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Abstract 

The detection of blockage in cylindrical pipes using diffusion magnetic resonance equation has 

been carried out in previous works. In this study, magnetic resonance imaging (MRI) has been 

employed to image the materials causing fluid blockage in a cylindrical pipe. The Bloch NMR 

flow equation has been solved analytically in cylindrical coordinates for flow of fluid in a 

radially symmetric cylindrical pipe. Based on the appropriate boundary conditions, the radial 

axis was varied to depict blockage in the pipe. The gradient pulse for fluid spin excitation has 

been designed such that it undergoes exponential rise and fall. The results obtained showed that 

the graphical pattern changed from vertical orientation (free flow) to horizontal orientation 

(partial blockage), an indication of presence of materials that may cause obstruction to the fluid. 

Also, coagulation of colors indicated that obstruction caused is becoming more immense than 

previously noted.  One similarity between the plaques imaged is that as the time is varied, they 

showed a drop in magnetization. This seems to lay credence to the fact that the model registers 

signal in its first few seconds or micro-seconds.   

 

Keywords: Bloch NMR diffusion equation, Cylindrical pipe, Plaque, Magnetic resonance 

imaging. 
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Introduction 

Magnetic Resonance Imaging (MRI) is a recent approach adopted in the diagnosis of ailments 

and diseases in humans without surgical invasion. It can also be used to determine problems 

associated with blockage in cylindrical pipes. It provides accurate assessment of the individual 

component or multi-component systems in a matter of minutes whereas traditional radioactive 

tracer techniques may take weeks for each component (Awojoyogbe, et al., 2011). This quick 

rate of assessment is possible because fluids exhibit random molecular motion of spins. These 

NMR spins are always in motion, an action that makes them behave like molecular magnets 

(Yusuf, et al., 2011). The rate of their signal loss or signal attenuation could be easily detected 

through magnetic resonance coupled with the fact that the molecules of fluids carry magnetic 

moments with them.  
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The detected signals usually contain rich fluid flow information and could signify whether or not 

a problem exists at any point in the flow field. Though not widely known, it has been noted that 

MRI is capable of quantifying diffusion movement of molecules because of uniqueness in 

relaxation times - 1T  and 2T  (Yusuf, et al., 2010).    

  

There have been several methods adopted in detecting blockage in fluid pipeline. Yuan et al., 

(2014) used time splitting algorithms and Godunov mixed format to simulate the pulse 

propagation in the blocked pipelines. Another technique used by Sattar et al., (2008) is the 

system frequency response. This is a technique whereby the frequency response is used in the 

detection of partial blockages in a pipeline. Similar to this is the method adopted by Mohapatra 

et al., (2006) for the detection of partial blockages in single pipelines by the frequency response 

method. Wang et al., (2005) also investigated analytically the effects of a partial blockage on 

pipeline transients. This is done when a partial blockage is simulated using an orifice equation. 

The influence of the blockage of flow in the unsteady pipe flow is then considered in the 

equation using a Dirac delta function. 

 

Diffusion Magnetic Resonance Imaging (DMRI), being a viable alternative, is one of the most 

rapidly evolving techniques in the MRI field. Diffusion and flow can be measured very 

delicately and accurately using magnetic resonance imaging (Hazlewood et al., 1974). 

Coefficient of diffusion of a substance defined as the amount of material that diffuses in a certain 

time plays a vital role in the detection of blockage in a pipe using MRI. Random diffusion 

motion of water molecules has intriguing properties depending on the physiological and 

anatomical environment of the organisms being studied. These are the principles being exploited 

by the method of DMRI.   

 

In this study, we have applied the same principle to radially symmetric cylindrical pipe under the 

influence of radiofrequency field as a probe to perturb fluid molecules within the pipe. A Radio 

Frequency (RF) transmitter is needed to transmit energy into the fluid under consideration in the 

cylinder in order to “activate” the nuclei so that they emit a signal (Waldo and Arnold, 1983). 

