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A B S T R A C T

COVID-19 pandemic represents an unprecedented global health crisis which has an enormous impact on the
world population and economy. Many scientists and researchers have combined efforts to develop an approach
to tackle this crisis and as a result, researchers have developed several approaches for understanding the
COVID-19 transmission dynamics and the way of mitigating its effect. The implementation of a mathematical
model has proven helpful in further understanding the behaviour which has helped the policymaker in adopting
the best policy necessary for reducing the spread. Most models are based on a system of equations which
assume an instantaneous change in the transmission dynamics. However, it is believed that SARS-COV-2 have
an incubation period before the tendency of transmission. Therefore, to capture the dynamics adequately,
there would be a need for the inclusion of delay parameters which will account for the delay before an
exposed individual could become infected. Hence, in this paper, we investigate the SEIR epidemic model with
a convex incidence rate incorporated with a time delay. We first discussed the epidemic model as a form of
a classical ordinary differential equation and then the inclusion of a delay to represent the period in which
the susceptible and exposed individuals became infectious. Secondly, we identify the disease-free together
with the endemic equilibrium state and examine their stability by adopting the delay differential equation
stability theory. Thereafter, we carried out numerical simulations with suitable parameters choice to illustrate
the theoretical result of the system and for a better understanding of the model dynamics. We also vary the
length of the delay to illustrate the changes in the model as the delay parameters change which enables us to
further gain an insight into the effect of the included delay in a dynamical system. The result confirms that the
inclusion of delay destabilises the system and it forces the system to exhibit an oscillatory behaviour which
leads to a periodic solution and it further helps us to gain more insight into the transmission dynamics of the
disease and strategy to reduce the risk of infection.
1. Introduction

The Coronavirus Disease (COVID-19) formerly known as a novel
coronavirus (2019-nCoV) caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) is highly transmissible [1] and has posed
a great threat to the global public health, of which was reported by the
World Health Organization (WHO) to emerged in Wuhan City, Hubei
province of China at the end of the year 2019. Mathematical modelling
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has proven to be essential in understanding the dynamics of infectious
diseases. A direct application of mathematical models to data has been
of enormous help in having more knowledge about the infection and
control of diseases [2]. In recent times, there has been much concern
about airborne transmission such as coronavirus which spread rapidly
with high cases of infection still recorded across nations [3]. As a
result of the massive rate of daily new cases and high infection rate,
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several literature have been dedicated to the study of the disease and
multiple models have been developed to foster our understanding of
the dynamics of the virus [4]. Many researchers believe that it is of
utmost importance to have a schematic that could help to represent the
behaviour of the transmission and a model is believed to be highly de-
sirable. The emergence of the mathematical model, therefore, enables
researchers to gain useful insight into the nature, evolution and process
of modelling infectious diseases [5]. Although many mathematical
models have been in existence, the most adopted model is that of
Kermack and McKendrick [6] proposed in 1927 which is popularly
nown as the SIR (Susceptible–Infected–Recovered) epidemic model.
ince the formulation of the famous SIR model, there have also been
everal models that have been developed for the studying of the spread
f infectious diseases [7]. For instance [8–12] modifies the popularly
ccepted epidemic model to investigate the transmission dynamics and
ontrol of swine influenza. Also, [13–27] uses a mathematical model for
nderstanding the COVID-19 transmission dynamics with a case study
f India and other region using the available dataset where their model
redicts the transmission of the virus. Similarly, [28–35] adopted the
pidemic to study the spread of HIV infection and many more. Recently,
he SIR model has been extensively extended and applied to investigate
he transmission of COVID-19 under different incidence rates [2,4,7].
t is worth noting that the incidence rate is considered to play a signif-
cant role in infectious disease modelling as it provides a reasonable
ualitative description of the disease dynamics. In much literature,
he bilinear incidence rate is often adopted with the assumption that
he populations are homogeneous mixing with the environment [2].
owever, in reality, this assumption seems to be inaccurate as the
opulation mixing could be heterogeneous. Therefore, this led to the
odification of the bilinearity of the incidence rate to the adoption of
onlinearity [36]. Many literatures such as [37–41] also backed up this
laim and confirmed that the process involving the transmission of the
isease is indeed better captured with the use of the nonlinear incidence
ate. Although the use of the nonlinear incidence rate in an epidemic
odel has provided a rich dynamical behaviour, [42] pointed out that

