
                                                                                                                                                    

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ḟ 

International 
Journal of   
Mathematical 
Analysis and 
Modelling 
 
(Formerly Journal of the Nigerian Society 

for Mathematical Biology) 
 
 

Volume 5, Issue 2 (Sept.), 2022 

 
ISSN (Print): 2682 - 5694 

ISSN (Online): 2682 - 5708 



                                           International Journal of Mathematical Analysis and Modelling 

                                                              Volume 5, Issue 2, September 2022, Pages 191 – 215 

 

 

191                                                IJMAM, Vol. 5, Issue 2 (2022) ©NSMB; www.tnsmb.org 

                                (Formerly Journal of the Nigerian Society for Mathematical Biology)  

 

 

 

 
Modelling heat and mass transfer of a CO2 binary 

mixture: a mathematical approach 
 

R.O. Olayiwola*†, A.T. Cole*, M.D. Shehu*, F.A. Oguntolu*, E.E. Iyeme‡, and 
A.W. Abubakar§ 

 

 

 
Abstract 

 
        This paper presents an analytical solutions for describing heat and mass transfer 
between a droplet of organic solvent and a compressed antisolvent taking into consideration 
the viscous energy dissipation and heat and mass transfer between the surface and the 
droplet by convection. The solvent and antisolvent are assumed to be fully miscible and 
have the same temperature. Both the initial temperature of the mixture and the initial carbon 
dioxide concentration are also assumed to depend on the space variable. The governing 
equations formulated based on the conservation of total mass, chemical species, momentum 
and energy were solved analytically using polynomial approximation method. The results 
obtained are presented graphically and discussed. The results revealed the effects of 
operating parameters on droplet lifetime. These results might be used for interpretation or 
experiments planning of the more complex real supercritical antisolvent process. 

 
Keywords: carbon dioxide; drug particles; polynomial approximation method; precipitation; solvent;  
                    supercritical fluid. 
 
 

1       Introduction 
 

Particle formation technologies are important in the pharmaceutical industries, and in the production 
of photographic materials, ceramics, explosives, and dyes. The focus in drug formulation is to develop 
techniques that give more consistent and controlled particle size, morphology, and uniformity [4]. In 
current drug delivery technology, very small drug particles are of interest since they can travel faster 
to the target organ and distribute more evenly in the body [7]. 
 
       Conventional methods for manipulating pharmaceutical particles include jet milling, spray drying, 
and emulsion techniques [2]. Jet milling uses particle-to-particle impact forces to break up the products 
into smaller pieces [10]. However, the jet milling process generally does not produce a uniform particle 
size distribution and running the process consumes a lot of energy [2]. Freeze drying results in particles 
of broad size ranges and usually require subsequent milling and sieving [12]. Spray drying usually gives 
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particles of controllable size, but the extreme temperatures used during the operation can denature 
biological materials [17]. 
 

     Conventional drug particle precipitation uses organic solvents as antisolvents for precipitation or 
as emulsifiers for emulsion process [18]. Traces of residual organic solvents, such as methylene 
chloride, that may still be in the drug particles have motivated researchers to find alternative methods 
for particle formation [16]. An alternative to reduce this problem is to use supercritical carbon dioxide 

( 2CO ) as an antisolvent to precipitate drug particles from solution since 2CO  is nonflammable, non-

toxic, inexpensive, renewable, and environmentally benign [11]. 
 

      A supercritical fluid is any substance at a temperature and pressure above its critical point, where 
distinct liquid and gas phases do not exist. It can effuse through solids like a gas, and dissolve materials 
like a liquid. Carbon dioxide and water are the most commonly used supercritical fluids [14]. 

In order to successfully design a 2CO  antisolvent process, it is important to understand the effects of 

the operating parameters on particle characteristics. However, Bristow et al. [3] explained experimental 
particle size and morphology results in light of current hydrodynamic, kinetic and thermodynamic 
theories.  
 