The process undergoes the following four stages: (1) a magnetic field B0 is applied, (2) the 

sample responds to B0 (3) a radio frequency pulse or a train of radio frequencies pulses is applied 
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during a limited time and (4) the system relaxes. The relaxation process itself is referred to as the 

free induction decay. The Free Induction Decay (FID) is the time-domain signal obtained during 

the relaxation process. Summarily, it is the observable NMR signal generated by non-equilibrium 

nuclear spin magnetization precessing about the magnetic field conventionally along z direction 

(Hopf et al., 1973), which is analyzed for information mining. This time-domain signal is 

typically digitized and then Fourier transformed in order to obtain a frequency spectrum of the 

NMR signal, that is, the NMR spectrum (Duer, 2004).  

 

Methods 

Diffusion Magnetic Resonance Equation in Radially Symmetric Cylindrical Pipe

 

From Yusuf et al., (2015), the diffusion magnetic resonance equation in a radially symmetric 

cylindrical coordinates is given as: 

𝜕𝑀𝑦

𝜕𝑡
= 𝐷 (

𝜕2𝑀𝑦

𝜕𝑟2 +
1

𝑟

𝜕𝑀𝑦

𝜕𝑟
+

𝜕2𝑀𝑦

𝜕𝑧2 ) +
𝐹𝑜

𝑇𝑜
𝛾𝐵1(𝑡)                                                                  (1) 

Equation (1) can be expressed in the form: 

     𝑀𝑦 = 𝐹(𝑟, 𝑧)𝑈(𝑡) + 𝑤𝑐(𝑡)    (2) 

with     𝑤𝑐(𝑡̇) =
𝐹𝑜

𝑇𝑜
𝛾𝐵1(𝑡)     (3) 

      𝑤𝑐(𝑡) = ∫
𝐹𝑜

𝑇𝑜
𝛾𝐵1(𝑡)

𝑡0

0
𝑑𝑡    (4)

 
Using the method of separation of variables (MSV),  

     𝑀𝑦 = 𝐹(𝑟, 𝑧)𝑈(𝑡)       (5) 

Hence, the following two differential equations evolve:    

     
𝑑𝑈(𝑡)

𝑑𝑡
+ 𝜆2𝐷𝑈(𝑡) = 0     (6) 

    
𝜕2𝐹

𝜕𝑟2 +
1

𝑟

𝜕𝐹

𝜕𝑟
+

𝜕2𝐹

𝜕𝑧2 +𝜆2𝐹 = 0     (7) 

By integrating equation (6), the general solution is: 

    𝑈(𝑡) = 𝐶1𝑒−𝜆2𝐷𝑡      𝜆 = 1, 2, … , …,      (8) 

where 𝐶1 is the arbitrary constant of integration. 
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In order to solve (7), the same method of separation of variables is followed:  

     𝐹 = 𝑄(𝑟)𝑍(𝑧)       (9) 

The expression on the right hand side of (9) can be written as a product function of 𝑄(𝑟) and  

𝑍(𝑧) only. The first function is in term of (𝑟) and the second function is in term of 𝑧 only. Both 

sides must be equal to a constant, say−𝜇2, in order to obtain solutions that will not be identically 

zero. The following two differential equations evolve; 

     
𝜕2𝑄

𝜕𝑟2
+

1

𝑟

𝜕𝑄

𝜕𝑟
+ 𝜇2𝑄 = 0     (10) 

and      
𝜕2𝑍

𝜕𝑧2 −𝛽2𝑍 = 0      (11) 

where we have  

     𝛽2 = 𝜇2 − 𝜆2      (12) 

It could be noted that from equation (10), a Bessel differential equation evolves and its solution 

is given as 

    𝐹(𝑟) = 𝐶2𝐽0(𝜇𝑟) + 𝐶3𝑌𝑚(𝜇𝑟)    (13) 

where 𝐽0(𝜇𝑟) is the Bessel function of the first kind, of order zero and 𝑌𝑚(𝜇𝑟) is the Bessel 

function of the second kind, of order 𝑚. 𝐶2 𝑎𝑛𝑑 𝐶3  are constants. 

Also from (11),  𝑍(𝑧) = 𝐶4𝑒𝛽𝑧 + 𝐶5𝑒−𝛽𝑧      (14) 

Consequently, the solutions to the equations are: 

   𝑈(𝑡) = 𝐶1𝑒−𝜆2𝐷𝑡 .   𝜆 = 1, 2, … , …,     (15) 

   𝐹(𝑟) = 𝐶2𝐽0(𝜇𝑟) + 𝐶3𝑌𝑚(𝜇𝑟) .     (16) 

   𝑍(𝑧) = 𝐶4𝑒𝛽𝑧 + 𝐶5𝑒−𝛽𝑧 .      (17) 

Combining these solutions for the diffusion Equation (1), this gives the product of the quantities 

in (15), (16) and (17) plus ∫ 𝑤𝑐(𝑡̇)
𝑡0

0
𝑑𝑡.