he modification to the convex incidence rate could better capture a
omplex scenario where the disease incubator is not negligence. This
s highly relevant in this study as it is believed that the COVID-19
nfection does have an incubation period. Therefore, in this work, we
hall consider the epidemic model with a convex incidence rate and
lso incorporate a time delay. Lately, time delays have been included
n models to provide a better understanding of a complex system. In
act, in many physical phenomena, the state of the system does not
olely depend on the current occurrence, the past information is also
rucial for an in-depth understanding of the system. So, incorporating
ime delay helps to provide a more realistic model [41]. So, the classical
DE models are now being modified to include the delay in order to
apture the complexity of the system. For example, the delay differen-
ial equation model is used by [43] to analyse the HIV infection where
he delay is incorporated to account for the time between viral entry
nto the cell and the production of new virus particles. Similarly, [44]
mplemented a time-delayed model for drug therapy and it was also
sed by [45] for immune response and many more. This shows that
o have a more realistic representation of a dynamical system, the
nclusion of delay parameters is inevitable. The time-delayed modelling
as now been receiving much attention and it adequately enables
odellers to account for the lags in responses. Hence, the inclusion

f time delay in an epidemic model makes the system to have a
epresentation close to reality and it could also change the behaviour
f such a system such as destabilising the steady state. As a result, this
aper aims to conduct a qualitative analysis of the time-delayed model
or COVID-19 infection using the SEIR (Susceptible–Exposed–Infected–
ecovered) epidemic model with a convex incidence rate. Then, we
hall investigate the effect of the time delay on the dynamic behaviour
f the model. In practice, this delay enable us to adequately account for
2

he pauses between when the exposed population became infected as it c
Table 1
Parameter description.
Parameters Physical description

𝑆(𝑡) Susceptible
𝐸(𝑡) Exposed
𝐼(𝑡) Infected
𝑅(𝑡) Removed
𝐴 Recruitment
𝜇 Death rate
𝛼, 𝛽 Constant rate
𝜎 Latent period of disease exposure
𝛾 Recovery rate

is believed that there is not instantaneous change between the exposed
and infected. This delay in change of class compartment has already
been established through the World Health Organisation (WHO) report
where it is confirmed that exposed class only start to show symptoms
of infection after few days of contact. In addition, the introduced
mechanism of testing also confirmed that there could be false negative
if testing is performed immediately after contact. Therefore, this needs
to be adequately incorporate into the SEIR model. The organisation
of the paper is as follows: In Section 2, we discussed the model both
with and without delay and then provides the preliminary result of the
model. In Section 3, we discussed the equilibria and the stability of both
the disease-free and endemic equilibrium. The numerical simulations
and discussion of the results are presented in Section 4 while the
conclusion is provided in Section 5.

2. Model formulation

In this section, we present the epidemic model without delay and
then discuss the idea of the epidemic model with a time delay.

2.1. SEIR without time delay

We provide some preliminary results of the SEIR model with a
convex incidence rate which does not include the time delay. The
quantitative analysis of the result shall be discussed which will be used
to analyse the stability of the delayed SEIR model. To begin with,
suppose an individual in a population who is susceptible to disease
is represented by 𝑆(𝑡), we regard this group as the individuals who
are yet to be infected. The number of an individual that is exposed
to the disease is represented by 𝐸(𝑡) while the infected population who
have the tendency to spread the disease are denoted by 𝐼(𝑡). Finally,
we denoted the removed class by 𝑅(𝑡). As provided in [46,7,42], the
recruitment into the susceptible population is through migration or
birth at a constant rate 𝐴, where 𝜎 represents the latent period of the
disease exposure, natural death rate occur in all the classes at the rate
𝜇, we have not considered the disease-induced death rate in this model.
We considered a convex incidence rate of the form 𝛽𝐼𝑆(1 + 𝛼𝐼) where
𝛼, 𝛽 are positive constants. Therefore, the SEIR model is given as:

𝑆̇ = 𝐴 − 𝜇𝑆(𝑡) − 𝛽𝑆(𝑡)𝐼(𝑡) (1 + 𝛼𝐼(𝑡)) ,

𝐸̇ = 𝛽𝑆(𝑡)𝐼(𝑡) (1 + 𝛼𝐼(𝑡)) − (𝜇 + 𝜎)𝐸(𝑡), (2.1)
𝐼̇ = 𝜎𝐸(𝑡) − (𝜇 + 𝛾)𝐼(𝑡),

𝑅̇ = 𝛾𝐼(𝑡) − 𝜇𝑅(𝑡).

The model presented in Eq. (2.1) can be shown in form of a flow
hat given in Fig. 1 while the description of the model parameters is
iven in Table 1. Further information on model description and their
iological motivation can be find in [3].

We note that since the model in (2.1) monitors the population of all
ssociated parameters and the state variables are non-negative, then we

ould observe that the first three equation of the system is independent
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Fig. 1. Flowchart of an SEIR epidemic model with convex incidence rate without delay.
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of the fourth. Therefore, without loss of generality, the system in (2.1)
can be analysed by considering the subsystem:

𝑆̇ = 𝐴 − 𝜇𝑆(𝑡) − 𝛽𝑆(𝑡)𝐼(𝑡) (1 + 𝛼𝐼(𝑡)) ,

𝐸̇ = 𝛽𝑆(𝑡)𝐼(𝑡) (1 + 𝛼𝐼(𝑡)) − (𝜇 + 𝜎)𝐸(𝑡), (2.2)
𝐼̇ = 𝜎𝐸(𝑡) − (𝜇 + 𝛾)𝐼(𝑡).

The type of system in (2.2) has been extensively studied in literatures
where the analysis, stability and existence of hopf bifurcation are
discussed. The most recent literature that presents the analysis of such
a model can be found in [2].

2.2. SEIR with time delay

In the epidemic model, there has been an assumption that an
individual reacts to the disease exposure almost immediately which is
practically incorrect [2]. In several physical phenomena, there is often
a time delay before a system responds to forces and this is no difference
in disease transmission. For infectious diseases, a class of infectious
individuals takes a time period before they could transmit a disease
to the susceptible class after exposure. Also, it takes a certain interval
for an infected individual in a population to recover from the disease
and this can be accounted for with the inclusion of a delay term in
the model. Therefore, to reflect the behaviour of a dynamic system
more adequately, then it is highly desirable to incorporate a time delay
into the system. As a result, much literature has adopted the inclusion
of time delay into an existing model for a better representation of
the system behaviour. For example, [43] extended the HIV model
by incorporating a time delay which represents the time of initial
infection until the production of new virions. In general, a delay is often
introduced when there are some hidden processes within a system that
could cause a time lag or whenever there is a pause before a response to
stimuli [47]. Further literature where time delayed is extensively used
in model formulation can be found in [48]. So, in terms of the epidemic
model, there will be a more realistic description of disease dynamics
by incorporating delays within the system which could also account
for the effect of disease latency or immunity as identified in [49,50].
3

Therefore, we shall assume that the migration of the individual from the
susceptible class to the infectious category is subject to delay. Hence,
the model (2.1) is extended by incorporating a time delay represented
by 𝜏 in the incidence rate which follows a similar argument in [2]. The
flowchart is presented in Fig. 2 and the model is given in (2.3).

