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ON INEQUALITY TO GENERATE SOME STATISTICAL  DISTRIBUTIONS 
 

A.  F.  O GUNTO LU* 1 ,  U.  Y.  ABUBAKAR1 ,  A.  ISAH1 ,  L.  A.  NAFIU1  AND K.  RAUF 2  
 

ABSTRACT.  In this work, we established Markov inequality via Binomial, Poisson and Geometric Distribution. 

Results obtained were used to obtain probability bound for some random variables. Our results are in 

agreement with the existing works.  

 

 

1.  INTRODUCTION 

Markov inequality states that: 

For any nonnegative random variable X and a > 0, we have the following inequality 

 

This is equivalent to the following inequality in measure theory: 

 

Where (X, Σ, μ) is a measure space, ƒ is a measurable extended real-valued function, 

and  .  

This definition is sometimes referred to as Chebyshev’s or Bienayme’s inequality in 

analysis because it appearsed without prove in, at least, the work of Pafnuty Chebyshev 

who happened to be Markov’s teacher  (Stein and Shakarchi). 

Markov’s inequality (Markov (1884))  is useful in providing an upper bound for the 

probability of a random variable with a non negative function which is greater than or 

equal to some positive constant. It also relate probabilities to expectations. 

In particular, it is applicable in proving Chebyshev’s inequality (Chebyshev (1874)) and in 

showing that for a nonnegative random variable, the mean  and a median  are such 

that . 

In this work, we provide a simpler and better proof to Markov Inequality through Binomial, 

Poisson and Geometric Distributions. Some applications are also given. For further work 
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see Salo-Coste (1997), Ross (1976), Steliga and Szynal (2010), Feller  (1966),  Papoulis 

(1991), Clarkson et.al. (2009), DasGupta (2000), McWilliams (1990), Pitman (1993), 

Pfeiffer and Schum (1973). 

 

2.0 Materials and Methods 

This section consider the prove of Markov inequalityy and its application to some 

properties of some distributions. 

2.1  The prove of Markov  Inequality 

         THEOREM:   Let X be a random variable and assume that its range is a subset of 

non-negative real numbers. Assume that ][ XE  exists. Furthermore let A be some 

positive constant, then, 

    
A

XE
AX

][
)Pr( 

                           
 

Proof (Discrete):  Let X be a discrete random variable. The proof is almost trivial; we 

only have to recall the notion of the mean of a random variable. It is  

     

i

ii
ZXZXE )Pr(][  

Where 
i

Z  is the sequence of the range of X .The right hand side contains just non-

negative elements, thus we decrease this sum if we restrict it to those  AZ
i
  
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We can rewrite  

    



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i

i

zX )Pr(   as  )Pr( AX  , 

)Pr(*][ AXAXE   and 

A

XE
AX

][
)Pr(   

Proof (Continuous): Let X  be a continuous random variable, then, 
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  . Hence, 
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2.2 Properties of Binomial Distribution 

The Binomial Distribution is given by 
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While the Cumulative Probability is 
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 By Binomial expansion, we have 
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We have the variance as: 
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2.3 Prove of Markov Inequality from Binomial distribution 
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2.4 Poisson Distribution 

The Poisson distribution is given by 
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2.5 The prove of Markov’s Inequality from Poisson distribution 
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2.6 Geometric Distribution 

The Geometric Distribution is given by 
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3. Tightness of Markov’s Inequality 
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This implies that the bound is tight because the value of the random variable is exactly k  or 

otherwise zero. 

 

4. Results 

We use Markov inequality to analyze Binomial distribution, Poisson distribution and 

Geometric distribution given that the initial probability distribution is 
a

P
1

   where a  is a 

positive natural number .  

By plotting the graph of Markov Inequalities. We have the following: 
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Markov Inequality from binomial distribution 

b

XE
bX

][
]Pr[     

n p

b
 . But,  

a
P

1
  and 

ba

n
bX

.
]Pr[   

We consider the equation for the graph as: 
ba

n
bX

.
]Pr[   

Figure 1 
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Markov  Inequality from Poisson distribution 

b
bX


 ]Pr[

 

But  
a

1
  and  

ba
bX

.

1
Pr   

Figure 2 
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Markov Inequality from Geometric distribution 

b

a

b
a

a

bp

p
bX

1

.
1

)
1

1(

.

)1(
]Pr[









  

Figure 3
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4 Discussions 

In Figure 1, we observe that with increase in the value of '' a  the probability steadily 

reduces. Also, it can be observed that as the number of trials increases, the probability of 

the event will considerably reduce. 

In Figure 2, we observe that with increase in the value of '' a  ,the probability steadily 

reduces. Also, it can be observed that as the number of trials increases, the probability of 

the event will considerably reduce. 

In Figure 3, we observe that with increase in the value of '' a , the probability steadily 

reduces. Also, it can be observed that as the number of trials increases, the probability of 

the event will considerably reduce. 

 

5 Conclusions 

The use of Markov inequality to analyze the Binomial distribution is inadequate because it 

gives unrealistic inequality variation, thus making it difficult to properly establish a 

realistic bound for the probability of higher value, hence a new approach is required to 

establish a more realistic bound. 

  The use of Markov inequality to analyze the Poisson distribution is adequate because it 

gives a suitable inequality variation thereby enhancing a realistic bound for the probability 

distribution. 

 The use of Markov inequality to analyze the geometric distribution is inadequate because 

it gives realistic values for higher values of '' b  with lower values of '' a  but becomes 

unrealistic for other values, hence it cannot be used to establish a proper inequality bound 

for the probability distribution.  
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