 
    𝑀𝑦 = 𝑀𝑦(𝑟, 𝑧, 𝑡) = 𝐹(𝑟)𝑍(𝑧)𝑈(𝑡) + ∫ 𝑤𝑐(𝑡̇)

𝑡0

0
𝑑𝑡   (18) 

         𝑀𝑦(𝑟, 𝑧, 𝑡) = {𝐶2𝐽0(𝜇𝑟) + 𝐶3𝑌𝑚(𝜇𝑟)}{𝐶4𝑒𝛽𝑧 + 𝐶5𝑒−𝛽𝑧}{𝐶1𝑒−𝜆2𝐷𝑡} + ∫ 𝑤𝑐(𝑡̇)
𝑡0

0
𝑑𝑡  (19) 

 

Initial and Boundary Conditions to Determine Blockage of Fluid at any Point in a 

Cylindrical Geometry Using Diffusion Magnetic Resonance Equation 

In order to examine the behaviour of fluid flow at the point of blockage, the initial and boundary 

conditions used by Spiegel (1974) for heat flow to determine the temperature of molecules of 

fluid at any point in cylinder will now be adopted to determine the magnetization of fluid at the 
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point of blockage using the diffusion equation. The nature of the blockage which could be partial 

or total will then be examined. The boundary conditions are:  

             𝑖) 𝑀𝑦(𝑟, 𝑧, 0) = 𝑀𝑖(𝑟, 𝑧);  

𝑖𝑖) 𝑀𝑦(𝑟, 0, 𝑡) = 0;   

𝑖𝑖𝑖)𝑀𝑦(𝑟, 𝐿, 𝑡) = 0;   

𝑖𝑣)𝑀𝑦(𝑎, 𝑧, 𝑡) = 0; 

   𝑣)|𝑀𝑦(𝑟, 𝑧, 𝑡)| < 𝑀,  

                                                                  𝑀 = 1,2,3 … 𝑖. 𝑒. 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠      (20) 

where 𝑟 is the space depicting the blockage and 𝑧 is the direction of flow and both are defined as  

     0 ≤ 𝑟 < 𝑎;    0 < 𝑧 < 𝐿;    𝑡 > 0   

The boundary conditions are now applied in evolving the model equation that will be used to 

determine the blockage in the cylinder. 

Firstly, 𝑟 = 0, 𝑌𝑚(𝜇𝑟) → −∞; to keep the solution finite, 𝐶3 must be zero. Thus the solution 

becomes 

   𝑀𝑦(𝑟, 𝑧, 𝑡) = {𝑒−𝜆2𝐷𝑡}{𝐶2𝐽0(𝜇𝑟)}{𝐶4𝑒𝛽𝑧 + 𝐶5𝑒−𝛽𝑧}    (21) 

From the second boundary condition, we see that  

𝑀𝑦(𝑟, 0, 𝑡) = {𝑒−𝜆2𝐷𝑡}{𝐽0(𝜇𝑟)}{𝐶4 + 𝐶5} = 0                                                                          (22) 

So that we must have 𝐶4 + 𝐶5 = 0  implying that  𝐶5 = −𝐶4 

then (21) becomes 

𝑀𝑦(𝑟, 𝑧, 𝑡) = {𝑒−𝜆2𝐷𝑡}{𝐽0(𝜇𝑟)}{𝑒𝛽𝑧 − 𝑒−𝛽𝑧} = 0                                                                (23) 

From the third condition, we have 

𝑀𝑦(𝑟, 𝐿, 𝑡) = {𝑒−𝜆2𝐷𝑡}{𝐽0(𝜇𝑟)}{𝑒𝛽𝐿 − 𝑒−𝛽𝐿} = 0                                                              (24) 

which can be satisfied with 𝑒𝛽𝐿 − 𝑒−𝛽𝐿 = 0 ,                    

𝑒𝛽𝐿 . 𝑒𝛽𝐿 = 𝑒−𝛽𝐿 . 𝑒𝛽𝐿 = 1 = 𝑒2𝑘𝜋𝑖                                                                                   (25) 

