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Abstract

In this paper, we present a deterministic mathematical model of monkeypox virus by using both
classical and fractional-order differential equations. The model includes all of the possible interactions
that contribute to disease spread in the population. We investigate the model’s stability results in the
disease-free case when Ry < 1. When R < 1, we show that the model is stable, otherwise it is unstable.
To obtain the best fit that describes the dynamics of this disease in Nigeria, the model is fitted using the
nonlinear least square method on cumulative reported cases of monkeypox virus from Nigeria
between January to December 2019. Furthermore, adequate conditions for the existence and
uniqueness of the solution of the model have been proved. We run numerous simulations of the
proposed monkeypox model with varied input parameters to investigate the intricate dynamics of
monkeypox infection under the effect of various system input parameters. We investigate the system’s
dynamical behavior to develop appropriate infection control policies. This allows the public to
understand the significance of control parameters in the eradication of monkeypox in the population.
Lowering the order of fractional derivatives has resulted in significant modifications. To the
community’s policymakers, we offered numerous parameters for the control of monkeypox.

1. Introduction

Monkeypox is a zoonotic disease that causes the monkeypox virus. Although it has been spotted elsewhere in the
world, it is primarily found in Africa. Two outbreaks of a disease resembling the pox in groups of monkeys used
for a study led to the discovery of monkeypox in 1958. Since January 2022, several countries have reported cases
of monkeypox to the World Health Organization (WHO). As of June 15,2022, 2103 cases with laboratory
confirmation including one death had been reported to WHO [ 1, 2].

Direct contact with an infectious rash, scabs, or bodily fluids are other ways the virus can be transferred from
one person to another, transmission is also possible through respiratory secretions during prolonged face-to-
face contact or during sexual activity or another intimate physical contact[1, 3, 4].

Primarily, wild animals like African rats and monkeys transmit the virus to people. However, human-to-
human transmissions are also frequent in most of the reported cases. Animal to humans occurs as a result of
bites or scratches, the processing of bush meat, direct contact with bodily fluids, or consuming food
contaminated by rodents. Direct contact with sores and bodily fluids from infected patients can spread the
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infection. Researchers are investigating alternative ways the disease can spread, either through semen and
vaginal fluids or in respiratory droplets [1, 5].

Monkeypox symptoms range from person to person. Fever, headache, muscle aches, backaches, swollen
lymph nodes, chills, and exhaustion are among the typical symptoms of monkeypox. Most times, the symptoms
of monkeypox are usually a moderate illness and most people recover on their own within a few weeks. Those
with weak immune systems may have severe symptoms [1, 6]. The smallpox vaccine, antivirals, and vaccine
immune globulin developed to protect against smallpox can be used as an alternative to prevent the spread of
monkeypox but there is currently no proven, secure treatment for monkeypox virus infection. The vaccination
is currently unavailable because smallpox has been eradicated worldwide [7, 8].

The disease has attracted little attention in the past, which has contributed to a lack of understanding of its
transmission mechanisms. Despite this, quite a few researchers have attempted to use mathematical analysis to
study the dynamics of the Monkeypox virus. [9] developed and analyzed a deterministic mathematical model for
the Monkeypox virus. Their findings suggest that isolating infected individuals in the human population helps to
reduce disease transmission. Also, [10] established a mathematical model for the dynamics of monkeypox
transmission and presented it as a system of nonlinear differential equations. According to the numerical
simulation, people’s immune status influences how they recover after being infected with the orthopoxvirus.
Numerous mathematical models on infectious disease have been studied in order to gain a better understanding
of the transmission dynamics and different techniques to controlling the endemic disease (see [9, 11-17] for
examples).

To better understand the dynamics of Monkeypox, [ 18] developed a mathematical model. The findings
suggest that Monkeypox is under control and can be eradicated in a semi-endemic equilibrium through
vaccination. Monkeypox, on the other hand, cannot be eradicated by vaccination alone in a fully endemic
equilibrium. Furthermore, in the study of [19], the numerical simulations performed on the model revealed that
the infectious individuals in the human and non-human primate populations will die out during the study
period as a result of the proposed interventions. Researchers from several areas of science and engineering have
recently expressed an interest in modeling with fractional differential equations, particularly mathematical
modeling in epidemiology. The memory effect is one of the intriguing aspects of fractional-order models that
cannot be found in classical differential equations due to the various properties of fractional differential
equations, see for more details [20-23]. Several researchers have employed fractional differential equations to
represent various infectious and non-infectious diseases in the recent age. The COVID-19 infection is one of
these research topics that has been extensively examined and yielded useful results. [24—27] considers a
fractional model for COVID 19 based on the Caputo derivative. A fractional-order model has been used to study
tuberculosis with endogenous reactivation and exogenous reinfections [28]. A fractional-order HIV/AIDS
epidemic model with Mittag-Leffler kernel was also studied in [29]. Other models with fractional order
approach can be found in [30-33]. We first discuss the proposed model in detail in the integer order, and extend
the model into fractional-order and obtain the necessary results.

After reviewing several works on the monkeypox virus and its mechanisms of transmission, to the best of our
knowledge, this is the first work on the dynamics of the monkeypox virus with the fractional-order calculus. This
work aims to study the transmission dynamics and control of monkeypox in the population using a classical and
fractional-order model and to visualize how the memory index or fractional order parameter affects the
dynamics of monkeypox disease and to know if it may be used as control parameter or not. The remainder of this
scriptis arranged as follows: the model formulation and analyses of the monkeypox classical model are
presented in section 2, while the data fitting and parameter estimation are performed in section 3. In section 4,
the extension of the classical model to fractional-order and its results are presented. The analytical and
numerical analysis of the fractional derivative solution is reported in section 5, while the conclusion is given in
section 6.

