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Abstract

This work reports on the use of maximum likelihood function and the probability graphical
method to estimate the location parameter for a mini-metropolis household income(X) with
heterogeneous social-economic composition.

The Easyfit software was used to fit the household income data to suggest the possible
probability distribution(s) for the data. Some of the suggested distributions were taken as the
functional form of the income’s(X as a r.v) probability distribution and they were empirically
solved using the maximum likelihood method of estimation(MLE) in comparison to traditional
matching moment estimation(MME).

The estimate that is most consistent with the sample data were solved analytically based on the

distribution function(s) suggested by easyfit software. We also compared the maximum

likelihood estimates of obtained from each distribution functions graphically using

R-programming language codes
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Introduction

To accurately fit the probability distribution for a household income is vital to measuring
location parameter for household income potential of a given geographical region.

This is important for the purpose of economic or developmental planning. It is reasonable that
different distributions will be found for different household income in different geographical area.

Household income is often used as an economic indicator and the accurate fit of distribution will
ensure accurate estimation of parameters which will aid correct economic decision making on
such geographical region of which per capital income is of interest.

Household income refers not only to the salaries and benefits received but also to receipts from
any personal business, investments, dividends and other income(Investopedia, 2015).
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Fitting A Continuous Probability Distribution for Data

Vito Ricci (2005) and Zaven A. Karian and Dudewicz,(2011) unanimously
suggests that in the search for a method of fitting a continuous probability
distribution to data there is need to;

first decide on what type (or family) of distributions to consider, also

decide on what fitting method to use either method of moments,
maximum likelihood, least squares etc. and conclusively

develop a specific computational schemes to be invoked to estimate
the parameters associated with the fit.

1

1(See R, Zaven A. Karian Edward J. Dudewicz(2011) and Vito Ricci 2005, for details)
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The Log-normal Distribution

Log-normal with parameters µ and δ both non-negative 0 < x <∞ which
makes it more preferable to −∞ < x <∞ of the popular normal
distribution.

f (x) =

{
1

xδ
√

2Π
exp

[
− (ln(x)−µ)2

2δ2

]
if x > 0

0, otherwise (1)

The moments of the log-normal distribution can be obtained using
analogic, moments or the moment matching estimation (MME) and
maximum likelihood estimation (MLE).

α1 = eµ+δ2/2

α2 = (eδ
2 − 1)e2µ+δ2

α3 =
√
e4δ2 − 1(eδ

2
+ 2)

 (2)

supporting x ∈ (0, +∞) with entropy log(δeµ+ 1
2

√
2Π) and fisher

information

(
1/
δ2 0

0 2/
δ2

)
.
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Log-normal Properties and Cumulative Distribution

The mode being a point of global maximum of a density function is obtainable

bymode[X ] = eµ−δ
2
; and median; med [X ] = eµ. The log-normal parameters can be obtained if

arithmetic mean and the arithmetic variance are known and simple to estimate by estimator;

µ = ln(E |X |)−
1

2
ln(1 +

Var [X ]

(E [X ])2
) = ln(E [X ])−

1

2
δ2 (3)

and

δ2 = ln(1 +
Var [X ]

(E [X ])2
) (4)

The location and scale parameters of a log-normal distribution are better approach using
geometric mean and geometric standard deviation respectively than the arithmetic approach.

F (x) =
1

δ
√

2
∏ ∫ x

0

1

t
e−

1
2

( ln t−µ
δ

)2dt= 1

δ
√

2
∏ ∫ ln x

0
e−

1
2

( x−µ
δ

)2dx (5)
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Literature Suggestions of Suitable Distribution Function

Knowing that normal distribution may not be suitable for variable that are
inherently non-negative such as we have in household income which is
likely to be strongly skewed due to possible presence of outliers;

Log-normal is vital in description of natural phenomena. According to
Ritzema et al (1994) log-normal distribution was employed in hydrology
research to analyse extreme values of variables such as monthly, annual
maximum value of daily rainfall and river discharge.