Note that        𝑒𝑖𝑥 = 𝑐𝑜𝑠𝑥 + 𝑖𝑠𝑖𝑛𝑥              (26) 

and that implies 𝑒2𝜋𝑖 = 𝑐𝑜𝑠2𝜋 + 𝑖𝑠𝑖𝑛2𝜋 = 1 = 𝑒2𝑘𝜋𝑖 .  𝑘 = 0, 1, 2, … …            (27) 

∴ 𝑒2𝛽𝐿 = 𝑒2𝑘𝜋𝑖               𝑘 = 0, 1, 2, … ..                                                                                 (28) 
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It follows that we must have 2𝛽𝐿 = 2𝑘𝜋𝑖  

or                     𝛽 =
𝑘𝜋𝑖

𝐿
,                          𝑘 = 0, 1, 2, … …                                                         (29) 

Using this in (23), it becomes 

𝑀𝑦(𝑟, 𝐿, 𝑡) = {𝐶𝑒−𝜆2𝐷𝑡}{𝐽0(𝜇𝑟)}𝑠𝑖𝑛
𝑘𝜋𝑧

𝐿
= 0                                                               (30) 

where 𝐶 is a new constant. 

From the fourth condition, we obtain 

𝑀𝑦(𝑎, 𝑧, 𝑡) = {𝐶𝑒−𝜆2𝐷𝑡}{𝐽0(𝜇𝑎)}𝑠𝑖𝑛
𝑘𝜋𝑧

𝐿
= 0                                                            (31) 

which can be satisfied only if 

                                                     {𝐽0(𝜇𝑎)} = 0                                                                (32) 

                                                      𝜇𝑎 = 𝑠1, 𝑠2, ….                                                             (33) 

                                                     𝜇 =
𝑠1

𝑎
,
𝑠2

𝑎
, ….                                                              (34) 

where 
𝑠𝑚

𝑎
(𝑚 = 1,2, … . )is the positive root of the Bessel function {𝐽0(𝑥)} = 0.  

Now from (12), (29) and (34), it follows that: 

𝜆2 = (
𝑠𝑚

𝑎
)2 − (

𝑘𝜋𝑖

𝐿
)2  = (

𝑠𝑚

𝑎
)2 + (

𝑘𝜋

𝐿
)2                                                                    (35) 

so that a solution satisfying all the boundary conditions except the first is given by  

𝑀𝑦(𝑟, 𝑧, 𝑡) = {𝐶𝑒−𝐷𝑡(
𝑠𝑚
𝑎

)2+(
𝑘𝜋
𝐿

)2

} {𝐽0 (
𝑠𝑚

𝑎
𝑟)} 𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿
                                             (36) 

where 𝑘 = 1,2,3, … ..; 𝑚 = 1,2,3, …. 

Replacing 𝐶 𝑏𝑦 𝐶𝑘𝑚 and summing over 𝑘 𝑎𝑛𝑑 𝑚 we obtain by the superposition principle the 

solution 

𝑀𝑦(𝑟, 𝑧, 𝑡) = ∑ ∑ {𝐶𝑘𝑚𝑒−𝐷𝑡(
𝑠𝑚
𝑎

)2+(
𝑘𝜋
𝐿

)2

} {𝐽0 (
𝑠𝑚

𝑎
𝑟)} 𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿

∞

𝑚=1

∞

𝑘=1

                      (37) 

The first condition in (3.68) now leads to 

𝑀𝑖 (𝑟, 𝑧) = ∑ ∑ {𝐶𝑘𝑚} {𝐽0 (
𝑠𝑚

𝑎
𝑟)} 𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿

∞

𝑚=1

∞

𝑘=1

                                                       (38) 



7 
 

 This can be written as 

𝑀𝑖 (𝑟, 𝑧) = ∑[ ∑ {𝐶𝑘𝑚} {𝐽0 (
𝑠𝑚

𝑎
𝑟)}]𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿
= ∑ 𝑏𝑘𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿

∞

𝑘=1

∞

𝑚=1

∞

𝑘=1

                          (39) 

   𝑏𝑘 =

∑ {𝐶𝑘𝑚} {𝐽0 (
𝑠𝑚

𝑎
𝑟)}                                                                                         (40)∞

𝑚=1    

  

It follows from this that 𝑏𝑘 are the Fourier coefficients obtained when 𝑀𝑖(𝑟, 𝑧) is expanded into a 

Fourier sine series in 𝑧 (𝑟 being kept constant).  