𝑆̇ = 𝐴 − 𝜇𝑆(𝑡) − 𝛽𝑆(𝑡 − 𝜏)𝐼(𝑡 − 𝜏) (1 + 𝛼𝐼(𝑡 − 𝜏)) ,
̇ = 𝛽𝑆(𝑡 − 𝜏)𝐼(𝑡 − 𝜏) (1 + 𝛼𝐼(𝑡 − 𝜏)) − 𝜇𝐸(𝑡) − 𝜎𝐸(𝑡 − 𝜏), (2.3)
𝐼̇ = 𝜎𝐸(𝑡 − 𝜏) − (𝜇 + 𝛾)𝐼(𝑡),

𝑅̇ = 𝛾𝐼(𝑡) − 𝜇𝑅(𝑡),

here 𝜏 > 0 is representing the latent period of the disease. The initial
onditions for the system (2.3) are as follows:

𝑆(0) = 𝜙1(𝜃) > 0,
𝐸(0) = 𝜙2(𝜃) ≥ 0,
𝐼(0) = 𝜙3(𝜃) ≥ 0,
𝑅(0) = 𝜙4(𝜃) ≥ 0, 𝜃 ∈ [−𝜏, 0].

(2.4)

Similarly, the first three equation of (2.3) does not depend on the
ourth equation which allows us to analyse the system by considering
he subsystem,

𝑆̇ = 𝐴 − 𝜇𝑆(𝑡) − 𝛽𝑆(𝑡 − 𝜏)𝐼(𝑡 − 𝜏) (1 + 𝛼𝐼(𝑡 − 𝜏)) ,
̇ = 𝛽𝑆(𝑡 − 𝜏)𝐼(𝑡 − 𝜏) (1 + 𝛼𝐼(𝑡 − 𝜏)) − 𝜇𝐸(𝑡) − 𝜎𝐸(𝑡 − 𝜏), (2.5)
𝐼̇ = 𝜎𝐸(𝑡 − 𝜏) − (𝜇 + 𝛾)𝐼(𝑡).

Suppose 𝑁 = 𝑆 + 𝐸 + 𝐼 , then
𝑑
𝑑𝑡

(𝑆 + 𝐸 + 𝐼) = 𝐴 − 𝜇(𝑆 + 𝐸 + 𝐼),

= 𝐴 − 𝛾𝐼 − 𝜇𝑁,

≤ 𝐴 − 𝜇𝑁.

Hence, lim sup𝑡→∞ 𝑁 ≤ 𝐴
𝜇 . Therefore, the dynamic of system (2.5)

can be studied in the region,

𝛺 = {(𝑆 𝐸 𝐼) ∣ 𝑆 > 0, 𝐸 ≥ 0, 𝐼 ≥ 0, 0 ≤ 𝑁 = 𝑆 + 𝐸 + 𝐼 ≤ 𝐴∕𝜇} . (2.6)

which is positive invariant with respect to (2.5).



Informatics in Medicine Unlocked 35 (2022) 101124O. Babasola et al.

𝐸

t

Fig. 2. Delayed SEIR epidemic model with convex incidence rate flow chart.
T
o

⎛

⎜

⎜

⎜

⎜

⎜

⎜

3. Equilibrium and stability analysis

In this section, we shall categorised the equilibrium points are
the disease free equilibrium and the endemic equilibrium which are
denoted by 𝐸0 and 𝐸1 respectively. It is well known that a system
have a stable equilibrium if its neighbourhood trajectory approaches
the point asymptotically at 𝑡 → ∞ and same is applicable to a system
with a time delay. Thus, we obtain the equilibrium for the system (2.5)
by setting 𝑑𝑆

𝑑𝑡
= 𝑑𝐸

𝑑𝑡
= 𝑑𝐼

𝑑𝑡
= 0 Therefore, we obtain the disease free

equilibrium as 𝐸0 = (𝐴∕𝜇, 0, 0) and for the endemic equilibrium, we
have 𝐸1 = (𝑆∗, 𝐸∗, 𝐼∗) where,

𝑆∗ =
(𝜇 + 𝜎)(𝜇 + 𝛾)
𝛽𝜎(1 + 𝛼𝐼∗)

,

∗ =
(𝜇 + 𝛾)𝐼∗

𝜎
,

𝐼∗ = 1
2𝑎

(

√

𝑏2 − 4𝑎𝑐 − 𝑏
)