In social-economic research, there were conclusions made about over 97%
of the populations income considered to follow a log-normal distribution
(see Clement et al, 2005).

The distribution of higher-income individual follows a Pareto distribution
(Wataru, 2002). This is similar to the presence of some extreme income in
our case of consideration.
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Pareto Distribution

The power law distribution is also named Pareto distribution after the Italian economist Vilfredo
Pareto (1848–1923) who originally observed it studying the allocation of wealth among
individuals: a larger share of wealth of any society (approximately 80%) is owned by a smaller
fraction (about 20%) of the people in the society.

f (x) =

{
βλβ

xβ+1 , if x > λ

0 otherwise
(6)

The Pareto distribution supportsx ∈ (λ+∞); λ>0 and β>0. The Pareto distribution are

characterized by cumulative density function; 1− (λm
x

)α for x ≥ λm. The praetor root of
equation is unstable which allows the shape and scale parameters to be of two roots.

µ =

{
∞ for β ≤ 1
βλm
β−1

for β > 1
(7)

and

δ2 =

{
∞ for β ∈

λ2
mβ

(β−1)(β−2)
for β > 2

(8)

The mode λm, median and fisher information ;

(
α
x2
m

− 1
xm

1
−xm

1
δ2

)
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Extreme Value Distribution

This distribution is also called the smallest extreme value distribution with example of
application of Weibull(1951) reported on the strength of a certain material that follow an
extreme value distribution (See Christian Walck(2007), p 41).

The extreme value distribution is also used in life and failure data analysis, “weakest link”
situations,temperature minima, rainfall in droughts, human mortality of the aged.
The Largest Extreme Value Distribution will be more appropriate with its parameters µ and δ >
0 having the pdf;

f (x) =
1

δ
exp±[x − µ]/δ exp±[−e

−(x − µ)

δ
] (9)

The cumulative distribution of extreme value distribution

F (x) =
∫ x
−∞ f (u)du =

∫± x−µ
δ

−∞ g(z)dz = G(± x−µ
δ

) where G(z) is the cumulative function of

g(z) which is given by G(z) =
∫ z
−∞ e−µ−e−µdu =

∫∞
e−z e

−ydy = e−e−z
where we have made

the substitution y = e-u in simplifying the integral
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Method of Estimation

Parameters of distribution function can be obtained using analogic moments or the moment
matching estimation (MME),quantile matching estimation (QME), maximum goodness-of-fit
estimation (MGE)and Maximum likelihood estimation(MLE)but MLE and moment matching
estimations are certainly the most commonly used method for fitting distributions (Cullen and
Frey, 1999).

The Moment Method

Algebraic moments of order r are defined as the expectation value

α
′
r = E(x r ) =

∫ +∞

−∞
x r f (x)dx (10)

For α
′
0 =1 and α

′
1 is the mean value of the distribution, α2as the variance of the model with α3

and α4 for the kurtosis and skewness respectively. Central moments of order r are defined
asαr = E((K −E(k))r ). The commonly used is µr is regarded as the unknown population mean.

Error of Moment Method

Consider a sample with n observations x1, x2, ..., xn we define the moment-statistics for the

algebraic and central moments α
′
r and αr as α

′
r = 1/n

∑n
r=0 x

r and α
′
r = 1/n

∑n
r=0(x r −mr

1)r .
The covariance between an algebraic and a central moment is

Cov(αq , αr ) = 1/n(µq+r − µqµr + rqµ2µr−1µq−1 − rµr−1µq+1 − qµr+1µq−1) (11)
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Method of Maximum Likelihood

Having notable extreme values in any real life data can be worrisome, outliers raised the possible
question of sudden system error (non random error), or observational error.

A case where it is not any of the mentioned, it becomes a problem to present a reliable
estimate(s) for further estimation in alternative processes and presenting point estimates for
predictions, budgeting and planning purposes.
This estimation obtained the value of location paremeter that maximize logeL(θ), that is, the

value of θ̂ that assign the highest possible probability to the data that was obtained.

