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Abstract
In this paper, we present a deterministicmathematicalmodel ofmonkeypox virus by using both
classical and fractional-order differential equations. Themodel includes all of the possible interactions
that contribute to disease spread in the population.We investigate themodelʼs stability results in the
disease-free casewhenR0< 1.WhenR0< 1, we show that themodel is stable, otherwise it is unstable.
To obtain the bestfit that describes the dynamics of this disease inNigeria, themodel isfitted using the
nonlinear least squaremethod on cumulative reported cases ofmonkeypox virus fromNigeria
between January toDecember 2019. Furthermore, adequate conditions for the existence and
uniqueness of the solution of themodel have been proved.We run numerous simulations of the
proposedmonkeypoxmodel with varied input parameters to investigate the intricate dynamics of
monkeypox infection under the effect of various system input parameters.We investigate the systemʼs
dynamical behavior to develop appropriate infection control policies. This allows the public to
understand the significance of control parameters in the eradication ofmonkeypox in the population.
Lowering the order of fractional derivatives has resulted in significantmodifications. To the
communityʼs policymakers, we offered numerous parameters for the control ofmonkeypox.

1. Introduction

Monkeypox is a zoonotic disease that causes themonkeypox virus. Although it has been spotted elsewhere in the
world, it is primarily found inAfrica. Two outbreaks of a disease resembling the pox in groups ofmonkeys used
for a study led to the discovery ofmonkeypox in 1958. Since January 2022, several countries have reported cases
ofmonkeypox to theWorldHealthOrganization (WHO). As of June 15, 2022, 2103 cases with laboratory
confirmation including one death had been reported toWHO [1, 2].

Direct contact with an infectious rash, scabs, or bodilyfluids are other ways the virus can be transferred from
one person to another, transmission is also possible through respiratory secretions during prolonged face-to-
face contact or during sexual activity or another intimate physical contact [1, 3, 4].

Primarily, wild animals like African rats andmonkeys transmit the virus to people. However, human-to-
human transmissions are also frequent inmost of the reported cases. Animal to humans occurs as a result of
bites or scratches, the processing of bushmeat, direct contact with bodily fluids, or consuming food
contaminated by rodents. Direct contact with sores and bodilyfluids from infected patients can spread the
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infection. Researchers are investigating alternative ways the disease can spread, either through semen and
vaginalfluids or in respiratory droplets [1, 5].

Monkeypox symptoms range fromperson to person. Fever, headache,muscle aches, backaches, swollen
lymphnodes, chills, and exhaustion are among the typical symptoms ofmonkeypox.Most times, the symptoms
ofmonkeypox are usually amoderate illness andmost people recover on their ownwithin a fewweeks. Those
withweak immune systemsmay have severe symptoms [1, 6]. The smallpox vaccine, antivirals, and vaccine
immune globulin developed to protect against smallpox can be used as an alternative to prevent the spread of
monkeypox but there is currently no proven, secure treatment formonkeypox virus infection. The vaccination
is currently unavailable because smallpox has been eradicatedworldwide [7, 8].

The disease has attracted little attention in the past, which has contributed to a lack of understanding of its
transmissionmechanisms. Despite this, quite a few researchers have attempted to usemathematical analysis to
study the dynamics of theMonkeypox virus. [9] developed and analyzed a deterministicmathematicalmodel for
theMonkeypox virus. Their findings suggest that isolating infected individuals in the human population helps to
reduce disease transmission. Also, [10] established amathematicalmodel for the dynamics ofmonkeypox
transmission and presented it as a systemof nonlinear differential equations. According to the numerical
simulation, peopleʼs immune status influences how they recover after being infectedwith the orthopoxvirus.
Numerousmathematicalmodels on infectious disease have been studied in order to gain a better understanding
of the transmission dynamics and different techniques to controlling the endemic disease (see [9, 11–17] for
examples).