      In the face of experimental difficulties, mathematical modeling appears as a useful tool to 
determine important parameters of the process. In view of this, Kumar et al. [9] developed a 
mathematical model of the droplet moving in a supercritical carbon dioxide environment. The solvent 
chosen in their study is ethanol. They solved the equations using MATLAB software. Chong et al. [5] 
presented a numerical procedure of mathematical model for mass transfer between a droplet of 
organic solvent and a compressed antisolvent which is applicable to the supercritical antisolvent (SAS) 
method of particle formation. Their model equations were put into the form that allowed the 
application of the MATLAB standard solver pdepe. Wu et al. [19] modelled the mixing of a 
hydrocarbon droplet, containing a mixture of toluene and either n-decane or tetralin, in a reservoir of 
supercritical or near-critical water. Their study provided microscale information, such as multi-
component partitioning, and insight into large scale mixing in applications. Almeida et al. [1] used a 
three-dimensional mathematical model to study the development of a jet of solution (ethanol and 
minocycline) expanded in pressurized carbon dioxide in order to interpret the process of development 
of regions of supersaturation of the solution. The commercial code ANSYS FLUENT was used to 
solve the model relating the impact of the flow of solution in the mixing chamber of the precipitation 
process.  
 

        In this paper, a mathematical model capable of predicting the composition of hydrocarbon and 
carbon dioxide in SAS process is presented. We assume constant density, diffusivity and thermal 

conductivity. The droplet is moving through 2CO  continuum and heat and mass transfer take place 

to and from the droplet which led to the supersaturation and then fine particle of solute. To simulate 
the flow analytically, we assume that the medium is not stagnant so the convective flux can be 
considered.  
 

2    Model formulation 
 
A ‘pseudo’ droplet of solvent (hydrocarbon droplet) immersed in a compressed antisolvent (carbon 

dioxide) in miscible conditions is considered. The space variable is r , 0 r R  , and time is t , 0t

The state variables depending on ( ),r t  are the mixture temperature T , carbon dioxide mole fraction  
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cX , solvent mole fraction hX , radial velocity of droplet u  and pressure .p  The formulation of our 

model is guided by the following assumptions: 
1. The solvent and the antisolvent are fully miscible so only one equation is needed to describe 

the mass transfer. 
2. The medium is not stagnant so the convective flux can be considered. 
3. The radial velocity (velocity of droplet) is non-zero because of temperature change and mixing 

of carbon dioxide and hydrocarbons. 
4. The heat and mass transfer between the surface and the mixture take place by convection. 
5. The spherical symmetry is considered, making the problem one-dimensional. 
6. The viscous energy dissipation is considered. 
7. There is no heat source. 

 
The diffusive flux is assumed to be proportional to the concentration gradient as described by Fick’s 
law: 

 

                                     NXXDN ccc +−=  .                                                                      (1) 

 
The mass balance on carbon dioxide reads: 

( ) ( ) 0=+−+



NXXDX

t
ccc  .                                                                                    (2) 

 

The continuity equation required to find the convective flux N is: 

0=+



N

t


.                                                                                                                         (3) 

 

Multiplying (3) by cX  and combining with (2) yields: 

( )cc
c XDXN

t

X
=+




 .                                                                                             (4) 

 
In a similar manner, momentum and energy conservation equations can be obtained respectively as: 









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2
2                                                                         (5) 
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22
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x
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M
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t

T
c c

pp  .                  (6) 

 

Introducing an apparent flux to replace convective flux (i.e., uN = ) yields in one-dimensional 

Cartesian coordinates: 
 

( ) 0=



+




u

xt



                                                                                                                     (7) 
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

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
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


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


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X ccc  ,                                                                                          (9) 
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We can eliminate the continuity equation (7) by means of streamline function (see, [13]), 

( ) ( ) ( )
−

=
x

dststx
0

2

1
2 ,,                                                                                                         (11) 

 
The coordinate transformation becomes, 
 





 


=








→





xx
                                                                                                                  (12) 

t
u

ttt 
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−=




+








→










.                                                                                             (13) 

 

We make the additional assumptions that ,,pc  and D  are constant. Although these 

assumptions could be relaxed in the future, they considerably simplify the equations. The equations 
can be simplified as  
 


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In spherical coordinates system (see, [6]), (14) – (16) become 
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where u  is the radial velocity (velocity of droplet). 
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The mole fraction of the solvent (hydrocarbon droplet) is directly deduced by the relation: 

1h cX X= −                                                                                                                             (20) 

 
Darcy’s law 

r

pK
u




−==


.                                                                                                                          (21) 

 
To avoid potential convergence problems, the initial and boundary conditions is formulated as follows: 
Initial condition: 
 