,

and
⎧

⎪

⎨

⎪

⎩

𝑎 = 𝛼𝛽𝜎(𝜇 + 𝜎)(𝜇 + 𝛾)
𝑏 = 𝛽𝜎(𝜇 + 𝜎)(𝜇 + 𝛾) − 𝐴𝛼𝛽𝜎2

𝑐 = 𝜎𝜇(𝜇 + 𝜎)(𝜇 + 𝛾) − 𝐴𝜎2𝛽

3.1. Expression of the reproductive number

We provide the expression of the basic reproductive number 𝑅0 in
his section. In epidemiology, the 𝑅0 is considered as the most impor-

tant parameter which provides an insight into how the disease spread
within a population. This also enables us to understand how the disease
can be controlled. There are multiple approaches for determining the
𝑅0 such as by using a generation matrix as adopted by [42] or by direct
substitution of parameters into the model. By using this approach, we
obtain the reproductive number for our model to be

𝑅0 =
𝐴𝜎𝛽

𝜇(𝜇 + 𝜎)(𝜇 + 𝛾)
, (3.1)

which is consistent with the reproductive number obtained in [2].
Hence, by representing the endemic equilibrium in term of the repro-
ductive number, we have

𝑆∗ = 𝐴 ,
4

𝜇𝑅0(1 + 𝛼𝐼) ⎝
𝐸∗ =
(𝜇 + 𝛾)𝐼

𝜎
,

𝐼∗ = 1
2𝑎

(

√

𝑏2 − 4𝑎𝑐 − 𝑏
)

,

with

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑎 = 𝐴𝛼𝛽2𝜎2

𝜇𝑅0

𝑏 = 𝐴𝛽𝜎2
(

𝛽
𝜇𝑅0

− 𝛼
)

𝑐 = 𝐴𝛽𝜎2
(

1
𝑅0

− 1
)

3.2. Stabilities of equilibria

We study the stability of the equilibrium through the linearisation of
the system. We shall do this by defining 𝑋̂ = (𝑆̂, 𝐸̂, 𝐼) as the equilibrium
of our delayed system (2.5). Then by setting 𝑆(𝑡) = 𝑥1(𝑡) + 𝑆̂, 𝐸(𝑡) =
𝑥2(𝑡)+ 𝐸̂ and 𝐼(𝑡) = 𝑥3(𝑡)+𝐼 , then the linearised system of (2.5) is given
as:

𝑑𝑥1
𝑑𝑡

= −𝜇𝑥1(𝑡) − 𝛽𝐼
(

1 + 𝛼𝐼
)

𝑥1(𝑡) − 𝛽𝑆̂(1 + 𝛼𝐼)𝑥3(𝑡) − 𝛼𝛽𝑆̂𝐼𝑥3(𝑡 − 𝜏),

𝑑𝑥2
𝑑𝑡

= 𝛽𝐼
(

1 + 𝛼𝐼
)

𝑥1(𝑡) + 𝛽𝑆̂(1 + 𝛼𝐼)𝑥3(𝑡) + 𝛼𝛽𝑆̂𝐼𝑥3(𝑡 − 𝜏)

−𝜇𝑥2(𝑡) − 𝜎𝑥2(𝑡 − 𝜏), (3.2)
𝑑𝑥3
𝑑𝑡

= 𝜎𝑥2(𝑡 − 𝜏) − (𝜇 + 𝛾)𝑥3(𝑡).

he Jacobian matrix corresponding to the linearised system (3.2) is
btained as:

−𝜇 − 𝛽𝐼
(

1 + 𝛼𝐼
)

0 −𝛽𝑆̂
(

1 + 𝛼𝐼(1 + 𝑒−𝜆𝜏 )
)

𝛽𝐼(1 + 𝛼𝐼) −(𝜇 + 𝜎𝑒−𝜆𝜏 ) 𝛽𝑆̂
(

1 + 𝛼𝐼(1 + 𝑒−𝜆𝜏 )
)