To better understand the dynamics ofMonkeypox, [18] developed amathematicalmodel. Thefindings
suggest thatMonkeypox is under control and can be eradicated in a semi-endemic equilibrium through
vaccination.Monkeypox, on the other hand, cannot be eradicated by vaccination alone in a fully endemic
equilibrium. Furthermore, in the study of [19], the numerical simulations performed on themodel revealed that
the infectious individuals in the human and non-human primate populationswill die out during the study
period as a result of the proposed interventions. Researchers from several areas of science and engineering have
recently expressed an interest inmodelingwith fractional differential equations, particularlymathematical
modeling in epidemiology. Thememory effect is one of the intriguing aspects of fractional-ordermodels that
cannot be found in classical differential equations due to the various properties of fractional differential
equations, see formore details [20–23]. Several researchers have employed fractional differential equations to
represent various infectious and non-infectious diseases in the recent age. TheCOVID-19 infection is one of
these research topics that has been extensively examined and yielded useful results. [24–27] considers a
fractionalmodel for COVID 19 based on theCaputo derivative. A fractional-ordermodel has been used to study
tuberculosis with endogenous reactivation and exogenous reinfections [28]. A fractional-orderHIV/AIDS
epidemicmodel withMittag-Leffler kernel was also studied in [29]. Othermodels with fractional order
approach can be found in [30–33].Wefirst discuss the proposedmodel in detail in the integer order, and extend
themodel into fractional-order and obtain the necessary results.

After reviewing several works on themonkeypox virus and itsmechanisms of transmission, to the best of our
knowledge, this is the first work on the dynamics of themonkeypox viruswith the fractional-order calculus. This
work aims to study the transmission dynamics and control ofmonkeypox in the population using a classical and
fractional-ordermodel and to visualize how thememory index or fractional order parameter affects the
dynamics ofmonkeypox disease and to know if itmay be used as control parameter or not. The remainder of this
script is arranged as follows: themodel formulation and analyses of themonkeypox classicalmodel are
presented in section 2, while the datafitting and parameter estimation are performed in section 3. In section 4,
the extension of the classicalmodel to fractional-order and its results are presented. The analytical and
numerical analysis of the fractional derivative solution is reported in section 5, while the conclusion is given in
section 6.

2.Mathematicalmodel and formulation

In this section, we develop a deterministicmathematicalmodel of themonkeypox virus using some assumptions
by considering the transmission ofmonkeypoxwhich involves humans and the rodents population.We
considered eight compartmentalmodels; five human compartments and three rodent compartments.

The number of susceptible humans changes as a result of recruitment through birth rate or immigrationfh.
Itʼs decreased by natural death per capita rateμh. and force of infectionλh. Hence, the rate of change in the
number of susceptible humans is:

( )f l m¢ = - +S Sh h h h h
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The number of exposed humans ismodeled by the force of infectionλh. Itʼs decreased by the rateβh at which
they become infectious and the natural death per capita rateμh. Thus, the rate of change in the number of
exposed humans is:

( )l m b¢ = - +E S Eh h h h h H

The number of Infectious humans increases with the rate ofβhEH as a result of the transition fromExposed to
Infectious. Thus, decreasing by natural death per capita rateμh, disease-induced death δ1, the rate at which they
recoveredω and transit to clinically ill with the rate γh. So, the rate of change in the number of infectious humans
is:

( )b w g m d¢ = - + + +I E Ih h h h1

The number of clinically ill human increase as a result of those that needmedical attention after being ill at the
rate γ. These individuals transit from the infectious compartment to the recovery state with the rate ρ. itʼs
decreased by natural per capita deathμh, disease-induced death δ2. Therefore, the rate at which the number of
clinically ill human changes is given by:

( )g r m d¢ = - + +C I Ch h h h h2

The number of recovered human population increases as a result of the transition frombeing clinically ill to
recovered compartments at the rate ρ. Then decreased by natural per capita deathμh, those that recovered from
being infectious due to natural immunity with the rateωH. Thus, the rate of change in the population of
recovered humans is:

r w m¢ = + -R C I Rh h h h h

The number of susceptible rodents changes as a result of recruitment through constant birth ratefr. They
become infected by interactionwith infected rodents which ismodeled by sI