2. Mathematical model and formulation

In this section, we develop a deterministic mathematical model of the monkeypox virus using some assumptions
by considering the transmission of monkeypox which involves humans and the rodents population. We
considered eight compartmental models; five human compartments and three rodent compartments.

The number of susceptible humans changes as a result of recruitment through birth rate or immigration ¢y,.
It’s decreased by natural death per capita rate y;,. and force of infection \;,. Hence, the rate of change in the
number of susceptible humans is:

Sh =& — O\ + 1) Sn
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Figure 1. Schematic diagram for monkeypox transmission.

The number of exposed humans is modeled by the force of infection \;,. It’s decreased by the rate 3, at which
they become infectious and the natural death per capita rate ;.. Thus, the rate of change in the number of
exposed humans is:

Ej = MSw — (uy, + B En

The number of Infectious humans increases with the rate of 3),Eg as a result of the transition from Exposed to
Infectious. Thus, decreasing by natural death per capita rate i, disease-induced death 6;, the rate at which they
recovered wand transit to clinically ill with the rate +y,. So, the rate of change in the number of infectious humans
is:

Iy=BEy — W+ v+ py + 60y
The number of clinically ill human increase as a result of those that need medical attention after being ill at the
rate 7. These individuals transit from the infectious compartment to the recovery state with the rate p. it’s

decreased by natural per capita death 11, disease-induced death §,. Therefore, the rate at which the number of
clinically ill human changes is given by:

Ch =l — (py, + 1, + 62)Ci

The number of recovered human population increases as a result of the transition from being clinically ill to
recovered compartments at the rate p. Then decreased by natural per capita death y;, those that recovered from
being infectious due to natural immunity with the rate wy. Thus, the rate of change in the population of
recovered humans is:

R,; = pC, + wly — p, Ry

The number of susceptible rodents changes as a result of recruitment through constant birth rate ¢,. They
become infected by interaction with infected rodents which is modeled by % 1t’s decreased by natural death per
capita rate y,. Hence, the rate of change in the population of susceptible rodents is:
! U
Sr = (rbr - F:ST - H’rST
The number of Exposed rodent increases with force of infection A, = 2. It’s decreased by the rate € at
which they transit to infectious class and natural death per capita rate . Hence the rate of change in the
population of exposed rodents is:

Er/ = AS, — (€E, + Mr)Ir

The number of Infectious rodents increases with the rate € at which exposed rodents become infectious. It’s
decreased by natural death per capita rate y,. Hence, the rate of change in the population of infected rodents is:

I' = €E, — p I

Therefore, based on the above descriptions, the corresponding mathematical equations are given by a system of
non-linear ordinary differential equations below:

3
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Table 1. Variables and description.

Variables Description

Si(?) Number of susceptible human

Ex(®) Number of exposed human

I,(1) Number of infectious human

Cu(®) Number of clinically ill human

Ry,(2) Number of recovered human

St Number of susceptible rodent

E(t) Number of exposed rodent

L(t) Number of infected rodent

Parameters Description

b, Recruitment into susceptible human class.

foR Recruitment into susceptible rodent class.

Lh Per capita natural death rate in humans

1y Per capita natural death rate in rodent

164 Disease progression rate from exposed to infectious
humans

[ Infectious human disease-induced death rate

b, Clinically ill human disease-induced death rate

y Clinicallyill rate

p Recovery rate of Clinically ill human

w Natural recovery rate due to immunity

0 Progression rate from exposed rate to infected rate

o) Contact rate between infected human and suscep-
tible human

e Contact rate between infected rats and susceptible
humans

o Contact rate between infected rats and susceptible
rodents

A Force of infection

Sh = & — M+ 1) S

E, AnSp — (uy, + B)Ey

I = BEn— @+ 7+, + )
Crh = M~ (p + , + 8)GC,
R, = pCp+ wly — p,Ry

Sr/ = & — NS — 1,5

E/ = \S, — (e+ p,)E,

Il = €E — u,l,

=
|

Given the force of infection A, = %2 + 22 guch that: % is the proportion of infected human and v, the rate
h

Nu N
at which susceptible human interact with infected human. 1{]— is the proportion of infected rodent and v, the
rate at which susceptible human interact with infected rodent.

The compartmental model in figure 1 represent the transmission of Monkey Pox.

The state variables and parameters are described in table 1.

2.1. Positivity and boundedness of the solution

Theorem 1. Let $,(0) = Sp, E4(0) = By 11(0) = Iy Cu(0) = Chy Ry(0) = Ry S,(0) = Sy, E(0) = Ey,
and I,(0) = I, betheinitial values of the state variables. If Sy, Ep, In,, Ch,» Ry, and S, are positive then it implies
that Sy (t), En(t), In(t), Cu(t), Ry(t), S,(t), E,(t) and1,(t) are positive for all time t > 0. However,

1~ ¢h : ¢r

im  sup Ny(t) < —and_ lim  sup N,(t) < —
— 0 t —> 00

t Hp Hy

Also, if Nj,, < i—h, then Nj,(t) < %, if N, < :’?—’ then N,(t) < % then, the feasible domain for the differential
h 'h Ly r

equation are given by
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NN, = {(Sh) Ep Iy Ciy Ry) CRY: S+ Ep+ Iy + G+ Ry, < ﬂ}
Hp
_ 3. d)r
nN, - (Sr: Eh Ir) C R+- Sr + Er + Ir < —_—
M

such that
5 3
n=mny X My CRL X R}
and we have that 1) is positive invariant.