−𝜆𝜏

⎞

⎟

⎟

⎟

⎟

⎟

⎟

(3.3)
0 𝜎𝑒 −(𝜇 + 𝛾), ⎠
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with the characteristics equation given as

𝑑𝑒𝑡

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−𝜇 − 𝛽𝐼
(

1 + 𝛼𝐼
)

− 𝜆 0 −𝛽𝑆̂
(

1 + 𝛼𝐼(1 + 𝑒−𝜆𝜏 )
)

𝛽𝐼(1 + 𝛼𝐼) −(𝜇 + 𝜎𝑒−𝜆𝜏 ) − 𝜆 𝛽𝑆̂
(

1 + 𝛼𝐼(1 + 𝑒−𝜆𝜏 )
)

0 𝜎𝑒−𝜆𝜏 −(𝜇 + 𝛾) − 𝜆

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 0, (3.4)

which leads to

𝜆3 + 𝑝1𝜆
2 + 𝑝2𝜆 + 𝑝3 +

(

𝑞1𝜆
2 + 𝑞2𝜆 + 𝑞3

)

𝑒−𝜆𝜏 +
(

𝑟2𝜆 + 𝑟3
)

𝑒−2𝜆𝜏 = 0 (3.5)

where
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑝1 = 3𝜇 + 𝛾 + 𝛽𝐼
(

1 + 𝛼𝐼
)

,
𝑝2 = 𝜇(3𝜇 + 2𝛾) + 𝛽𝐼(2𝜇 + 𝛾)

(

1 + 𝛼𝐼
)

,
𝑝2 = 𝜇(𝜇 + 𝛾)

[

𝜇 + 𝛽𝐼
(

1 + 𝛼𝐼
)]

,
𝑞1 = 𝜎,
𝑞2 = 𝜎(2𝜇 + 𝛾),
𝑞3 = 𝜎

[

𝜇(𝜇 + 𝛾) + 𝛽𝐼
(

1 + 𝛼𝐼
)

− 𝜇𝛽𝑆̂
(

1 + 𝛼𝐼
)]

,
𝑟2 = −𝜎𝛼𝛽𝑆̂𝐼,
𝑟2 = −𝜎𝛼𝜇𝑆̂𝐼.

(3.6)

For the stability, it is well known that an equilibrium point is asymptoti-
cally stable if all the roots of its characteristics equation have a negative
real parts. Therefore, for our system, we shall adopt the following
lemma.

Lemma 3.1 ([2]). The equilibrium point (𝑆∗, 𝐸∗, 𝐼∗) of the delayed model
is absolutely stable iff all root associated with the characteristics equation
of the delayed model have negative real part and no purely imaginary root.

Lemma 3.2 ([2]). The equilibrium point (𝑆∗, 𝐸∗, 𝐼∗) of the delayed model
is conditionally stable iff all root associated with the characteristics equation
of the delayed model have negative real part and there exists some positive
value 𝜏 such that the associated characteristics equation of the delayed
model has purely imaginary root.

Hence, we shall these lemmas to study the stability of the disease
free equilibrium 𝐸0 and the endemic equilibrium 𝐸1.

3.2.1. Stability of disease free equilibrium

Theorem 3.3. The disease free equilibrium of the delayed model (3.2) is
asymptotically stable if 𝑅0 < 1 and unstable if 𝑅0 > 1.

Proof. Recall that 𝐸0 = (𝐴∕𝜇, 0, 0) and by evaluating the Jacobian
matrix of the linearised system at the 𝐸0, we have

𝐽 (𝐸0) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−𝜇 0 𝐴𝛽
𝜇

0 −
(

𝜇 + 𝜎𝑒−𝜆𝜏
) 𝐴𝛽

𝜇

0 𝜎𝑒−𝜆𝜏 −(𝜇 + 𝛾)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

e then have the characteristics equation as:

𝜆 + 𝜇)𝑓 (𝜆) = 0 (3.7)

where 𝜆 = −𝜇 is one of the solution and 𝑓 (𝜆) = 𝜆2 + (2𝜇 + 𝛾 + 𝜎𝑒−𝜆𝜏 )𝜆+
(𝜇 + 𝜎𝑒−𝜆𝜏 )(𝜇 + 𝛾) − 𝐴𝛽𝜎

