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Abstract 

     This paper presents an analytical method to describe the heat and mass 
transfer in the flow of an incompressible viscous fluid past an infinite vertical 
plate. The governing equations account for the viscous dissipation effect and 
mass transfer with chemical reaction of constant reaction rate. The coupled 
partial differential equations describing the phenomenon have been transformed 
using similarity transformation and solved analytically using iteration 
perturbation method. The results obtained are presented graphically. It is 
discovered that the heat transfer rate decreases due to increase of Prandtl 
number and Eckert number. Mass transfer rate decreases due to increase of 
Schmidt number and increases due to increase of reaction rate.  

     Keywords: Heat and mass transfer, Incompressible fluid, Viscous dissipation, 
Chemical reaction, Similarity transformation, Iteration perturbation method.    
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1 Introduction 
 
Coupled heat and mass transfer problems in the presence of chemical reactions are 
of importance in many processes especially in industries and thus have received 
considerable amount of attention in recent times by many scholars. Examples of 
such processes can be found in drying, polymer, distribution of temperature and 
moisture over agricultural fields and groves of fruit trees. The study of the flow 
and heat transfer in fluid past a porous surface has attracted the interest of many 
scientific investigators in view of its applications in engineering practice, 
particularly in chemical industries, such as the cases of boundary layer control, 
transpiration cooling and gases diffusion. An extensive contribution on heat and 
mass transfer flow has been made by Khair and Bejan [1]. Doma et al. [2] 
examined the two-dimensional fluid flow past a rectangular plate with variable 
initial velocity. They investigate the motion of the time-independent flow of a 
viscous incompressible fluid. Hossain et al. [3] investigated the problem of natural 
convection flow along a vertical wavy surface with uniform surface temperature 
in the presence of heat generation/absorption. Chand et al. [4] investigated the 
hydro magnetic oscillatory flow through a porous medium bounded by two 
vertical porous plates with heat source and Soret effect. One plate of the channel 
is kept stationary while the other is moving with uniform velocity. Sharma and 
Singh [5] investigated the effects of variable thermal conductivity and heat 
source/sink on flow of a viscous incompressible electrically conducting fluid in 
the presence of uniform transverse magnetic field and variable free stream near a 
stagnation point on a non-conducting stretching sheet. The objective of this paper 
is to obtain an analytical solution for describing the heat and mass transfer in the 
flow of an incompressible viscous fluid past an infinite vertical plate. To simulate 
the flow analytically, the viscous dissipation effect is retained and mass transfer 
with chemical reaction of constant reaction rate is considered. 
 

2 Model Formulation 
 
Consider a steady two-dimensional mass transfer flow of an incompressible 
viscous fluid past an infinite vertical plate. The plate is maintained at a constant 
temperature wT  and the concentration is maintained at a constant value wC . 

Introducing a Cartesian coordinate system, x -axis is chosen along the plate in the 
direction of flow and y -axis normal to it. The temperature of uniform flow is ∞T

and the concentration of uniform flow is ∞C . The viscous dissipation effect is 
retained and mass transfer with chemical reaction of constant reaction rate is 
considered. With the above assumptions the system of governing equations to be 
solved is:  
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Momentum Equation 
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Energy Equation 
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Species Equation 
 

C
y

C
D

y

C
v

x

C
u σ−

∂
∂=

∂
∂+

∂
∂

2

2

                                                                                 (4) 

 
Boundary Conditions 
 
The boundary conditions at the, i.e., 0=y  are given by the no-slip velocity 
condition. Thus 
 

( ) ( ) ( ) ( ) ww CxCTxTxvxu ==== 0,,0,,00,,00,                              (5) 

 
At the edge of the boundary layer, the viscous flow inside the boundary layer is 
required to smoothly transition into the in viscid flow outside the boundary layer. 
 

( ) ( ) ( ) ( ) ∞∞ =∞→→∞→→∞→ CyCTyTxUyu e ,, ,               (6) 

 
where the subscripts w  and e represents the condition at the wall and edge of the 
boundary layer respectively. υ  is the kinematic viscosity, t  is the time, ρ  is the 
fluid density, uand v  are the components of velocity along xand y directions 
respectively, T  is  the temperature of the fluid, C  is the species concentration,  

pc  is the specific heat capacity at constant pressure, σ  is the reaction rate, k  is 

the thermal conductivity, D  is the diffusion coefficient.   

 
3 Method of Solution 
 
3.1 Variable Transformation 
 
For the similarity transformations and the corresponding similar solutions, the 
incompressible stream function can be defined by: 
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Equation (7) and (8) automatically satisfy the continuity equation (1). Then, the 
momentum equation (2), species equation (4) and energy equation (3) become: 
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The dependent variable transformations are introduced as follows: 
 

( ) ( ) ( )ηυβψ β fx
U

Uyx −−= 2

1
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,                                                                            (12) 

( ) ( ) ( ) ( )ηη β
β

fUxfxUyxu e ′=′= −2,                                                                       (13) 
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( ) ( )ηCyxC =,                                                                                                       (15) 
 

( ) ( ),T x y T η=                                                                                                     (16) 

 
Independent variable transformation is introduced as follows: 
 