At 0=t  and r ,  

( )( )( ) ( )( )( )RrXXRrTTUu cccs −+=−+==  tanh1
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Boundary conditions: 
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,                                                                                      (23) 

 

where cX  is the mole fraction of the carbon dioxide, hX  is the mole fraction of the solvent 

(hydrocarbon droplet), D  is the diffusion coefficient of the solvent in the carbon dioxide,   is the 

density of the binary mixture,   is heat conductivity of the mixture, K  is the permeability, R  is the 

droplet radius, T  is the temperature of the mixture, M  is the molecular weight, 0cT  is the initial 

temperature of carbon dioxide, 0hT  is the initial temperature of hydrocarbon, 0cX  is the initial 

concentration of carbon dioxide, 0hX  is the initial concentration of hydrocarbon, p  is the pressure, 

u  is the radial velocity of droplet, sU  is the surface velocity,   is the dynamic viscosity, pc  is the 

constant pressure specific heat, r  is the radial coordinate, K  is the permeability, *D  is the effective 

diffusion coefficient, 
*  is the effective heat conductivity, mk  is the convective mass transfer 

coefficient, h  is the convective heat transfer coefficient, outp  is the outlet pressure, q  is constant.  
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3     Method of solution 
3.1 Dimensional analysis 
 
Dimensionless variables for space and time is been introduced as: 

r
r

R
 = ,                  

*t

t
t = ,                

sU

R
t =*                                                                        (24) 

 
Dimensionless variables for radial velocity of droplet, mixture temperature, carbon dioxide mole 
fraction and hydrocarbon mole fraction is been introduced as follows: 
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where *t  is reference values for time. 
 
Using (24) and (25), and after dropping the prime, equations (17) - (23) become 
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where 
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2a
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=  is the Darcy number,   
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mRk
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=  is the Sherwood number,   
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
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3.2     Solution via Polynomial Approximation Method 
 
Here, we assume polynomial solution of the form (see, [15]): 

( ) ( ) ( ) ( ) 2

0 1 2,r t a t a t r a t r = + +                                                                                                                    (32) 

( ) ( ) ( ) ( ) 2

0 1 2,u r t b t b t r b t r= + +                                                                                                                    (33) 

( ) ( ) ( ) ( ) 2

0 1 2,r t c t c t r c t r = + + .                                                                                                                   (34) 

 
Applying the boundary conditions as given in (31), we obtain 
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Then, equation (32) – (33) become 

( ) 2

1 1
, 1

2 2r r

Sh Sh
r t r  

= =

 
= + − 
 

                                                                                                                      (36) 

( ) 2

1
,

2 2r
u r t u r

 
=

= − +                                                                                                                       (37) 

( ) 2

1 1
, 1

2 2r r

Nu Nu
r t r  

= =

 
= + − 
 

                                                                                                                   (38) 

 
For long spherical shape (see, [8]), we have 

1
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0
3 r dr =                                                                                                                                       (39) 

1
2

0
3u r udr=                                                                                                                                  (40) 

1
2

0
3 r dr =                                                                                                                                  (41) 

where    is the average mole fraction,  u  is the average velocity,    is the average temperature.  

Equations (39) – (41) give the relations 
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= + = − = +   
   

                                                       (42) 

and 

1 1 1

1 , , 1
2 2r r r

Sh Nu
u u

t t t t t t
   

= = =

        
= + = = +   

        
                                        (43) 

 
Integrating (26) – (28) with respect to r , yield the following equations 
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Solving (44) – (46) gives 
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Substituting equations (47) – (49) into equations (36) – (38) give 
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The computations were done on equations (50) – (54) using computer symbolic algebraic package 
MAPLE 2021. 
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4   Results and Discussion 
4.1   Analysis of Results 
 
The transport and mixing processes are simulated analytically for a droplet of solvent (hydrocarbon) 
and a compressed antisolvent (carbon dioxide) in miscible conditions using polynomial approximation 
method. Analytical solutions given by equations (50) - (54) are computed using computer symbolic 
algebraic package MAPLE 2021. The numerical results obtained from the method are shown in 
Figures 1 to 18.  
 