N
r

r
. Itʼs decreased by natural death per

capita rateμr. Hence, the rate of change in the population of susceptible rodents is:

f
s

m¢ = - -S
I

N
S Sr r

r

r
r r r

The number of Exposed rodent increases with force of infection l = s
r

I

N
r

r
. Itʼs decreased by the rate ò at

which they transit to infectious class and natural death per capita rateμr. Hence, the rate of change in the
population of exposed rodents is:

( )l m¢ = - +E S E Ir r r r r r

The number of Infectious rodents increases with the rate ò at which exposed rodents become infectious. Itʼs
decreased by natural death per capita rateμr. Hence, the rate of change in the population of infected rodents is:

 m¢ = -I E Ir r r R

Therefore, based on the above descriptions, the correspondingmathematical equations are given by a systemof
non-linear ordinary differential equations below:

Figure 1. Schematic diagram formonkeypox transmission.
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h

I
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I
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h

h

r

r

1 2 . such that: I

N
h

h
is the proportion of infected human andα1, the rate

at which susceptible human interact with infected human. I

N
r

r
is the proportion of infected rodent andα2, the

rate at which susceptible human interact with infected rodent.
The compartmentalmodel infigure 1 represent the transmission ofMonkey Pox.
The state variables and parameters are described in table 1.

2.1. Positivity and boundedness of the solution

Theorem1. Let ( ) ( ) ( ) ( ) ( )= = = = =S S E E I I C C R R0 , 0 , 0 , 0 , 0 ,h h h h h h h h h h0 0 0 0 0
( ) ( )= =S S E E0 , 0r r r r0 0

and ( ) =I I0r r0
be the initial values of the state variables. If S E I C R, , , ,h h h h r0 0 0 0 0

and Sr0
are positive then it implies

that ( ) ( )S t E t, ,h h ( ) ( ) ( ) ( ) ( )I t C t R t S t E t, , , ,h h h r r and Ir(t) are positive for all time >t 0. However,

⟶ ( ) ⟶ ( )
f
m

f
m¥ ¥

 
t

sup N t and
t

sup N tlim limh
h

h
r

r

r

Also, if
f
m

Nh
h

h
0

, then ( ) f
m

N th
h

h

, if
f
m

Nr
r

r
0

then ( ) f
m

N tr
r

r

then, the feasible domain for the differential

equation are given by

Table 1.Variables and description.

Variables Description

Sh(t) Number of susceptible human

Eh(t) Number of exposed human

Ih(t) Number of infectious human

Ch(t) Number of clinically ill human

Rh(t) Number of recovered human

Sr(t) Number of susceptible rodent

Er(t) Number of exposed rodent

Ir(t) Number of infected rodent

Parameters Description

fh Recruitment into susceptible human class.

fr Recruitment into susceptible rodent class.

μh Per capita natural death rate in humans

μr Per capita natural death rate in rodent

β Disease progression rate from exposed to infectious

humans

δ1 Infectious human disease-induced death rate

δ2 Clinically ill human disease-induced death rate

γ Clinically ill rate

ρ Recovery rate of Clinically ill human

ω Natural recovery rate due to immunity

θ Progression rate from exposed rate to infected rate

α1 Contact rate between infected human and suscep-

tible human

α2 Contact rate between infected rats and susceptible

humans

σ Contact rate between infected rats and susceptible

rodents

λh Force of infection
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5

3

h
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such that

h h h= ´ Ì ´+ + N N
5 3

h r

andwe have that h is positive invariant.

