. Cholera was first discovered in the Indian 
subcontinent in 1817. The disease reaches all the 
way through Asian continent in the 1960s, 
getting in to Africa in 1970 and Latin America in 
1991[2,3]. In many parts of Africa and Asia the 
disease is still endemic. 
 Cholera is a disastrous water-borne infectious 
disease that is caused by the bacterium vibrio 
cholera. It is a very serious problem in many 
developing countries due to inadequate access to 
safe drinking water supply, improper treatment 
of reservoirs and improper sanitation. In 2012, 
WHO reported 245, 393 cholera cases and 3034 
death cases across 48 countries in which 67% 
cases occurred in African countries [4]. In 2005, 
Nigeria had 4, 477 cases and 174 deaths. There 
were reported cases of cholera in 2008 in 
Nigeria in which there were 429 deaths out of 6, 
330 cases. Furthermore, 2, 304 cases were 
reported in Niger State in which 114 were death 
cases [5].  
[6] evidenced that recent years have seen a 
strong trend of cholera outbreak in developing 
countries, such as in India (2007), Iraq (2008), 
Congo (2008), Zimbabwe (2008-2009), Haiti 
(2010), Kenya (2010) and Nigeria (2010).  
In Nigeria, outbreaks of the disease have been 
taking place with ever-increasing occurrence 
ever since the earliest outbreak in recent times in 
1970, [7,8]. In summary the United Nation (UN) 
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unit, reports: "despite Nigeria's oil wealth, more 
than 70% of the country's 126 million people 
live below the poverty line and cholera 
outbreaks are common in poor urban areas 
which lack proper sanitation and clean drinking 
water" (UN Office for the Coordination of 
Humanitarian Affairs Integrated Regional 
Information Networks (IFIN) 2005). 
 In the last few decades, [9 - 16], designed 
mathematical models to explore the transmission 
dynamics and control of the disease. 
The global asymptotic stability of the Disease 
Free Equilibrium and endemic equilibrium was 
not discussed in [2] but was discussed rigorously 
in [17]. 
This present work is based on the analytical 
solution of the equations describing cholera 
dynamics with control proposed by [2]. We 
establish the conditions for existence and 
uniqueness of the solution of models and provide 
an analytical solution via parameter-expanding 
method. 
 
2. Model Formulation 

 
Following [17], the equations describing cholera 
dynamics with control are: 
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As initial condition based on our assumptions, 
we choose 
 

0)0( SS  ,  0)0( II  ,    0)0( BB  ,  0)0( RR     

                                                                        (5)   
The assumptions made in the above equations 
are: 
 

 Vaccination is introduce to the 
Susceptible population at a rate of v ,so 
that vS  individuals per time are removed 
from the susceptible class and added to 
the recovered class. 

 Therapeutic treatment is applied to 
infected people at a rate of u , so that uI  
individuals per time are removed from 
the infected class and added to the 
recovered class. 

 Water sanitation leads to the death of 
vibrios at a rate of w . 

 Another type of vaccination is applied to 
(some) newborns so that only a 
proportion )10(  pp  of individuals 
entering the total population are 
susceptible. 
 

Where 
Table 1: Symbols used in the model 
Symbol                              Description 

 
State Variables 

)(tS                        susceptible individuals 
)(tI    infected individuals                    )(tB  

cholera concentration in 
                               the water supply 

)(tR                        recovered individuals 
Parameters 
H                        total human population 
n                         natural human birth/death  
                            rate 
a                        constant rate of exposure 
                         with contaminated water 
k                       half saturation rate (the 
                         infectious dose in water  
                         sufficient to produce in 
                         50% of those exposed) 
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 r                 rate at which people recover  
                    from cholera 
e                 contribution of each infected 
                   person to the population of  
                   cholera 
m               net death rate of cholera 

Bk

aBS


        incidence which determines the 

                  rate of new infection 
 
 
 
 
 
 

 
3.0     Method of Solution 

 
3.1    Existence and Uniqueness 

    of Solution 
Here, we shall prove the existence and  
uniqueness of solution of the model  
following Derrick and Grossman [19]. 
  
For,convenience,let qRzByIxS  ,,,  
Theorem 1 
 Consider. 
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(10) 
 Let  01:),( bXtX      00 at  , 

 where  ,)(),(),(),( tqtztytxX   ,a  ,e ,H k  , ,p  ,r   ,m  ,n  
 p , ,u   ,v and  w  are real positive constants and 00 ,ba . 

 Then the system of equation (6) - (9) satisfying (10) 
 has a unique solution. 

 
Proof: 
 
We rewrite the system of equation (6) – (9) in vector form as 
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With the initial condition  
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We then define ))(),(),(),(,( tqtztytxtf j  as follows 
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Since X  is bounded, then ),( tXf j , 4,....,1j  are define 

and continuous for all point ),( tX , 4,....,1j  in   
 then take their maximum in  . Let this maximum be 
defined by 
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system of equations )9()6(   subject to )10(  
 has a unique solution. 
 
 

 
3.2   Solution by Parameter-expanding  
        Method 

 
Parameter-expanding method proposed by He  
and successfully applied to various engineering 
 problems [18]. We apply parameter-expanding 
 method to equations (6) – (9), where details  
can be found in [18]. Suppose the solution )(tx  , 
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Where h.o.t read “higher order terms in a”  
and xS  , yI  , zB  , qR  . In our 
 analysis, we are interested only in the first  
two terms. 

 
Substituting (28) into (6) – (9) and processing, 
 we obtain: 
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Solving equations (29) – (36) by direct integration, 
 we obtain 
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The computations were done using computer symbolic 
algebraic package MAPLE. 
 

4.   Results and Discussion 
 
 We have proved the existence of unique solution of the 
model 
under certain conditions using Derrick and Grossman 
approa- 
ch. The model equations (6) – (9) are solved analytically 
 using parameter-expanding method and computed for the  
values of  

0,10,100,6000,1.0,015.0

,0005.0,05.0,5000,1,10000,9.0
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qzyxaw

vukeHp
 

 
The population of Susceptible, Infected and Recovered 
 individuals and the cholera concentration in water supply 
 are depicted graphically in figures 1 – 6. 
 
From  Figure 1,we can conclude that with the increase in  
therapeutic treatment u ,the infected individuals are reduce  
 per time and the recovered individuals increases due to treat- 
treatment. 
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From Figure 2, we can conclude that with  
the increase in vaccination v , the susceptible  
individuals reduces per time . 
 

 
From  Figure 3, we can conclude that with the increase in 
 vaccination v , the recover  individuals increases per time. 
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. 
From Figure 4: we can conclude that with the 
 increase in water treatment rate w ,the  
concentration of vibrio cholera in contaminated  
water reduces. 
 

 
 
From Figure 5, we can conclude that with the increase in 
rate 
 rate of exposure to contaminated water a , the  susceptible 
 individuals increases. 
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From Figure 6, we can conclude that with the 
 increase in rate of exposure to contaminated  
water a , the infected individuals increases. 
 

 
5.   CONCLUSION 
 From the studies made on this paper we concluded that 50% 
 level of control measures is sufficient to effectively control  
 the spread of cholera. The total number of the infected 
 individuals decreases with the increase in level of the 
control 
 measures stopping the disease from reaching an alarming  
level. 
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