4.2   State Variables Dynamics  
 
We performed the numerical simulations of the system of differential equations of the state variables 
to determine the changes in the various state variables with time and space. There seems to be a 
continuous increase in the mixture temperature, droplet velocity, hydrocarbon concentration and 
pressure as the carbon dioxide concentration decreases with time. Our findings showed an inverse 
relationship among the mixture temperature, droplet velocity, hydrocarbon concentration, pressure 
and carbon dioxide concentration as shown in Figures 1 – 5.  

Figure 1 depicts the graph of mixture temperature ( ),r t against time t  for different values of 

droplet radius r . It is observed that the temperature of the mixture increases with time and this 
mixture temperature is higher at the centre of the droplet than at the end of the domain. 

Figure 2 shows the graph of carbon dioxide concentration ( ),r t against time t  for different values 

of droplet radius r . It is observed that the concentration of carbon dioxide decreases with time and 
this concentration is higher at the centre of the droplet than at the end of the domain. 

Figure 3 displays the graph of hydrocarbon concentration ( ),r t against time t  for different values 

of droplet radius r . It is observed that the concentration of hydrocarbon increases with time and this 
concentration is higher at the end of the domain than at the centre of the droplet. 
 

Figure 4 manifests the graph of droplet velocity ( ),u r t against time t  for different values of droplet 

radius r . It is observed that the velocity of droplet increases with time and this velocity is higher at 
the end of the domain than at the centre of the droplet. 

Figure 5 depicts the graph of pressure ( ),p r t against time t  for different values of droplet radius r

. It is observed that the pressure increases with time and this pressure increase throughout the domain 
except at the end of the domain where it constant. 
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Figure 1: Mixture Temperature 

 
 
 

                  
                                   Figure 2: Carbon dioxide Concentration 
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                                     Figure 3: Hydrocarbon Concentration 
 
 

                      
                                                 Figure 4: Droplet Velocity 



                                           International Journal of Mathematical Analysis and Modelling 

                                                              Volume 5, Issue 2, September 2022, Pages 191 – 215 

 

 

203                                                IJMAM, Vol. 5, Issue 2 (2022) ©NSMB; www.tnsmb.org 

                                (Formerly Journal of the Nigerian Society for Mathematical Biology)  

 

 

 
                                            Figure 5: Pressure 
 
 
 

4.3      Effects of Nusselt Number, Nu  
 
Numerical analysis of the Nusselt number was conducted to see whether or not the Nusselt number 
contribute significantly to the mixture temperature. 

Figure 6 discloses the graph of mixture temperature ( ),r t against time t  and droplet radius r  for 

different values of Nusselt number Nu . It is observed that the temperature of mixture increases with 
time and decreases along droplet radius but this temperature increases as Nusselt number increases. 
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Figure 6: Effects of Nusselt number, Nu on mixture temperature 
 
 
 

4.4     Effects of Peclet Energy Number, eP  

 
Numerical analysis of the Peclet energy number was conducted to see whether or not the Peclet energy 
number contribute significantly to the mixture temperature. 

Figure 7 depicts the graph of mixture temperature ( ),r t against time t  and droplet radius r  for 

different values of Peclet energy number eP . It is observed that the temperature of mixture increases 

with time and decreases along droplet radius but this temperature increases as Peclet energy number 
increases.  
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Figure 7: Effects of Peclet energy number, eP on mixture temperature 

 
 
 

4.5     Effects of Eckert Number, cE  

 
Numerical analysis of the Peclet energy number was conducted to see whether or not the Peclet energy 
number contribute significantly to the mixture temperature. 

Figure 8 shows the graph of mixture temperature ( ),r t against time t  and droplet radius r  for 

different values of Eckert number cE . It is observed that the temperature of mixture increases with 

time and decreases along droplet radius but this temperature increases as Eckert number increases. 
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Figure 8: Effects of Eckert number, cE on mixture temperature 

 
 

4.6    Effects of Darcy Number, aD  

 
Numerical analysis of the Darcy number was conducted to see whether or not the Darcy number 
contribute significantly to the mixture temperature, droplet velocity and pressure. 

Figure 9 shows the graph of mixture temperature ( ),r t against time t  and droplet radius r  for 

different values of Darcy number aD . It is observed that the temperature of mixture increases with 

time and decreases along droplet radius but this temperature increases as Darcy number decreases. 