Proof. Let S E I C R S E, , , , , ,h h h h h r r0 0 0 0 0 0 0
and Ir0

be positive, wewant to show that the state variables are also
positive. From system (1)we have:

( )f l m¢ = - +S Sh h h h1

then,

( )l m f¢ + + =S S .h h h h h

Since f  0h it follows that,

( )l m¢ + + S S 0.h h h h

Now,we have:

( ) ( )l m- +dS

S
dt 2h

h
h h

By integrating equation(2)wehave:

( ) ( )ò l m- + +S dt cln .h h h

Let ( ) ( )ò l m= - +A t dth h , it implies that

( ( )) ( ) ( )+S t A t cln 3h

at t= 0we have

( ( )) ( ) ( )+S A cln 0 0 4h

We subtract equations (4) from (3) to have

( ) ( ) ( )( )
( )

- A t Aln 0S t

S 0
h

h

Taking the exponential of both sides, we have:

( ) ( ) ( )( ) ( )-  S t S e S fort0 0 0h h
A t A

h
0

Since ( ) =S S0h h0
is positive, that is, >S 0h0

for >t 0 it implies that

( ) ( ) > >S t S fort0 0 0.h h

Wehave ( ) >S t 0h for all >t 0 andwe conclude that Sh(t) is non-negative for all >t 0. Hence, we have >S 0h .
This is true in the sameway for the other state variables. This shows that ( ) ( ) ( )S t E t I t, ,h h h , ( ) ( )C t R t,h h , ( )S tr ,

( )E tr and Ir(t) are positive for all time >t 0. ,

Todescribe the boundedness of solution, we use the theorembelow:

Theorem2.Given a positive set of solutions ( ( ) ( )S t E t,h h , ( ) ( ) ( )I t C t R t, ,h h h , ( ) ( )S t E t,r r , ( ))I tr , there exists a
domain h in which this solution set is contained and bounded.

Proof.The total population for human is given by

( ) ( ) ( ) ( ) ( ) ( )= + + + +N t S t E t I t C t R th h h h h h

Such that

( ) ( ) ( ) ( ) ( ) ( )¢ = ¢ + ¢ + ¢ + ¢ + ¢N t S t E t I t C t R th h h h h h

By simplificationwe have

( ) ( )f m d d= - + + + + - +
dN

dt
S E I C R I C .h

h h h h h h h h h1 2
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But = + + + +N S E I C Rh h h h h h. So, we have

( ) ( ) ( )f m d d f m d d= - - + = - - = - +N I C N I CdN

dt h h h h h
dN

dt r h h h h1 2 1 2
h h

since Ih andCh are positive, we have ( ) ( )d d d d- + +I C I Ch h h h1 2 1 2 . It implies that:

( ) ( ) ( )

( ) ( ) ( )

f m d d d d

f m d d

- - =- + +

- - +





dN

dt
N I C I C

dN

dt
N I C 5

h
h h h h h h h

h
h h h h h

1 2 1 2

1 2

In the absence ofMonkey Pox in the population ( )= =I C 0h h , inequality (5) implies that:

( ) ( )

( )

f m f m

f m

- - = -

=
-

 



dN

dt
N

dN

dt
N

dN

N
dt

0, ,h
h h h

h
h H h

h

h h h

Integrate both sides form t= 0 and = *t t , we have

( )ò òf m-
* *dN

N
dt

t
h

h h h

t

0 0

wehave

⎡
⎣⎢

⎤
⎦⎥

( ) [ ]
m

f m- - 
*

*N t
1

ln
h

h h h

t
t

0

0

This gives us

( ( )) ( ( ))f m f m m- - - -* *N t N tln ln 0h h h h h h1

then

⎜ ⎟
⎛
⎝

⎞
⎠
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f m
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m
-
-
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*

N t

N
tln

0
.h h h

h h h
h

Taking exponential of both sides we have:
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-
-
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m

m

-

-





*

*

*
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N
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h

h

which gives

( ) ( ( ))m f f m- - m-* *N t N e0h h h h h h
th

( )
( ( ))

( )
f
m

f m
m

-
- m-* *N t

N
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6h

h
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h h h

h

t .h

By taking the limit of inequality (6) as ⟶ ¥*t , we have

( ) f
m

*N th
h

h

Thus, we have ( ) f
m

N th
h

h

.