Proof. Let Sy, En, Iny Chy» Rig> Sry» Er, and I, be positive, we want to show that the state variables are also
positive. From system (1) we have:

Sp=¢1 — O + 1) Sh
then,

S+ O+ 1) Sh = ¢y
Since ¢, > 0 it follows that,

S+ (An+ ) Sk = 0.
Now, we have:

ds
S—" > —(\y 4 py)dt )
h

By integrating equation(2) we have:
In(Sy) > —f(Ah + pydt + c.
Let A(t) = —f()\h + p,)dt, itimplies that
In(Sp(1)) = A(®) + ¢ 3

att = 0wehave
In(S,(0)) > A(0) + ¢ 4)
We subtract equations (4) from (3) to have

Sn(t)
In (m) > A1) — A(0)

Taking the exponential of both sides, we have:
Su(t) = Sp(0)eAD=AO0 > §,.(0) fort > 0
Since S,(0) = Sp, is positive, thatis, S, > 0for t > 0 itimplies that
Su(t) = Sp(0) > 0 fort > 0.

Wehave S;,(t) > Oforall t > 0 and we conclude that S(¢) is non-negative forall # > 0. Hence, we have §, > 0.
This is true in the same way for the other state variables. This shows that S;,(¢), E,(¢), I;(¢), C,(¢), Ry(t), S, (1),
E,(t) and I,(t) are positive for all time ¢ > 0. O

To describe the boundedness of solution, we use the theorem below:

Theorem 2. Given a positive set of solutions (S, (t), E,(¢), I,(t), Cu(t), Ry (t), S;(t), E,(t), I,(t)), there exists a
domain 1) in which this solution set is contained and bounded.

Proof. The total population for human is given by

Ni(t) = Su(t) + En(t) + In(t) + Cu(t) + Ru(t)
Such that

Ny (1) = () + Ei(6) + Li(®) + Cy() + Ry (1)
By simplification we have

an,

i &y — W (Sh + Ep 4 In + Cp 4+ Ry) — (61, + 6:Cp).
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ButN, = S, + E, + I, + C, + Rj.So, we have

% = ¢h - MhNh — (&0, + 6,Cp) = % — (¢r — :u’hNh) = —(&.I, + 6,C)

since I, and Cy, are positive, we have — (8,1, + 6, Cp) < (611, + 6, Gy). Itimplies that:

dN,
d—th — (¢ — pNw) = =11y + 62C) < (Sl + 5:Ci)
dN,
d—th — (&), — 1, Nu) < (6uTh + 6,C1) ()
In the absence of Monkey Pox in the population (I, = C, = 0), inequality (5) implies that:

dNj, dNj,

—_— = — upNp) € 0,=— < — N,

It (@5, — 1y Ny at (@5, — 1y Ny

= & < dt
(¢, — 1y Np)

Integrate both sides form t = 0and t = t;, we have

t, t,
f L < dr
o (¢ — ppNw) 0

we have

1

[—iln(m - :uhNh)] < [tg
Ky

o
This gives us
In (@), — ppNu(t5) — In(@; — pN(0)) = — gyt
then
IH(M) > e
¢y — 14 Nu(0)

Taking exponential of both sides we have:

@y — pyNi(ts) > et
@, — p,NR(0)
O — pNi(te) = (o) — 11, Ny (0)) e,

which gives

wpNL(t) < ¢y — (@), — 1, NR(0)) e Fats

b (G N0
My Ky

Ni(ts) < (6)

By taking the limit of inequality (6) as tx —> 00, we have

Np(ts) < 2

?
H

Thus, we have N, () < %.
h
Which implies that Nj, € [0, 2%]thatis lim  sup N, (t) = 2 andif Nj,, < 2, then Nj(t) < 2. Thus, N,
o t—> 00 o Hy I
is bounded. In the same way, we can demonstrate that the rodent population N, (¢) is bounded.
Therefore, this establishes the notion of 1y as required, that is, the solution to the model’s equations are

contained is positively invariant. So, we conclude that the model is epidemiologically feasible and well-posed in
7. O

2.2. Monkey Pox-Free Equilibrium (MFE)
The Monkey Pox-Free equilibrium Qurr = (S;5 B, I, CF, Ry, S, E, IY) is defined as the point at which
no disease is present in the population. All infected classes will be equal to zero.

6
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Thus, the Monkey Pox-Free equilibrium satisfies

QMFE = (Sl;k) E;;k) I;,k) C;lk) RIT) S;k) Er*w I;k) = (ﬂ) 0) O) 01 O) ﬂ) 0) O) (7)

:uh oy

2.3.Monkey Pox Endemic Equilibrium (MEE)
Let (ypp = (S5 EFY, X, GFF, R, %, E**, I*) be defined as the point where there is Monkey Pox in
the population. Here, all infected classes are not equal to zero. Consider the equations in system (1)

spr= @®)
An + 1y,
BiF = s ©)
B+
By putting the value of S;** in (9) we have,
A
Ef* = O : (10)
B+ pp) An + 1)
Also,
E**
I = S (11)
w7+ o+
By putting the value of E;"* in (9) we have,
A
I = L (12)
W+ v+ 6+ B+ pg) A+ 1)
Furthermore,
I**
P -+ 62 + My
By substituting the value of I** in (13) we have,
A
C;zk* _ VB Py, (14)
(p+ 62+ pp)(w + v+ & + ) (B + p) A + )
Also,
ok 1%
Hop
By substituting the value of C;* and I;"* in (15) we have,
P’Yﬁ)\hﬁﬁ;, + wﬁ/\h(ﬁh
RIT* _ (p+ 82+ pp) W+ v+ 81+ ) (B + 1) A+ 1) (W 7+ 61+ ) (B4 ) A+ 1) (16)
Fop
Which give:
RI* — PYBAR P b, + wBARDy
e
(p+ &+ p)w+y+ o+ B+ p)An+ ) W+ 7+ 0+ )8+ ) A+ )
17)
Similarly,
Nk b, EXF Ard, IFF — A+ g,

r

SNt O+ T (e O+ pp,
Hence, the Monkey Pox Endemic equilibrium satisfies

kk kok kk kok kok kok %k kok
Cvpr =S S E S LS G L Ry ST ET L)