𝜇 𝑒−𝜆𝜏 .
If 𝜏 = 0, then 𝑓 (𝜆) = 𝜆2 + (2𝜇 + 𝛾 + 𝜎)𝜆+ (𝜇 + 𝜎)(𝜇 + 𝛾)(1 −𝑅0). Since

he model parameters are all positives, then for 𝑅0 < 1, the roots 𝐹 (𝜆)
ave negative real parts which implies that it is asymptotically stable.
onversely, if 𝑅0 > 1 then the all the real roots of 𝑓 (𝜆) will not be
5

strictly negative. Therefore, it is unstable. i
Similarly, when 𝜏 > 0, then we consider the characteristics equation
rovided in (3.5) and by setting 𝜆 = 𝑖𝜔, we have

3−𝑝1𝜔
2+𝑖(𝑝2𝜔−𝜔3)−(𝑞1𝜔2−𝑞3−𝑖𝑞2𝜔)𝑒−𝑖𝜔𝜏 +(𝑟3+𝑖𝑟2𝜔)𝑒−2𝑖𝜔𝜏 = 0 (3.8)

y separating the real and the complex part of (3.8), we have

3 − 𝑝1𝜔
2 = (𝑞1𝜔2 − 𝑞3) cos(𝜔𝜏) − 𝑞2𝜔 sin(𝜔𝜏)

+ 𝑟2𝜔 sin(2𝜔𝜏) − 𝑟3 cos(2𝜔𝜏)

𝑝2𝜔 − 𝜔3 = (−𝑞1𝜔2 + 𝑞3) sin(𝜔𝜏) − 𝑞2𝜔 cos(𝜔𝜏)

− 𝑟2𝜔 cos(2𝜔𝜏) + 𝑟3 sin(2𝜔𝜏)

which leads to

𝜔6 + (𝑝1 − 2𝑝2)𝜔4 + (𝑝22 − 2𝑝1𝑝3 + 𝑞1 − 𝑞22 − 𝑟2)𝜔2 + 𝑝23 − 𝑞3 − 𝑟23 = 0 (3.9)

If 𝜉 = 𝜔2, then (3.9) becomes

𝜉3 + 𝛼1𝜉
2 + 𝛼2𝜉 + 𝛼3 = 0 (3.10)

where
⎧

⎪

⎨

⎪

⎩

𝛼1 = 𝑝1 − 2𝑝2,
𝛼2 = 𝑝22 − 2𝑝1𝑝3 + 𝑞1 − 𝑞22 − 𝑟2,
𝛼3 = 𝑝23 − 𝑞3 − 𝑟23.

(3.11)

Thus, by substituting (3.6) into (3.11), we have 𝛼1, 𝛼2, 𝛼3 all positive for
𝑅0 < 1. Therefore, it also follows that the roots of (3.10) have negative
real parts which implies that it is asymptotically stable when 𝑅0 < 1
and unstable whenever 𝑅0 > 1. □

3.2.2. Stability of endemic equilibrium

Theorem 3.4. The endemic equilibrium of the delayed model (3.2) is
asymptotically stable for 𝑅0 > 1.

Proof. Here, we shall consider the characteristics equation provided in
(3.5) evaluated at 𝐸1 which gives

𝜆3 + 𝑝1𝜆
2 + 𝑝2𝜆+ 𝑝3 +

(

𝑞1𝜆
2 + 𝑞2𝜆 + 𝑞3

)

𝑒−𝜆𝜏 +
(

𝑟2𝜆 + 𝑟3
)

𝑒−2𝜆𝜏 = 0 (3.12)

Then for 𝜏 = 0, (3.12) reduces to

𝜆3 + 𝑝1𝜆
2 + 𝑝2𝜆 + 𝑝3,

where 𝑝1, 𝑝2, 𝑝3 are all positive and by Routh–Hurwitz criterion [51]
for stability, all the roots of (3.12) have negative real part. Similarly,
when 𝜏 > 0, we let 𝜆 = 𝑖𝜔, where 𝜔 > 0 is taken as the root of
(3.12) and by following the same approach adopted for the disease
free equilibrium, we have that the roots of the characteristics equation
has no positive real part and therefore, we can conclude that 𝐸1 is
symptotically stable for 𝑅0 > 1. □

. Numerical simulations and discussion

We calculate the numerical simulation for the model in (2.3) using
he following set of parameters available in [2,4].