Which implies that [ ]Î f
m

N 0,h
h

h
that is ⟶ ( )

¥
= f

mt
N tlim sup h

h

h
and if

f
m

Nh
h

h
0 , then ( ) f

m
N th

h

h
. Thus,Nh

is bounded. In the sameway, we can demonstrate that the rodent population ( )N tr is bounded.
Therefore, this establishes the notion of η as required, that is, the solution to themodelʼs equations are

contained is positively invariant. So, we conclude that themodel is epidemiologically feasible andwell-posed in
η. ,

2.2.Monkey Pox-Free Equilibrium (MFE)
TheMonkey Pox-Free equilibrium ( )W = * * * * * * * *S E I C R S E I, , , , , , ,MFE h h h h h r r r is defined as the point at which
no disease is present in the population. All infected classes will be equal to zero.
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Thus, theMonkey Pox-Free equilibrium satisfies

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )
f
m

f
m

W = =* * * * * * * *S E I C R S E I, , , , , , , , 0, 0, 0, 0, , 0, 0 . 7MFE h h h h h r r r
h

h

r

r

2.3.Monkey Pox Endemic Equilibrium (MEE)
Let ( )z = ** ** ** ** ** ** ** **S E I C R S E I, , , , , , ,MEE h h h h h r r r be defined as the point where there isMonkey Pox in
the population.Here, all infected classes are not equal to zero. Consider the equations in system (1)

( )
f

l m
=

+
**S 8h

h

h h

( )l
b m

=
+

** **E S 9h
h

h
h

By putting the value of **Sh in (9)wehave,

( )( )
( )

l f
b m l m
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+ +

**E . 10h
h h

h h h
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w g d m

=
+ + +
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I
E

11h
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h1
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h h h h1
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13h
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15h
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Hence, theMonkey Pox Endemic equilibrium satisfies
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( )( )( )
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⎠( )( ) ( )( )

l f
m l m

l f
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, .r r

r r r
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r r r r

2.4. Basic reproduction number
Wewill compute the reproduction number using the next generationmatrixmethod. According to the principle
of next generationmatrix, the basic reproduction number is the spectral radius of the next generationmatrix
FV−1 [34]. That is the basic reproduction number

( ) ( )r= -R FV 180
1

Therefore, using the equation (18) above, we split the differential equations into a new infectionmatrix F and
transfermatrix between compartmentV.

⎛

⎝
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⎜
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⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
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
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⎜
⎜
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+
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+
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Such that:
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Therefore,
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

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⎜
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⎜
⎜
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In order to obtain the spectral radius, we need to calculate the eigenvalues of FV−1. Therefore, by calculations
and simplificationwe obtained the following eigenvalues:







⎡
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⎡
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⎦
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r
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Therefore,




⎧
⎨⎩

⎫
⎬⎭( )( ) ( )

( )
a bf

b m d g m w m
f s

m m
=

+ + + + +
R

N N
max , 19h

h h h h

r

r r r

0
1

1
2

Hence,

{ } ( )=R R Rmax , 20h r
0 0 0

Weconsider the following cases:

1. If ( )( )a bf b m d g m w m> + + + +Nh h h h h1 1 and  ( )f s m m> +Nr r r r
2, thenR0> 1

2. If ( )( )a bf b m d g m w m< + + + +Nh h h h h1 1 and  ( )f s m m> +Nr r r r
2, thenR0> 1

3. If ( )( )a bf b m d g m w m> + + + +Nh h h h h1 1 and  ( )f s m m< +Nr r r r
2, thenR0> 1

4. If ( )( )a bf b m d g m w m< + + + +Nh h h h h1 1 and  ( )f s m m< +Nr r r r
2, thenR0< 1.

TheMonkey Pox-free equilibrium (MFE) is locally asymptotically stable ifR0< 1 and unstable ifR0> 1.

2.5. Stability ofMonkey Pox-Free Equilibrium (MFE)
Todetermine the stability of the disease-free equilibrium, we compute the Jacobianmatrix of the system at
disease-free equilibrium,we carried out a linear stability analysis, that is, we compute the eigenvalues and the
sign of the eigenvalues is used to determine the stability.