Thus  

𝑏𝑘 =
2

𝐿
∫ 𝑀𝑖(𝑟, 𝑧)𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿

1

0

𝑑𝑧                                                                                          (41) 

We now find 𝐶𝑘𝑚 from the expansion in equation (39). Since 𝑏𝑘is a function of 𝑟 this is simply 

the expansion of 𝑏𝑘 into a Bessel series. 

Consequently,  

𝐶𝑘𝑚 =
2

𝐽1
2 (

𝑠𝑚

𝑎 )
∫ 𝑟𝑏𝑘𝐽0 (

𝑠𝑚

𝑎
𝑟)

1

0

𝑑𝑟                                                                                 (42) 

Using (40),  

𝐶𝑘𝑚 =
4

𝐽1
2 (

𝑠𝑚

𝑎 ) 𝐿
∫ ∫ 𝑟𝑀𝑖(𝑟, 𝑧)𝐽0 (

𝑠𝑚

𝑎
𝑟) 𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿

1

0

𝑑𝑟𝑑𝑧
1

0

                                       (43) 

The required solution is  

𝑀𝑦(𝑟, 𝑧, 𝑡) = ∑ ∑ {𝐶𝑘𝑚𝑒−𝐷𝑡(
𝑠𝑚
𝑎

)2+(
𝑘𝜋
𝐿

)2

} {𝐽0 (
𝑠𝑚

𝑎
𝑟)} 𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿

∞

𝑚=1

                       

∞

𝑘=1

     (44) 

with 𝐶𝑘𝑚in (42) as coefficient.         

With the radio frequency (rf) field, the solution becomes 

𝑀𝑦(𝑟, 𝑧, 𝑡) = ∑ ∑ {𝐶𝑘𝑚𝑒−𝐷𝑡(
𝑠𝑚
𝑎

)2+(
𝑘𝜋
𝐿

)2

} {𝐽0 (
𝑠𝑚

𝑎
𝑟)} 𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿

∞

𝑚=1

∞

𝑘=1

+
𝑎𝐹𝑜

𝑤𝑇𝑜
𝛾 sin(𝑤𝑡) (45)

 

Assume 𝑀𝑖(𝑟, 𝑧) = 𝜎0, a constant. 

𝐶𝑘𝑚 =
4𝜎0

𝐽1
2 (

𝑠𝑚

𝑎 )
∫ ∫ 𝑟𝐽0 (

𝑠𝑚

𝑎
𝑟) 𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿

1

0

𝑑𝑟𝑑𝑧
1

0

                                                             (46) 
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𝐶𝑘𝑚 =
4𝜎0

𝐽1
2(

𝑠𝑚

𝑎 )𝐿
{∫ 𝑟𝐽0 (

𝑠𝑚

𝑎
𝑟) 𝑑𝑟

1

0

∫ 𝑠𝑖𝑛
𝑘𝜋𝑧

𝐿

1

0

𝑑𝑧                                                           (47) 

=
4𝜎0

𝐽1
2 (

𝑠𝑚

𝑎 )
{

𝐽1 (
𝑠𝑚

𝑎 )

𝑠𝑚

𝑎

} {
1 − 𝑐𝑜𝑠𝑘𝜋

𝑘𝜋
}                                                                                        (48) 

=
4𝜎0(1 − 𝑐𝑜𝑠𝑘𝜋)

𝑘𝜋
𝑠𝑚

𝑎 𝐽1 (
𝑠𝑚

𝑎 )
                                                                                                                  (49) 

Substituting for 𝐶𝑘𝑚 in equation (44) 

 

𝑀𝑦(𝑟, 𝑧, 𝑡) =
4𝜎0

𝜋
∑ ∑ {

(1 − 𝑐𝑜𝑠𝑘𝜋)

𝑘𝜋
𝑠𝑚

𝑎 𝐽1 (
𝑠𝑚

𝑎 )
𝑒−𝐷𝑡(

𝑠𝑚
𝑎

)2+(
𝑘𝜋
𝐿

)2)} {𝐽0 (
𝑠𝑚

𝑎
𝑟)} 𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿
    (50)

∞

𝑚=1

∞

𝑘=1

 

      

 The Radio Frequency (RF) Field 

The Radio Frequency (RF) transmitter is needed to transmit energy into the sample of the fluid 

under consideration in the cylinder in order to “activate” the nuclei so that they emit a signal. 