Log-normal Distribution

f (x) =
1√

2
∏
δx

exp−
[log(x)− µ)2]

2δ2
(12)

The likelihood function for n-observation household incomex1, x2, ..., xn, with parameters µ and
δ2

L(µ, δ2) =
1√

2
∏
δx1

exp−
[log(x1)− µ)2]

2δ2
+

1√
2
∏
δx2

exp−
[log(x2)− µ)2]

2δ2
+ ... +

1√
2
∏
δxn

exp−
[log(xn)− µ)2]

2δ2

L(µ, δ2) =
n∏

i=1

1√
2
∏
δxi

exp−
[log(xi )− µ)2]

2δ2
(13)

L(µ, δ2) =
1

(
√

2
∏
δ2xi )

n
2

exp−
1

2δ2

n∑
i=1

[log(xi )− µ)2] (14)
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Maximum Likelihood Estimation

The value of µ and δ that maximize the likelihood function are maximum likelihood estimator
(MLE) denoted byµ̂ and δ̂. The parameters were obtained by partial derivation of the
log-likelihood function wrt toµ and δ

log L(µ, δ) =
−n
2

loge 2
∏
−
n

2
loge δ

2 −
1

2δ2

n∑
i=1

[ln(x)− µ] (15)

∂ log L(µ, δ)/∂µ =
1

2δ2

n∑
i=1

[ln(x)− µ]

∂ log L(µ, δ)/∂µ = 0

1
2δ2

∑n
i=1[ln(x)− µ] = 0∑n

i=1(log(x)− µ) = 0
log
∑

x = nµ

µ̂ = log
∑

x
/
n (16)

Partial differentiation of equation (15) wrt to δ2yielded δ2 =
∑n

i=1(log(xi )− µ)
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Maximum Likelihood Estimation

Pareto Distribution

f(x) =
βλβm

xβ+1
i

(17)

The likelihood functions for n-observation household incomex1, x2, ..., xn, considering Pareto pdf;

L(β, λ) =
βλβm1

x
β+1
1

+
βλβm2

x
β+1
2

+ ...+
βλβmn

x
β+1
n (18)

L(β, λ) = βnλnβm
∏n

i=1
1

x
β+1
i

loge L(β, λ) = n lnβ + nβλm − (β + 1)
n∑

i=1

ln xi (19)

The partial derivation the Pareto logarithm likelihood function wrt to each parameters yielded

β̂ = n∑
i (ln xi−lnλm)

with s.e(β̂) = β̂
/
n



Maximum Likelihood Estimation

Extreme Value Distribution

L(µ, δ) =
1

δ
e(x1−µ)δ exp[−e

(x
1
−µ)δ

] +
1

δ
e(x2−µ)δ exp[−e(x2−µ)δ ] + ... +

1

δ
e(xn−µ)δ exp[−e(xn−µ)δ ] (20)

L(µ, δ) =
n∏

i=1

1

δ
e(xi−µ) exp [−e(x

i
−µ)δ]

L(µ, δ) = n
δ
e
∑

(x−µ)δ exp[−e
∑

(x−µ)δ]

loge L(µ, δ) = n log δ +
∑

(x − µ)δ − e
∑

(x−µ)δ
(21)

The parameters of the extreme distribution of any Types can be obtained by partial differential
of loge L(µ, δ) wrt to the parameter of interest.

The root of equation of this distribution is of multiple origin.

14 / 27



Graphical Evaluation

Theoretical Distribution Function vs. Empirical Distribution Model.

The standard theoretical distribution function (t.d.f) shapes will be compared with empirical
distribution function (e.d.f) fitted. It will be ideal to check how well the main body and tails of
the e.d.f visually matched the t.d.f.? The histogram, density plots and Quantile-Quantile (Q-Q)
plot shall be used for this comparisons.

The graphical technique is for determining if a data set comes from a known population
distributions.