_ ( On An @y By,
Mot B+ ) On + 1) (w+ 7+ 6+ B+ ) + )
VBAr

(4 62+ )W+ 7+ 6+ B+ ) On + )
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PYBAR Dy 1,
(p+ 6+ pp)(w + v+ 61 + 1) (B + py) An + 1)
WBAL Gy, 1y, b,
W+ 7+ 8+ B+ m)On + ) A+ p,

Ard, Ao, )
(e + ) + 1) (€ + p)O + g,

2.4. Basic reproduction number

We will compute the reproduction number using the next generation matrix method. According to the principle
of next generation matrix, the basic reproduction number is the spectral radius of the next generation matrix
FV ' [34]. That is the basic reproduction number

Ry = p(FV7Y) (18)

Therefore, using the equation (18) above, we split the differential equations into a new infection matrix Fand
transfer matrix between compartment V.

0 a1¢h 00 [67] ¢h
Nitu N: gy,
0 0 00 0
F=]o0 0 00 0
¢ra
0 0 00
N: 1ty
0 0 00 0
and
8+ oy, 0 0 0 0
B h+ v+ tw 0 0 0
V= 0 —y by + py + p 0 0
0 0 0 e+ pu, O
0 0 0 —€ U,
Such that:
1
i 0 0 0 0
8 1
_— 0 0 0
B+ pp) G147+ py+ w) 5l+7+/‘h+w
V1= By v ! 0 0l
B+ p) G+ + py+ )2+, +p) G+ 7+ py+ w2+ py+p) Sty +p
0 0 0 ! 0
e+,
€ 1
0 0 0 (€+/1,y),u,, ;
Therefore,
a1 B¢y, arpy 0 ey, y,
Nu@B+ pp) G+ + gy + W)y, Nu(O1+ v+ py + w) gy, No(e+ )yt  Nepiph,
0 0 0 0 0
Fv-l= 0 0 0 0 0
0 0 0 e, 0 ¢, 0
Ni(e+ppl  Nep?
0 0 0 0 0

In order to obtain the spectral radius, we need to calculate the eigenvalues of FV . Therefore, by calculations
and simplification we obtained the following eigenvalues:

_ [ a1 B, ep,o

0,0,0
Nitil + (N8 + Ny + Nyy) a2 + NulB61 + NuBy) pay,+ NiBpay, + NypiDw” Npep2 + N2> >

i[ 0150, o

0,0,0
Nu@B+ )G+ v+ py+ ), Nele+ pop2” > 7
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Therefore,

Ry = max 150 , 00 > (19)
Nu(B + )01+ v + py + Wy, Ne(e+ p)p,

Hence,
Ry = max {R}, R}} (20)

We consider the following cases:

1. If oy B¢), > Nu(B + 1) (61 + v + 1y, + w)py,and ep, 0 > N, (€ + ,ur)uf,thenRO >1
2. fayBe, < Ny(B+ )6+ v+ py, + wp,and ep.o > N (e + u,)uf,thenRO >1
3. Ifou By, > Np(B + p) (01 + v + py, + Wy, and ep,0 < N, (€ + u,)uf,thenRo >1

4. oy B, < Ny(B + )61 + v + py, + w)p,and ep, 0 < N (e + ,ur)uf,thenRo < 1.
The Monkey Pox-free equilibrium (MFE) is locally asymptotically stable if Ry < 1 and unstableif Ry > 1.

2.5. Stability of Monkey Pox-Free Equilibrium (MFE)

To determine the stability of the disease-free equilibrium, we compute the Jacobian matrix of the system at
disease-free equilibrium, we carried out a linear stability analysis, that is, we compute the eigenvalues and the
sign of the eigenvalues is used to determine the stability.

We have,
—(\n + ) 0 llsh 0 0 0 0 lzsh
N;, N,
(5] Sh 042511
A - + 0 0 0 0
h (uy, + 5) N, N
0 3 Js 0 0 0 0 0
B 0 0 Y Juu O 0 0 0
J= 0 0 w P —y, 0 0 0
—oS
0 0 0 0 0 —(A+p) 0 9 r
oS,
0 0 0 0 0 A —(e+ 1) N
0 0 0 0 0 0 ¢ —u,
where
Js=—(w+ v+, + &)
Jaa=—(p + py, + 62)
Then, evaluating our Jacobian matrix at Monkey Pox-Free Equilibrium (MFE) we have:
— 0 L 0 —ad
N, N,
« o
0 —(uy+ B U 5 g g 0 @9y
Nitiy N;
0 Ié) J53 0 0 0 0 0
10 0 ¥ Juu O 0 0 0
L 0 w o —p, O 0 0
0 0 0 0 0 —p 0 9%
N p,
0 0 0 0 0 0 —(e+p) 2
Nrp’r
0 0 0O 0 0 0 ¢ —p,

Now, we compute the eigenvalues and the characteristics polynomial which is given by |Jyzp — AIl where Iisa
8 x 8 unit matrix, and the following values of A were obtained:

9



10P Publishing

Phys. Scr. 97 (2022) 084005 O] Peteretal

N.eu, + 2Nr/¢f + \/erleuf + 4N e, 0

A=
2 Ny,
Nyept, + 2 No? — NP2 + 4 N, epr, 6,0

do=— N ,

A= 2N + Nopyw + (N3 + Nobi + Noy) gy, + Jf,
2 N, py,

N 2Nt + Nopyw + (N B+ Nobi+ Ney) gy, — Jf’
2 Ny puy,

As=—01— Wy, — p

)\6:—u,,

i = —Up

Ag = — L

Where
L =N} pjw? + 4 Nyou By, &,
—2(N?B — N6 — NP ppw + (NP B2 — 2 N2 36 + N2 67 + NPy — 2 (NP B — N2op) s,

These shows that six of the eigenvalues have a negative real parts. Hence, the Monkey Pox-free equilibrium is
asymptotically stable if:

B Nyep, + 2 Npi? — \/erezuf + 4N, eu, ¢,0 “ 0

2N, p,
— Neept, = 2 N2 + N2 + 4 Neep, 00 < 0 1)
by simplifying (21), we have:
G (22)

and if:
2N+ Nypyw + (NG A+ Neby+ Ny, — VL
2 Ny,
VL <2 N,,ufl + Nypyw + (N8 + N6 + Ny,

4 Nyou By dy < —NPpsw? + 2(N B — NP6 — NPy w
— (NJB* = 2N? (36, + NZ&F + NPy? = 2(NP B — N2 Sy i,
+ @ Nt + Nypyw + (N8 + Np6y + Npy) puy,)?

4 Ny B,y < 4 NF(B + i) Gy + v+, + Wi

<0

By simplification we have:
a1ﬁ¢h
N.(B + Mh)((sl + 4wyt W)Mh
Therefore, the Monkey Pox-free equilibrium (DFE) is asymptotically stable if
€0
N (e + )l
0415‘%
N(B + pp) (61 + v + py, + Wiy,

< 1. (23)

and

< L

3. Parameter estimation and model fitting

We use three distinct methods to collect our data. The formulated model (1) includes fourteen parameters, two
of which were obtained from the literature. Two parameters are estimated based on the data from Nigeria,
natural mortality rate and recruitment rate. The average lifespan in Nigeria is approximately 61 years [35]. The
per weeks. We assume that the total

per capita natural death rate in human is estimated to be 1, = ——

10
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Table 2. Model parameter values.

Parameter Description Value Source
bn Recruitment into susceptible humans 64 850 Estimated
b, Recruitment into susceptible rodents 0.200 000 [36]

I Mortality rate in humans 0.000303 Estimated
iy Mortality rate in rodents 0.002000 [10]

164 Disease progression rate from expose to infectious humans 0.016744 Fitted
O Infectious humans disease-induced death rate 0.003 286 Fitted
[ Clinically ill human disease-induced death rate 0.055 487 Fitted
5y Clinically ill rate 0.500000 Fitted

p Recovery rate of Clinically ill humans 0.036 246 Fitted
w Natural recovery rate due to immunity 0.088 366 Fitted

0 Progression rate from exposed rodents to infected rodents 0.032 386 Fitted
o Contact rate between infected humans and susceptible humans 0.022 325 Fitted
, Contact rate between infected rats and susceptible human 0.052 466 Fitted

o Contact rate between infected rodents and susceptible rodents 0.012 458 Fitted

population of human is Nj, = jﬁ—h The total population of Nigeria is 214,028,300 [35], the recruitment rate is
Ly,

obtained as 64 850 per weeks. The remaining parameters are fitted based on the reported cumulative cases of
infected humans from January to December 2019. This information was taken from the Nigerian Centre for
Disease Control (NCDC) database [8]. The nonlinear least square technique was used to fit the model using the
mathematical program MATLAB-R2017b. Table 2 shows all of the parameter values that were estimated and
fitted, and figure 2 shows the data fitting of the observed cumulative cases.

4, Fractional calculus

Fractional calculus has a wide range of applications in numerous branches of science, including mathematical
biology [21, 37-40]. The fractional framework for the monkeypox model in (1) is given as follows:

gFDfOSh = ¢, — (A\n+ pp)Sn

§"DFE, = M\iSh— (uy, + BEy

SFDYL, = BEy — (w+ v+ py + DI

J EI;Df’Ch = Y — (p+ py, + 62)Cy (24)
o DYRy = pCy+ wl — Ry

SFDES, = ¢, — A\S. — 1, S,

SFDYE, = A\.S, — (e + p)E,

SFDYT, = €E, — p I

where T DY represents Caputo-Fabrizio derivative with fractional order . In the upcoming sub-section, we will
introduce the results of fractional-calculus for investigation of system (24) of monkeypox.

4.1. Fractional-calculus results
For the analysis of our monkeypox dynamics, we will now explain the fundamental concepts and findings of

Caputo-Fabrizio (CF) fractional derivatives. The following definitions apply to these essential ideas:

Definition 1. The CF fractional derivative [41] for a function & € H'(a, b) is as follows
’ U ' t—
Df(e(ry) = A& f g’(x)exp[— p—x]dx, (25)
1 —pJa 1—p
where b > a and U(7) represents the normality [41] with p € [0, 1]. Inthecase,if h ¢ H'(a, b), then,
U 4 t—
@) = [Tt - genew [—p—x]dx. 26)
1—p Ja 1—p

Remark1.If a = 1;—)@ € [0, co)and p = H#a € [0, 1], then equation (26) implies

11
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Furthermore, we have

lim lexp[ft_x]zé(xft). (28)
(6%

a— 0«

Definition 2. [42], For a given function g, the integral in the fractional framework is expressed as follows

) 21 — ) 20 f
) =——"2 o)+ —= du, t>0. 29
@) = 5= @—@mmﬁgw” (29)

where p indicates the fractional order of the integral with 0 < p < 1.