The transmitter coil applies to the sample an RF magnetic field 𝑩𝟏(𝒕) where 𝑩𝟏(𝒕) =
𝑏𝐵1(𝑡)𝑐𝑜𝑠𝑤𝑡. Such a field is said to be linearly polarized, since it oscillates in a single direction. 

w is called the irradiation frequency; it is also the reference frequency of the RF transmitter and 

the detection system. w has value - 1x108 rad. s-1 (Waldo and Arnold, 1983). 

Therefore, to find the solution of  

𝑤𝑐(𝑡) = ∫
𝐹𝑜

𝑇𝑝
𝛾𝐵1(𝑡)

𝑡0

0

𝑑𝑡                                                                                                        (51) 

the radio frequency field (rf) is defined as 

𝑩𝟏(𝒕) = 𝑏𝐵1(𝑡)𝑐𝑜𝑠𝑤𝑡                                                                                                           (52) 

   𝑤𝑐(𝑡) = ∫
𝐹𝑜

𝑇𝑝
𝑏𝛾𝐵1(𝑡)𝑐𝑜𝑠𝑤𝑡

𝑡0

0
𝑑𝑡  where  

1T

M
F o

o =    and   
21

11

TT
Tp +=                 (53)

 Consequently,  

∫
𝑏𝐹𝑜

𝑇𝑝
cos (𝑤𝑡)

𝑡0

0

𝑑𝑡 =
𝑏𝐹𝑜

𝑤𝑇𝑝
𝛾 sin(𝑤𝑡)                                                                               (54) 

Finally, the solution for the magnetization 𝑀𝑦, of any molecule of the fluid at any point (𝑟, 𝑧, 𝑡) 

in the cylinder is given as 
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𝑀𝑦 (𝑟, 𝑧, 𝑡) =
4𝜎0

𝜋
∑ ∑ {

(1 − 𝑐𝑜𝑠𝑘𝜋)

𝑘
𝑠𝑚

𝑎 𝐽1(
𝑠𝑚

𝑎 )
𝑒−𝐷𝑡(

𝑠𝑚
𝑎

)2+(
𝑘𝜋
𝐿

)2

} {𝐽0 (
𝑠𝑚

𝑎
𝑟)} 𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿

∞

𝑚=1

∞

𝑘=1

+
𝑏𝐹𝑜

𝑤𝑇p
𝛾sin (𝑤𝑡) 

            (55)       

where the diffusion coefficient 𝐷 = −
𝑉2

𝑇𝑝
 was accurately defined in terms of MRI flow 

parameters fluid velocity, v , 1T and 2T  relaxation rates (as 
21

11

TT
Tp += ), 𝑠𝑚 = 𝛾𝐺𝛿  and 

1

0
0

T

M
F = , γ = gyromagnetic ratio, RF = gradient pulse magnitude and δ = gradient pulse 

duration. J0 is the Bessel function of the first kind (order 0), J1 is the Bessel function of the first 

kind (order 1), σ0 is a function of the equilibrium magnetization while a is the radius of the pipe.   

From equation (55), the transverse magnetization is given as follows: 

𝑀𝑦 (𝑟, 𝑧, 𝑡) =
4𝜎0

𝜋
∑ ∑ {

(1 − 𝑐𝑜𝑠𝑘𝜋)

𝑘
𝑠𝑚

𝑎 𝐽1(
𝑠𝑚

𝑎 )
𝑒−𝐷𝑡(

𝑠𝑚
𝑎

)2+(
𝑘𝜋
𝐿

)2

} {𝐽0 (
𝑠𝑚

𝑎
𝑟)} 𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿

∞

𝑚=1

∞

𝑘=1

+
𝐹𝑜

𝑇p
∫ 𝛾𝐵1

𝑡

𝛿

(𝑡)dt 

 

             (56) 