Goodness of Fit(GOF)

Knowing how good our fit of the pdf to the data required a pragmatic approach. If only
descriptive statistical information is available, then a simple visual comparison will be sufficient
if the data is free of many extreme values. A further check after the parameter estimation
process will be more reasonable.

The goodness of fit tests relevant to determining the most suitable statistical distribution for the

data are Kolmogorov-Smirnov (KS), Akaike’s Information Criterion (AIC) and Bayesian

Information Criterion (BIC). The model with the minimum AIC value is selected as the best fit

model. The AIC usually be used.
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Computational Procedure

Fitting the most adequate distribution for the household income data
begun with the exploratory data analysis (EDA)using histogram and
skewness-kurtosis plot provided by the descdist function in R package
which suggested the kind of pdf that suits the data, this was also
compared with easyfit software suggested pdfs. The plots are to show
presence or absent of skewness that is the behaviour in the tails and
outliers in a data and skewness.

The probability curve on histograms can be graphically compared to the
standard shapes associated to the suspecting probability distributions. A
non-zero skewness reveals a lack of symmetry of the empirical distribution,
while the kurtosis value quantities the weight of tails in comparison to the
normal distribution for which the kurtosis equals 3.

Computational schemes to estimates parameters and graphically evaluate
the three major distributions suspected was formulated in R-packages:
library(”stats4””fitdistrplus”,”descdist”,”MASS”,”fBasics”)
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Graphical Distribution Suggestions

Fig 1
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Results and Discussion

Table 1

Table 2

Table 3
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Graphical Evaluation of Pareto Distribution

* Plot of varying λ-the Shape parameter

Fig 2
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Plot of varying β-Parameter of Pareto Distribution)
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Graphical Evaluation

Figure: Fig 5:Pareto Fitted Parameter’s CDF Plot 21 / 27



Graphical Evaluation of Log-normal Function Fit

Histogram and theoretical densities
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Graphical Evaluation of Matching Moment & Maximum
Likelihood Estimations
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Graphical Evaluation Of Distribution Fits on Data
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Conclusions

Cullen d Frey graph provided by the descdist function in R and Easyfit software both agree on significant fit of normal,
log-normal, weibull, Pareto, gamma and beta distributions.
However, the underlying theoretical properties of lognormal, Pareto and Extreme value distribution relating to the household
income data at hand guided our choice of their use.

From the Table 1; the matching moment method (MME) and maximum likelihood method (MLE) produced 11.328105 and
11.44235 logarithm arithmetic mean with standard deviation of 1.996814 and 0.9834032 respectively. Aikakes information
criterion values put the MLE at 12848.56 less than 13188.18 for the MME.

The Method of maximum likelihood was used to estimate the parameters for the three distribution under consideration and the
parameters for each model were used to randomly generated 100 samples, 200 samples and 500 samples each for the respective
distributions. The likelihood value L(θ) of the parameters for each distribution was estimated and presented in table 2
above,showing that l(θ) value of log-normal distribution is larger at 100 samples, 200 samples and 500 samples implying that
the log-normal function is much consistent with the sample data.

The root of partially differentiated log-likelihood function of Pareto distribution with respect to the shape and location
parameters yielded (0.33,0.5) and (0.082402,0.07967)respectively. The plots of the fitted distribution with the two different
roots show little deviation(see fig 2,3 &4).

The extreme value distribution breaks down at the verge of estimation.
Fig 6 shows the points of the P-p plot falling approximately along the reference line,suggestion compatibility of the log-normal
distribution to the empirical income data. The Q-Q plot does not show any greater departure from the reference line(no
lack-of-fit), only for some pockets of extreme data point that could not be well capture by the distribution function.

The empirical and theoretical cumulative density function show the adequacy of the log-normal distribution to the data fit.Also

confirming log-normal to be more suitable in comparison to the Pareto is graphical evaluation of distribution fit to data, the

dotted blue line captured the movement of the data black-pointed well compared to the red and dotted green line representing

pareto of type I and II.
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THANK YOU ALL.

Thank you.........
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