Remark 2. The above definition 2 gives the following

21 - p) 29 —1 (30)
Q= pUp) 2 - U
2

which implies that U(p) = T 0 < @ < 1.Theresearchersin [42], introduced the following with help of (30)

Wmmztiﬁkwmﬁﬁfﬂw, (3D

in which the term g is the fractional order with 0 < o < 1.

5. Analysis of the solutions

Here, we focused on the analysis of the solutions of the hypothesized fractional system of monkeypox disease.
Fixed point theory will be applied to investigate the existence of the solution (24). We proceed as follows

Se(t) = 5:(0)
E (t) — E.(0)
Ir(t) - I,(O)

Sn(®) — Su(0) =
En(t) — Ex(0) =
I(t) — Ii(0) =
JG — o) =
Ry(r) — RO) =
= §I9{ — ASe — 1,80}
= GIPINS — (e+ p)E ),
= SFIP(€E, — u,Ix)

6719 (b — A + 1) Subs

§FI9 {nSh — (uy + B)En}s
§TIP{BEy — (w + 7 + 1y + 60T}
ST — (p + py, + 6 G,

(32)
SFIS {pCh + Wiy — 1, Ry},

12
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We used the concepts of the research [42] and obtained the following

S0 = 950 = G (0, — O+ i)
+ mf {d, — O + ) S} dy,
231 — o)
Ey(t) — Ep(0) = m{)\hsh — (uy, + B)En}
+ mf {AwSn — (py + B)En} dy,
Ii(t) — 1,(0) = (Z(IT{ﬂ — (w7 + py, + o)}
(2_;%]: {BEy — (W + v + py + 00 In}dy,
Cilt) — Cy(0) = %{w — o+, + 8Ch)
(2_;%]0 M — (p + py, + 62) Gy} dy,
Ri(t) — Ry(0) = (zzfl@i)fz@{pch + wh — pyRi)
Q_;%ft {pCp + wly — Ry} dy,
S () — S:(0)= (Z(IW‘W = ArSr — 14,50}
+ 5 p)U(@f (6, — ASr — 1,5/} dy,
2(1 — @)
E.(t) — E(0) = m{)\rsr — (e + p)E}
mf {A:Sy — (e + p)E, }dy,
_ _ 20 -9 _
L) — L(0)= 2 — o) U(p) {€E, — u,Ir}
(2_;%]; {€E, — p,Ir}dy. (33)

Further, we have

Li(t, Sn) = ¢, — (An+ 1) Sh>

Ly(t, En) = ApSp — (uy, + B)Ep

Li(t, In) = BEy— (W + v+ py, + 001

J Lt G = Ay — (p + py, + 62) Chs
Ls(t, Ry) = pCy + wl — py R,

Le(t, Sr) = & — ASr — 11,55,

L;(t, S)) = NSy — (e + p)E,

Ls(t, E,) = €E, — pIp.

(34)

Theorem 3. The kernels Ly, L,, L3, Ly, Ls, Lg, L7 and Lg fulfills the condition of Lipschitz and contraction if the
below satisfies
qu OQI,

0< 222 4
Y N,

+/‘h<1

Proof. For the above demanded outcomes, we take S;, and Sy, and start from L, in the following manner

13
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lasm—husm——@ﬁwmn—&m»— iﬁ&m—smm

- Mh{Sh(t) — Su()}. (35)

After simplification of (35), we attain the below

I I,
e S = Lo, Sl <155 ~
+ ||/~Lh{5h(t) — Su(}|
Oéllh ||
+ ||,Uh{sh(t) — S}
OélM
+ ||Mh{5h(t) O]
OqM 0521,
S|—— + Su(t) — Su(t)}]- 36
(224 22 o - s 6o
Taking 1, = (“‘M “zl ) where I, < M and I, < M due to boundedness, we get the below
Np,
[L1(t, Sp) — Li(t, Swl| < puy[|Sn(®) — Su(®)]- (37)

Thus, we proved the Lipschitz condition for L, in addition to this, the contraction is also obtained from the

condition 0 < (alM + azl + ,uh) < 1. In the same way, we can determine the Lipschitz conditions as

L2, Ep) — La(t, En)|| < p, [|En() — Ex(®)]],
L5t In) — Ls(t, L[| < ps][ I (1) — L@,
[La(ts C) — La(t, Cu)|| < pg[|Cr(t) — G|
[Ls(t, Rp) — Ls(t, Ru)|| < g, [|Ru(t) — Ru(t)|]
IL6(t Sr) = Ls(t, Sl < 5]|S- (1) = Se()]),
[L7 (2, Er) — Ly (6 En)l| < pug||E- () — Er()]),
ILs(t, ) — Ls(t, In)|| < ps [[I(6) — L (). (38)

The equation (33) implies the following after simplification

Mﬂz&@+é¥&%ﬁ%% T—Tajfmmmw,
Mo=&®+5%£%#mm T—Tajf@mmw%
Mo=h®+5%5%#ﬁm+r—7a7f@mmw,
Gt = GO + bt G + e [ Gy, N
<M0=mw+é¥&%#ﬁMHT—ja7f<mmmm ()
SO = S0+ T $) 4 G [t SO
BAD = B0+ Tt B+ s [ s By,
L@'—L®%+a%iﬁ%5hﬁb) T——ﬁijf<SWJ»@

14
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further, we get

() = 25 =Bt S ) + 2 [ 00 S i,

Bult) = 25— DL Eh(n,n)+zﬁ [ @0 oy,

®) = 2B ) + 2 W S @0 oy,
[0 - 2 Lt G )+ 2 W I @t G-, -
Rin) = 2 DLt R+ 2 W @0 Ry,

Sult) = 2Ll S )+ 2 W @ s,

Bt = 25Dl Er) 2 W [ @0 By,

| 1) = 2 ) + 25— [ s b

with the below mentioned initial values
Sp(t) = Si(0), Ef(t) = Ex(0), I (t) = L,(0), C{(t) = Cu(0), R (t) = Ry(0),
SY(t) = S,(0), EJ(t) = E.(0), I’ (t) = L,(0).