If the radio frequency (RF) magnetic field is defined as follows (Price, 1997; 1998): 

rtGtB )()(1 =

                  

(57) 

Therefore, the integral in equation (56) becomes: 

𝐹𝑜

𝑇p
∫ 𝛾𝐵1

𝑡

𝛿

(𝑡)dt =
T2M0r

T1 + T2
∫ 𝐺

𝑡

𝛿

(𝑡)dt 

(58) 

If it is assumed that the gradient pulse 𝐺(𝑡), is designed such that 𝐺(𝑡) under goes exponential 

rise and fall (Price, 1997, 1998 and Dada et al., 2015), then we have: 










+
−=

21

exp)(
TT

t
gtG

     

         (59) 

where g is the magnitude of the gradient pulse and 𝛿  is the gradient pulse duration. The integral 

in equation (58) becomes: 

𝐹𝑜

𝑇p
∫ 𝛾𝐵1

𝑡

𝛿
(𝑡)dt =

T2M0r

T1+T2
(T1 + T2)gexp (

(t−δ)

T1+T2
) = −gT2M0rexp (

(t−δ)

T1+T2
)  

         

  

    (60) 
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Using equation (60) and setting 𝑘 = 1, equation (56) becomes: 










+

−
−−





































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


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




















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


+








−










−
= 



= 21

020

1

22

1

0 )(
expsinexp

)cos1(4
),,(

TT

t
rMgT

L

z
r

a

s
J

La

s
Dt

a

s
J

a

s
tzrM m

m

m

mm

y







 

 

 (61) 





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−
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

   

            

 (62) 

where L is the length of pipe used. 

 

For simulation, we consider oil wax and oil based mud as two materials responsible for 

blockages in the pipe. Given that 𝑇1 and 𝑇2 are the relaxation times of the fluid conditions within 

the pipe, as shown in table 1: 

 

Material T1 (s) T2 (s) D (cm2s-1) D (m2s-1) 

Oil 0.84 0.325 0.0000052 5.2E-10 

Crude oil 0.5 0.486 0.000002 2.0E-10 

Oil wax 1.1195 0.5432 0.0000035 3.5E-10 

 

Table 1: Fluid Properties of Oil, Crude oil and Oil wax 

 

NMR fluid properties at reservoir conditions are 𝐵0 = 0.0176T, TE = 1.2 ms, G = 18 gauss/cm 

(Coates et al., 1999) where 𝐵0is the static field; 𝐺  is the gradient field and 𝑇𝐸 is the echo time. 

In order to improve the contrast of the imaging method proposed in this study, we shall modify 

the definition of 𝑆𝑚 as follows:     

𝑆𝑚 =
𝑇1

𝑇2
𝛾g𝛿(𝐹𝑂𝑉)

           

(63) 

where FOV is the field of view, g is the gradient pulse magnitude and δ is the gradient pulse 

duration. This expression indicates that the selection of a value for the index 𝑚 translates into 
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choosing an observed set of relaxation times. Since 𝜎𝑜 is a constant, it can be assumed that 𝜎𝑜 =

𝑀𝑜, Equation (62) for just a given set of relaxation times becomes: 

𝑀𝑦(𝑟, 𝑧, 𝑡)|𝑟1𝑟2

=
8𝑀𝑜

𝜋
{

1

(
𝑇1

𝑎𝑇2
𝛾g𝛿(𝐹𝑂𝑉)) 𝐽1 (

𝑇1

𝑎𝑇2
𝛾g𝛿(𝐹𝑂𝑉))

exp [−𝐷𝑡(
𝑇1

𝑎𝑇2
𝛾g𝛿(𝐹𝑂𝑉))2

+ (
𝜋

𝐿
)2] {𝐽𝑜 (

𝑇1

𝑎𝑇2
𝛾g𝛿(𝐹𝑂𝑉)𝑟] sin (

𝜋𝑧

𝐿
)} − g𝑇2𝑀𝑜𝑟 exp (−

(𝑡 − 𝛿)

𝑇1 + 𝑇2
)   (64) 

 

Results 

Imaging of Flow of Oil with Lateral Adjustments 

 

Figure 1a: Imaging of blockage with lateral adjustment = 1 and radial 

adjustment = 0.05 

 