We have,
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J
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Then, evaluating our Jacobianmatrix atMonkey Pox-Free Equilibrium (MFE)we have:
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Now,we compute the eigenvalues and the characteristics polynomial which is given by |JMFE− λI|where I is a
8× 8 unitmatrix, and the following values ofλwere obtained:
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These shows that six of the eigenvalues have a negative real parts. Hence, theMonkey Pox-free equilibrium is
asymptotically stable if:

  
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by simplifying (21), we have:
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By simplificationwe have:

( )( )
( )

a bf
b m d g m w m+ + + +

<
N

1. 23h

r h h h

1

1

Therefore, theMonkey Pox-free equilibrium (DFE) is asymptotically stable if


( )
f s

m m+
<

N
and1r

r r r
2

( )( )
a bf

b m d g m w m+ + + +
<

N
1.h

r h h h

1

1

3. Parameter estimation andmodelfitting

Weuse three distinctmethods to collect our data. The formulatedmodel (1) includes fourteen parameters, two
ofwhichwere obtained from the literature. Two parameters are estimated based on the data fromNigeria,
naturalmortality rate and recruitment rate. The average lifespan inNigeria is approximately 61 years [35]. The
per capita natural death rate in human is estimated to beμh= ´

1

61 54
per weeks.We assume that the total
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population of human isNh=
f
m

h

h

. The total population ofNigeria is 214,028,300 [35], the recruitment rate is

obtained as 64 850 per weeks. The remaining parameters are fitted based on the reported cumulative cases of
infected humans from January toDecember 2019. This informationwas taken from theNigerianCentre for
Disease Control (NCDC) database [8]. The nonlinear least square techniquewas used tofit themodel using the
mathematical programMATLAB-R2017b. Table 2 shows all of the parameter values that were estimated and
fitted, andfigure 2 shows the datafitting of the observed cumulative cases.

4. Fractional calculus

Fractional calculus has awide range of applications in numerous branches of science, includingmathematical
biology [21, 37–40]. The fractional framework for themonkeypoxmodel in (1) is given as follows:


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⎧

⎨

⎪
⎪
⎪
⎪
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⎩

⎪
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⎪
⎪
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= - + + +
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= - -
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D E S E
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D C I C
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D S S S
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D I E I
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t h h h h h
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t h h h h h

CF
t h h h h

CF
t h h h h

CF
t h h h h h

CF
t r r r r r r

CF
t r r r r r

CF
t r r r R

0

0

0 1

0 2

0

0

0

0

where ÃDCF
t0 represents Caputo-Fabrizio derivative with fractional order℘. In the upcoming sub-section, wewill

introduce the results of fractional-calculus for investigation of system (24) ofmonkeypox.

4.1. Fractional-calculus results
For the analysis of ourmonkeypox dynamics, wewill now explain the fundamental concepts and findings of
Caputo-Fabrizio (CF) fractional derivatives. The following definitions apply to these essential ideas:

Definition 1.TheCF fractional derivative [41] for a function ( )Îh H a b,1 is as follows

 ⎡
⎣⎢

⎤
⎦⎥

( ( )) ( ) ( ) ( )ò=
Ã

- Ã
¢ -Ã

-
- Ã

ÃD g t g x
t x

dx
1

exp
1

, 25t
a

t

where >b a and ( )t represents the normality [41]with [ ]Ã Î 0, 1 . In the case, if ( )Ïh H a b,1 , then,

⎡
⎣⎢

⎤
⎦⎥

( ( )) ( ) ( ( ) ( )) ( )ò=
Ã Ã
- Ã

- -Ã
-
- Ã

ÃD g t
U

g t g x
t x

dx
1

exp
1

. 26t
a

t

Remark 1. If [ )a = Î ¥-Ã
Ã

0,1
and [ ]Ã = Î

a+
0, 11

1
, then equation (26) implies

Table 2.Model parameter values.