The difference terms are obtained as follows

Fn(6) = Sin(®) — S 1)() = %(Ll(t, Shn 1) — Lty Sun2)
T S @0 Sia ) = 10 S,
oo (£) = B (1) — oy 1y(8) = %@z(n Eyu 1) — Lat, Ean 2)
T | "L, B ) — La(s Enin o)
s (8) = () — T 1y(8) = (2%7_)5())@30, T 1) — Lt Tin )
tro—s [ @0 ) = 30 B,
fan(8) = Cin(1) — i 1)(1) = (mpﬁ(@(t Citn 1) — La(t, Cuu_2)
Py [ @40 ) = L0 G2
Fisu(£) = Rin(8) — Rigu 1 (6) = %(IJS(E Riw 1) — Ls(t, Rus_2)
Py [ @501 Rua) = L0 G2y
on(8) = Sout) — Syiu 1y (0) = (zfpﬁas(t, S 1) — Lot Sy 2)
+a—E [ @0 Sea) = Lo Srin
oon(8) = Ern(6) — Ergy(0) = (2“7‘)5(’)@0, Ere 1) — Lty Evgy )
2 S W0 B — Ly By,
(D) = Ln(6) — Iu1(8) = %@8(% Lo 1) — Le(t, L)
T [ @0 o) = La0s L) )

15
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Observing that

Sin(t) = Xy kii(1),  Ewn(t) = X7 K2i (1),
I (1) = X7 k3i(1), Cun(t) = X0, Kai(t),
Rin(t) = 327 ksi(®),  Sm(®) = 20 Kei (D),
En(t) = X  K7i(0),  Ln(t) = X204 Kgi(t).

Evaluating on the same way, we get

(1—p)

———(L1(t, Shin—1) — Li(t, Spu—
(Z—Q)U(p)(l(t h(n—1)) 1t Shin—2))

||"fln(t)|| = ”Shn(t) - Sh(nfl)(t)” = H 2

© t
O — NU(o) > n— - > n— d .
+ 2(2 — p)U(p)‘/; Li(ys Snin—1) — Li(ys Shen—2))dy H

The equation (43) implies that

1 -9
——— (L1 (t, Spn—1)) — L1(t, Spn—
2 - o U) I(Li(t, Shin—1)) 1t Shp—2)|

e [ -
+ 2(2 — o U(p) H j; L (s Shin—1)) — Li(y> Shn—2)))dy

1Shn(£) — Shin—1y (]| < 2

‘ >

the above leads to

d-9) P
1 [IShu—1) = Shu—p|| + 2—F——
2 - p)U(p)ﬂlH o= = Sio-a 2-pUm "

t
Xfo [Shea—1) = Shen—2)|dy-

1Shn(£) — Shn—1y(D)]| < 2

Furthermore

1 —
(-9 1K1 - (O] + 2

|k ()] € 2————=— S
2 - pU(p) 2 - pU(p)

t
M1f0 l5160—1) () |y

In the similar passion, we have

a0 < z%uznmwmn r2g—Sn | i)l
Il € 2B plsa O + 25— [ s v )l
an(®)]| < %mnm_m vt kg )y,

Irsa (O] < z(z(lg—)g)m%nnsm_nun ra— | s )y,
el < z(z(_lg—)ﬁ)@u6||n6w<t>|| v | s ()l dy,
Il < 2 = E s v O + 25—y [ s )l
[| kg ()] < 2(2(_1;—)2)“@)#8\\58(1171)(1‘)|| + ZWP)UW)MS j: 58—y () |y

Theorem 4. If one can search a tyin a manner that the following condition satisfies

(1 - p) 42 P
2 —-pU(p 2 - pU(p

Mlto <1,

then, we have an exact coupled-solutions of the proposed fractional system (24).

O] Peteretal

(42)

(43)

(44)

(45)

(46)

(47)
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Proof. As the Lipschitz condition is fulfilled and S, (¢), Ej,(¢), I;(¢), Ry(t), S,(¢), E.(¢) and I(¢) are bounded.
Then, from (46) and (47), we have the following

[ (1-p) P "
OIS IS O | 2————F—p, | + | 2—————p 1| | S
510 (O] < (| St (O] ( o p)U(p) ) ( o p)U(p)ul )]

(1 — ) #2) N (2
2 - pU(p @ - gD)U(@)

(1 - p) '
n O S M O | 20—t [+ | 2
[l#3n (O < (| T € )l[( Q- @U(p)‘“) ( Q- p)U(W) )]

q”

>

1520 (O] < [[Enn O] (2

H“i4n(t)‘| < Hchn(o)”

t

(1 - p) I
2 +
Q- @)U(p)us)

[\)

[[K5n (O[] < [|Rpn (0]

>

( (1 ) ) ( ) ,

2 -pU(p @ - P)U(W)

( ( ,ust)
@ - W)U ()

n g Sﬂ’l 0 2 lr + 2
([ A6 (]| < (1S ( )[( -0 (p)/%) ( Q- p)U(so)l%t)]

" < ||E (0 2 2 o Ua ’
EZAGIN ()|[( Q- )(f(@‘”) ( @ p)U(p) )]

() L i
Z OISO | 2————pg | + [2——— ' *
[[8n (D] < [T € )|[( Q- )U(p) ) ( Q- @)U(p)/‘gt)] w