Figure 1b: Imaging of blockage with lateral adjustment = 5 and radial 

adjustment = 0.05 

Figure 1c: Imaging of blockage with lateral adjustment = 10 and radial 

adjustment = 0.05 
 Figure 1d: Imaging of blockage with lateral adjustment = 20 and 

radial adjustment = 0.025 
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Imaging of Flow of Oil with Radial Adjustment 

 

Figure 2a: Imaging of blockage with lateral adjustment = 20 and radial 

adjustment = 0.0125 

 

Imaging of Flow of Oil with Time Adjustment 

 

Figure 3a: Imaging of blockage with time adjustment = 0.05 and radial 

adjustment = 0.05 

 

Figure 3b: Imaging of blockage with time adjustment = 0.1 and radial 

adjustment = 0.05 

 

Figure 3c: Imaging of blockage with time adjustment = 0.5 and radial 

adjustment = 0.05 

 

Figure 3d: Imaging of blockage with time adjustment = 1 and radial 

adjustment = 0.05 
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Imaging of Oil Wax as a Causative Agent of Blockage with Time Adjustment 

 

Figure 4a: Imaging of blockage with time adjustment =5 and radial 

adjustment = 0.005 for oil wax 

 

Figure 4b: Imaging of blockage with time adjustment =10 and radial 

adjustment =0.005 for oil wax 

 

Figure 4c: Imaging of blockage with time adjustment = 15 and radial 

adjustment = 0.005 for oil wax 

 

Figure 4d: Imaging of blockage with time adjustment = 20 and radial 

adjustment = 0.005 for oil wax 

 

Imaging of Oil Based Mud (OBM) as a Causative Agent of Blockage with Time Adjustment 

 

Figure 5a: Imaging of blockage with lateral adjustment = 1 and radial 

adjustment = 0.5 for mud 

 

Figure 5b: Imaging of blockage with lateral adjustment =10 and radial 

adjustment = 0.5 for mud 
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Figure 5c: Imaging of blockage with lateral adjustment = 20 and radial 

adjustment = 0.5 for mud 

 

Figure 5d: Imaging of blockage with time adjustment = 0.05 and radial 

adjustment = 0.005 for mud 

 

Figure 5e: Imaging of blockage with time adjustment = 0.1 and radial 

adjustment = 0.005 for mud 

 

Figure 5f: Imaging of blockage with time adjustment =1 and radial 

adjustment = 0.005 for mud 

 

Figure 5g: Imaging of blockage with time adjustment =10 and radial 

adjustment =0.005 for mud 

 

Figure 5h: Imaging of blockage with time adjustment =1 and lateral 

adjustment =10 for mud 
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Figure 5i: Imaging of blockage with time adjustment =1 and lateral 

adjustment =1 for mud 

 

Figure 5j: Imaging of blockage with time adjustment =1 and lateral 

adjustment = 20 for mud 

 

 

Discussion of Results 

From equation (62) and the use of the relaxation parameters in Table 1, the possibility of 

performing computational MRI to image different components of obstruction or blockage in 

cylindrical pipe has been clearly demonstrated.  Unique images for oil, crude oil and wax were 

obtained. It would be observed that the images from oil are quite similar when values were 

varied laterally and radially (Figure 1a-d and 2a). They have vertical orientation, an indication of 

free flow condition of the fluid within the cylindrical pipe. 

However, from Figures 3a-3d and 4a-4d, the pattern changed from vertical to horizontal 

orientation with oil wax recording an initial negative magnetization. This is an indication of 

presence of materials that may cause obstruction to fluid flow.  More conspicuous is the pattern 

demonstrated by plots from the oil-based mud (figures 5a-5j). This coagulation of colors 

indicates that obstruction caused by mud could be more immense than that from oil wax.  

 

Conclusion 

Magnetic resonance imaging has been used to image the materials causing the blockage of fluid 

in a cylindrical pipe. The gradient pulse for fluid spin excitation has been designed such that it 

undergoes exponential rise and fall. One similarity between the two blockages imaged is that as 

the time is varied, they both showed a drop in transverse magnetization. This seems to lay 

credence to the fact that the model registers signal in its first few seconds or micro-seconds. 
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What is interesting in this work is that few NMR data are required for blockage imaging and the 

computational model is capable of interpolating for data points which are impossible to image 

directly because of NMR hardware restrictions.  
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