Parameter Description Value Source

fh Recruitment into susceptible humans 64 850 Estimated

fr Recruitment into susceptible rodents 0.200 000 [36]
μh Mortality rate in humans 0.000303 Estimated

μr Mortality rate in rodents 0.002000 [10]
β Disease progression rate from expose to infectious humans 0.016744 Fitted

δ1 Infectious humans disease-induced death rate 0.003 286 Fitted

δ2 Clinically ill human disease-induced death rate 0.055 487 Fitted

γ Clinically ill rate 0.500000 Fitted

ρ Recovery rate of Clinically ill humans 0.036 246 Fitted

ω Natural recovery rate due to immunity 0.088 366 Fitted

θ Progression rate from exposed rodents to infected rodents 0.032 386 Fitted

α1 Contact rate between infected humans and susceptible humans 0.022 325 Fitted

α2 Contact rate between infected rats and susceptible human 0.052 466 Fitted

σ Contact rate between infected rodents and susceptible rodents 0.012 458 Fitted
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( ( )) ( ) ( ) ( ) ( ) ( )[ ]ò
a

a
= ¢ = ¥ =Ã - a

-
D g t

M
g x e dx M M, 0 1. 27t

a

t
t x

Furthermore, we have

⎡
⎣

⎤
⎦⟶

( ) ( )
a a a

d-
-

= -
t x

x tlim
0

1
exp . 28

Definition 2. [42], For a given function g, the integral in the fractional framework is expressed as follows

( ( )) ( )
( ) ( )

( )
( ) ( )

( ) ( )ò=
- Ã

- Ã Ã
+

Ã
- Ã Ã

Ã I g t
U

g t
U

g u du t
2 1

2

2

2
, 0. 29t

t

0

where ℘ indicates the fractional order of the integral with < Ã <0 1.

Remark 2.The above definition 2 gives the following

 
( )

( ) ( ) ( ) ( )
( )- Ã

- Ã Ã
+

Ã
- Ã Ã

=
2 1

2

2

2
1, 30

which implies that ( )Ã =
-Ã
2

2
, < Ã <0 1. The researchers in [42], introduced the followingwith help of (30)

⎡
⎣⎢

⎤
⎦⎥

( ( )) ( ) ( )ò=
- Ã

¢ Ã
-
- Ã

ÃD g t g x
t x

dx
1

1
exp

1
, 31t

t

0

inwhich the term ℘ is the fractional orderwith < Ã <0 1.

5. Analysis of the solutions

Here, we focused on the analysis of the solutions of the hypothesized fractional systemofmonkeypox disease.
Fixed point theorywill be applied to investigate the existence of the solution (24).We proceed as follows
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Figure 2.Model Fitting.

12

Phys. Scr. 97 (2022) 084005 O J Peter et al



Weused the concepts of the research [42] and obtained the following
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Further, we have
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Theorem3.The kernels L L L L L L L, , , , , ,1 2 3 4 5 6 7 and L8 fulfills the condition of Lipschitz and contraction if the
below satisfies

a a
m+ + < M
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I

N
0 1.

h

r

r
h

1 2

Proof. For the above demanded outcomes, we take Sh and Sh1, and start from L1 in the followingmanner
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After simplification of (35), we attain the below
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Taking ( )m m= + +a aM

N

I

N h1
h

r

r

1 2 , where I Mh and I Mr due to boundedness, we get the below

( ) ( ) ( ) ( ) ( )m- -L t S L t S S t S t, , . 37h h h h1 1 1 1 1   

Thus, we proved the Lipschitz condition for L1, in addition to this, the contraction is also obtained from the

condition ( )m+ + <a a0 1M

N

I

N h
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r
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1 2 . In the sameway, we can determine the Lipschitz conditions as
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The equation (33) implies the following after simplification
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further, we get
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with the belowmentioned initial values
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The difference terms are obtained as follows
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Observing that
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Evaluating on the sameway, we get
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The equation (43) implies that
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the above leads to
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In the similar passion, we have
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then, we have an exact coupled-solutions of the proposed fractional system (24).
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Proof.As the Lipschitz condition is fulfilled and ( ) ( )S t E t,h h , ( ) ( )I t R t,h h , ( ) ( )S t E t,r r and Ir(t) are bounded.
Then, from (46) and (47), we have the following
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As a result of this, continuity and existence of the solutions are achieved. Furthermore, we have to show that the
above is a solution of our system (24), we proceed as follows
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Further, we have
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At time t0, we have
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Following the same steps and using (52), we have