As aresult of this, continuity and existence of the solutions are achieved. Furthermore, we have to show that the
above is a solution of our system (24), we proceed as follows
Su(®) = Sp(0) = Spu() — W1, (2),
En(t) — En(0) = Epu(t) — W2,(0),
In(t) — 14(0) = Lnu(£) — W3,(1),
Cu(t) — Cu(0) = Cpn(t) — W4,(1),
Rp(t) — Ru(0) = Ryu(t) — W5,(1),
Sr(1) = §:(0) = S (1) — W6,(1),
E. (1) — E;(0) = En(r) — W7,(1),

I,(8) — L,(0) = L, () — W8,(2). (49)
In the next step, we take
2(1 — ) 2p
BntziLtSn*Ltsn —— —
1B, (®)| H G- U )( 1(ts Spn) 1t Shin—1)) C- U
X ft L1y Snn) — Li(ys Sp—1))dy ‘,
2(1 2p
\—LtSn—LtSn + —
@ U )||( 1(ts Spw) — (Li(ts Spen—1))|| - oU®
x [ 10 S0 = L S )y,
0
2(1 — 2
< Gl = Sl + IS~ Sl (50)
Further, we have
2(1 — p) 2p ah n+l g
W1, < a.
W@ < ((2 — UG | @- p)U(p)t) “ eh
At time t,, we have
2(1 — p) 2p " ntl,
W n ~ a.
W30 < ((2 - U(p) - 2-pUp) ) & &2

Following the same steps and using (52), we have
W1, (1)|| — 0, n — oo.

In a similar passion, we obtain that W2,,(t), W3,(t), W4,(t), W5,(t), W6,(t), W7,(t), W8,(t) approaches
to 0 as n approaches oo. O
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Figure 3. Graphical view analysis of the transmission phenomena of our fractional model of monkeypox with variation of fractional
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To prove the solution uniqueness of the system (24), we assume

Su(t) — Sp(t) =

(Su1(0)s Ent(), Ini(0); Ca(£)s Rpa(£), Sri(t)s En(t), Inn(2))

is another solution on contrary manner, then

21 — p)
2 - pU(p)

x [ @i S0~ Ly su) dy.
0

Lt ) — Lut, Sy + ——22

Q2 —-pU(p
(53)
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By using norm on (53), we have

2(1 — ) 20
S, - S <———||[Li(¢, ) — Li(t, S _—
1Sk (®) m ()] < o p)U(p)” 1(t, Sw) (6 S| + 2 U0
x f L1 (7> Sw) — Li(y, Sun)||dy. (54)
0
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Figure 5. [llustration of dynamical behaviour of our fractional system of monkeypox with the variation of input parameter w.
Here, we have the following through Lipschitz condition
2(1 — p) 2p
[Sk@®) — S| < ————Z— ISi(®) — S @[] + —————
2= U 2 -pUp
t
x [ mllsie) = Su)dy. (55)
0
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Figure 6. Illustration of dynamical behaviour of our fractional system of monkeypox with the variation of input parameter p.

This implies that
[Sh(t) — S| 1 — 2o |- 26 it <O0. (56)
2 - U(p) 2-2U(p
Theorem 5. If the following condition satisfied
T el ) B 20t >o. (57)

C-pUE ' Q-pUp

then the system (24) has unique solution.
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Figure 7. lllustration of the graphical view of the solution pathways of our system with the variation of input factor c,.

Proof. Let us assume that the above (57) satisfies then (56) gives us the following
[Sk(t) — S| =0, (58)
as aresult of this, we have
Su(®) = Sm (). (59)
In the similar way, we attain the below
En(t) = Em(t), In(t) = I (1),

Ci(t) = C(t), Rp() = Rpi (1),
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Figure 8. [llustration of the graphical view of the solution pathways of our system with the variation of input factor o.

Sr(t) = Srl(t)a Er(t) = Erl(t))

L(t) = I (t). O

In the next step, we perform some simulations to examine the transmission process of the proposed
fractional system of monkeypox disease. In our simulations, we used the estimated and fitted parameter values as
presented in table 2. We performed several simulations to interrogate the importance of parameters on the
outcomes of the system of monkeypox disease. In figures 3 and 4, we presented the graphical view analysis of the
hypothesized fractional system of monkeypox with different values of fractional order. We observed a significant
decrease in the solution pathways of infected individuals of both species and predict that this parameter can be
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used as a control parameter. In the second scenario presented in figures 5 and 6, we varied the input parameter w
and p respectively to observe the variation in the system dynamics. We noticed the contribution of these
parameters in the transmission pathways of infected individuals. In last scenario presented in figures 7 and 8, we
noticed the variation in the transmission process of monkeypox with the variation of o, and 0. We discovered
that contact rates are also important and potentially dangerous in terms of increasing the level of monkeypox
infection. Therefore, we recommend these factors to the policymakers for the control of the monkeypox. Based
on our results, we predicted that the memory index or fractional order can also be used as a control parameter.

6. Conclusion

In this study, a new mathematical model based on the fractional differential system was presented to investigate
the transmission dynamics of the monkeypox virus. The two main groups in the population were humans and
rodents. The developed model was parameterized using cumulative reported data in Nigeria using NCDC data.
The results show that the proposed model fits the data well and can be used to make reliable predictions about
the progression of this disease in Nigeria. We show that the model’s disease-free is locally asymptotically stable if
the threshold quantity Ry < 1 and unstable otherwise. Through numerical simulations with different input
parameters, the system’s dynamical behaviour has been demonstrated. On the dynamics of the monkeypox
disease, the effects of various input parameters have been considered.

The study’s findings are expected to provide a critical paradigm for evaluating monkeypox management.
Finally, the current study may serve as a basic guideline for the public health sector in terms of how to effectively
manage the country’s monkeypox outbreak, which has been described as a major health risk and thus a serious
cause for concern.
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