= 10.7, 𝜇 = 0.0062, 𝜎 = 0.6, 𝛾 = 0.9, 𝛼 = 0.0009

ith these parameter values, the model becomes
𝑑𝑆
𝑑𝑡

= 10.7 − 0.062𝑆(𝑡) − 𝛽𝑆(𝑡 − 𝜏)𝐼(𝑡 − 𝜏) (1 + 0.0009𝐼(𝑡 − 𝜏)) ,

𝑑𝐸
𝑑𝑡

= 𝛽𝑆(𝑡 − 𝜏)𝐼(𝑡 − 𝜏) (1 + 0.0009𝐼(𝑡)) − 0.062𝐸(𝑡) − 0.6𝐸(𝑡 − 𝜏), (4.1)
𝑑𝐼
𝑑𝑡

= 0.6𝐸(𝑡 − 𝜏) − 0.962𝐼(𝑡),

𝑑𝑅
𝑑𝑡

= 0.9𝐼(𝑡) − 0.062𝑅(𝑡).

ith the above parameters, we display the time series for the suscepti-
le, exposed and infectious classes. From Fig. 3, we observed that there
s an initial sharp decrease in the susceptible class which concise with
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Fig. 3. Time series plot for 𝜏 = 1.70.
Fig. 4. Effect of time delay 𝜏 on the model dynamics.
Fig. 5. Model phase plane.
the increase in the exposed and infectious group. The subsequent trend,
therefore, shows that whenever there is an increase (or decrease) in the
class of susceptible individuals, there is a decrease (or increase) in the
exposed and infectious population.

Similarly, Fig. 3 also shows that the susceptible, exposed and in-
fectious individuals exhibit an oscillatory behaviour which indicates
that the population are randomly and well mixed with high interaction
between the classes which leads to a rapid change in the behaviours.
However, the system becomes stable over a long time which implies
that at a future time, the population becomes less likely to be infected
which could be attributed to the immunity upon the recovery from the
diseases. Next, we shall examine the effect of the delay parameters on
the model.

Fig. 4 shows the population behaviour for a large time delay and
a small time delay. By examining the two figures, we could observe
a more oscillatory behaviour and lesser stability observed for a large
delay which implies that the bigger the delay within the system,
the higher the complexity of the model behaviour which results in
instability. Finally, the phase plane is displayed in Fig. 5 and a spiral
behaviour could be observed most notably between the exposed and
infected classes which indicated the level of interaction between the
classes.
6

5. Conclusion

In this work, a delay SEIR model was investigated with a convex
incidence rate incorporated with delays. The work shows the oscillatory
behaviour of the model compartment when the population are assumed
to be well mixed. By incorporating the delay into the system, we are
able to provide a more realistic scenario that an individual does get the
disease but not instantly which implies that a time period is required
which was represented with the parameter 𝜏. The model was analysed
to understand the behaviour of the equilibrium state together with
their dynamics. Thus, the result shows that when the delay parameter
𝜏 ≤ 1.7, the endemic equilibrium has locally asymptotic stability which
indicates that the disease could be mitigated and will lead to a lower
infectious class over a period. However, when 𝜏 passes through the
critical value, then the endemic equilibrium losses its stability and a
hopf bifurcation arise which indicates that the disease would be out of
control. In this sense, it is necessary to judge the spread and model the
dynamics with various parameters for proper supervision. It is therefore
recommended that the level of exposure should be minimised to reduce
the rate of infection.
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