( ) ⟶  ¥W t n1 0, .n 

In a similar passion, we obtain that ( ) ( ) ( ) ( ) ( ) ( ) ( )W t W t W t W t W t W t W t2 , 3 , 4 , 5 , 6 , 7 , 8n n n n n n n approaches
to 0 as n approaches¥. ,
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Toprove the solution uniqueness of the system (24), we assume
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Figure 3.Graphical view analysis of the transmission phenomena of our fractionalmodel ofmonkeypoxwith variation of fractional
order℘.
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By using normon (53), we have
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Figure 4.Graphical view analysis of the transmission phenomena of our fractionalmodel ofmonkeypoxwith variation of fractional
order℘.
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Here, we have the following through Lipschitz condition
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Figure 5. Illustration of dynamical behaviour of our fractional systemofmonkeypoxwith the variation of input parameterω.
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This implies that
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Theorem5. If the following condition satisfied
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then the system (24) has unique solution.

Figure 6. Illustration of dynamical behaviour of our fractional systemofmonkeypoxwith the variation of input parameter ρ.
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Proof. Let us assume that the above (57) satisfies then (56) gives us the following

( ) ( ) ( )- =S t S t 0, 58h h1 

as a result of this, we have
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In the similar way, we attain the below
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Figure 7. Illustration of the graphical view of the solution pathways of our systemwith the variation of input factorα2.
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( ) ( ) ( ) ( )= =S t S t E t E t, ,r r r r1 1

( ) ( )=I t I t .r h1 ,

In the next step, we perform some simulations to examine the transmission process of the proposed
fractional systemofmonkeypox disease. In our simulations, we used the estimated and fitted parameter values as
presented in table 2.We performed several simulations to interrogate the importance of parameters on the
outcomes of the systemofmonkeypox disease. Infigures 3 and 4, we presented the graphical view analysis of the
hypothesized fractional systemofmonkeypoxwith different values of fractional order.We observed a significant
decrease in the solution pathways of infected individuals of both species and predict that this parameter can be

Figure 8. Illustration of the graphical view of the solution pathways of our systemwith the variation of input factorσ.
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used as a control parameter. In the second scenario presented infigures 5 and 6, we varied the input parameterω
and ρ respectively to observe the variation in the systemdynamics.We noticed the contribution of these
parameters in the transmission pathways of infected individuals. In last scenario presented infigures 7 and 8, we
noticed the variation in the transmission process ofmonkeypoxwith the variation ofα2 andσ.We discovered
that contact rates are also important and potentially dangerous in terms of increasing the level ofmonkeypox
infection. Therefore, we recommend these factors to the policymakers for the control of themonkeypox. Based
on our results, we predicted that thememory index or fractional order can also be used as a control parameter.

6. Conclusion

In this study, a newmathematicalmodel based on the fractional differential systemwas presented to investigate
the transmission dynamics of themonkeypox virus. The twomain groups in the populationwere humans and
rodents. The developedmodel was parameterized using cumulative reported data inNigeria usingNCDCdata.
The results show that the proposedmodel fits the data well and can be used tomake reliable predictions about
the progression of this disease inNigeria.We show that themodelʼs disease-free is locally asymptotically stable if
the threshold quantityR0< 1 and unstable otherwise. Through numerical simulationswith different input
parameters, the systemʼs dynamical behaviour has been demonstrated. On the dynamics of themonkeypox
disease, the effects of various input parameters have been considered.

The studyʼsfindings are expected to provide a critical paradigm for evaluatingmonkeypoxmanagement.
Finally, the current studymay serve as a basic guideline for the public health sector in terms of how to effectively
manage the countryʼsmonkeypox outbreak, which has been described as amajor health risk and thus a serious
cause for concern.
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