( )
1

2

2

U
y x

β
βη

β υ

−
−=

−
,                                                                                          (17) 

 
whereβ  is Falkner-Skan pressure gradient parameter. 
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Introducing equations (12) - (17) into the momentum equation (9), species 
equation (10) and energy equation (11) and using Euler’s equation at the edge of 

the boundary layer, i.e., e
e

dUp
U

x dx
ρ∂ = −

∂
, results in: 
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In the above analysis, we consider an important special case, 1β = , corresponding 
with stagnation point flow and by introducing the dimensionless temperature and 
species concentration: 
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Results in: 
 

012 =+′−′′+′′′ ffff                                                                                          (22) 
 

0PrPr 2 =′+′′+′′ θθ ffEc                                                                                    (23) 
 

( ) 01 =+−′+′′ σφσφφ ScScf                                                                               (24) 
 
Together with boundary conditions 
 



Simulation of Heat and Mass Transfer in the...                                                     59 

 
 

( ) ( ) ( )
( ) ( )
( ) ( ) 








=∞→=
=∞→=
=∞→′=′=

0,10

0,10

1,000

ηφφ
ηθθ
ηfff

,                                                               (25) 

 
Where 
 

:Pr
k

cpµ
=

 
Prandtl number,                              :

D
Sc

υ=  Schmidt number, 

 

:
)(

2

∞−
=

TTCp

U
Ec

w

e  Eckert number,                  








−
=

∞

∞

CC

C

w
1σ . 

 
3.2 Solution by Iteration Perturbation Method 
 
We solve equations (22) – (25) using iteration perturbation method (where details 
can be found in [6]). 
 
Now we begin with the initial approximate solution (where details can be found in 
[6]): 

( )ηηη be
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where b is an unknown constant. 
 
Equations (22) – (24) can be approximated by the following equations: 
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We rewrite equations (40) - (42) in the form: 
 

( ) 011
1 2 =′−+′′







 −−−+′′+′′′ − ffbe
b

fbf bηη                                                 (30) 

( ) 011
1

PrPrPr 2 =′






 −−−+′+′′+′′ − θηθθ ηbe
b

fEc                                           (31) 

( ) ( ) 011
1

1 =+−′






 −−−+′++′′ − σφσφηφφ η Sce
b

ScSc b                                    (32) 

 



60                                                                                            A.A. Mohammed et al. 

Let γσα =∈=∈ ,1 and embed an artificial parameter ∈ in equations (30) – (31) 
as follows: 
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Suppose that the solution of equations (33) – (35) can be expressed as: 
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Substituting (36) into (33) – (35) and processing, we obtain 
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Seeking direct integration, we obtain the solution of equations (37) - (42) as  
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The computations were done using computer symbolic algebraic package 
MAPLE.
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4 Results and Discussion 
 
The systems of partial differential equations describing the mass transfer flow of 
an incompressible viscous fluid past an infinite vertical plate are solved 
analytically using a similarity transformation and iteration perturbation method. 
The numerical values of Skin Friction, Nusselt Number and Sherwood Number 
are arranged in Table 1 below for various values of the parameters involved. 
Analytical solutions of equations (22) - (25) are computed for the values of

050.0,030.0,001.0,78.0,62.0,22.0,00.1,85.0,71.0Pr === EcSc
3062.2,01.0,600,400,200 =∈== bσ .  

 
The following figures explain the fluid temperature and species concentration 
distribution against different dimensionless parameters. 
 
From figure 1, we can conclude that with the increase of Prandtlnumber (Pr), 
temperature decreases.  
 

 

 
From figure 2, we can conclude that with the increase of Schmidt number (Sc), 
species concentration decreases.  
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From figure 3, we can conclude that with the increase of Eckert number (Ec), 
temperature increases. 
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From figure 4, we can conclude that with the increase of reaction rate ( )σ , species 
concentration increases. 
  

 

 
Table 1: The numerical values of skin friction, rate of heat and mass transfer 

 
σ  Ec  Pr Sc ( )0f ′′  ( )0θ ′  ( )0φ ′  

200 0.001 0.71 0.22 2.413029923 -0.7217070810 910.0569506 

200 0.001 0.85 0.22 2.413029923 -0.8641426876 910.0569506 

200 0.001 1.00 0.22 2.413029923 -1.016785310 910.0569506 

200 0.001 0.71 0.62 2.413029923 -0.7217070810 323.5472278 

200 0.001 0.71 0.78 2.413029923 -0.7217070810 257.3770162 

200 0.030 0.71 0.22 2.413029923 -0.7450149972 910.0569506 

200 0.050 0.71 0.22 2.413029923 -0.7610894222 910.0569506 

400 0.001 0.71 0.22 2.413029923 -0.7217070810 1819.147859 

600 0.001 0.71 0.22 2.413029923 -0.7217070810 2728.238768 
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5 Conclusion 
 
From the studies made on this paper we conclude as under. 
 
1. Prandtl number decreases the fluid temperature. 
2. Schmidt number decreases the species concentration. 
3. Eckert number enhances the fluid temperature. 
4. Reaction rate enhances the species concentration. 
5. Heat transfer rate decreases due to increase of Prandtl number and Eckert 

number. 
6. Mass transfer rate decreases due to increase of Schmidt number. 
7. Mass transfer rate increases due to increase of reaction rate.  
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