Figure 10 displays the graph of droplet velocity ( ),u r t against time t  and droplet radius r  for 

different values of Darcy number aD . It is observed that the velocity of droplet increases with time 

and increases along droplet radius but this velocity increases as Darcy number decreases. Figure 11 

displays the graph of pressure ( ),p r t against time t  and droplet radius r  for different values of 

Darcy number aD . It is observed that the pressure increases with time and decreases along droplet 

radius but this pressure increases as Darcy number decreases. 
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Figure 9: Effects of Darcy number, aD on mixture temperature 

 

 
Figure 10: Effects of Darcy number, aD on droplet velocity 
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Figure 11: Effects of Darcy number, aD  on pressure 

 
 

4.7 Effects of Sherwood Number, Sh  
 
Numerical analysis of the Sherwood number was conducted to see whether or not the Sherwood 
number contribute significantly to the mixture temperature and carbon dioxide concentration. 

Figure 12 shows the graph of mixture temperature ( ),r t against time t  and droplet radius r  for 

different values of Sherwood number Sh . It is observed that the temperature of mixture increases 
with time and decreases along droplet radius but this temperature increases as Sherwood number 
decreases. 
 

Figure 13 displays the graph of carbon dioxide concentration ( ),r t against time t  and droplet radius 

r  for different values of Sherwood number Sh . It is observed that the concentration of carbon 
dioxide increases with time and decreases along droplet radius but this concentration increases as 
Sherwood number increases. 
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Figure 12: Effects of Sherwood number, Sh  on mixture temperature 
 
 

 
Figure 13: Effects of Sherwood number, Sh  on Carbon dioxide concentration 
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4.8 Effects of Peclet Mass Number, emP  

 
Numerical analysis of the Peclet mass number was conducted to see whether or not the Peclet mass 
number contribute significantly to the carbon dioxide and hydrocarbon concentrations. 

Figure 14 shows the graph of carbon dioxide concentration ( ),r t against time t  and droplet radius 

r  for different values of Peclet mass number emP . It is observed that the concentration of carbon 

dioxide decreases with time and decreases along droplet radius but this concentration increases as 
Darcy number increases. 
 

Figure 15 displays the graph of hydrocarbon concentration ( ),r t against time t  and droplet radius 

r  for different values of Peclet mass number emP . It is observed that the concentration of 

hydrocarbon increases with time and increases along droplet radius but this concentration increases 
as Darcy number decreases. 
 
 
 

 
Figure 14: Effects of Peclet mass number, emP  on Carbon dioxide concentration 
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Figure 15: Effects of Peclet mass number, emP  on hydrocarbon concentration 

  
 

4.9 Effects of Reynolds Number, eR  

 
Numerical analysis of the Reynolds number was conducted to see whether or not the Reynolds 
number contribute significantly to the mixture temperature, droplet velocity and pressure. 
 

Figure 16 shows the graph of mixture temperature ( ),r t against time t  and droplet radius r  for 

different values of Reynolds number eR . It is observed that the temperature of mixture increases with 

time and decreases along droplet radius but this temperature increases as Reynolds number decreases. 

Figure 17 displays the graph of droplet velocity ( ),u r t against time t  and droplet radius r  for 

different values of Reynolds number eR . It is observed that the velocity of droplet increases with time 

and increases along droplet radius but this velocity increases as Reynolds number decreases.  
 

Figure 18 displays the graph of pressure ( ),p r t against time t  and droplet radius r  for different 

values of Reynolds number eR . It is observed that the pressure increases with time and decreases 

along droplet radius but this pressure increases as Reynolds number decreases. 
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Figure 16: Effects of Reynolds number, eR  on mixture temperature 

 
 

Figure 17: Effects of Reynolds number, eR  on droplet velocity 
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Figure 18: Effects of Reynolds number, eR  on pressure 

 
 
It is worth pointing out that the effects observed in Figures 1 to 18, are important for designing and 

optimizing different 
2CO  antisolvent processes for the formulation of small crystalline drug products. 

 

5   Conclusion 
 
This research work developed a model describing heat and mass transfer between a droplet of solvent 
(hydrocarbon) and a compressed antisolvent (carbon dioxide) in miscible conditions taking into 
consideration the viscous energy dissipation and transfer of heat and mass between the reservoir 
surface and the droplet by convection, in order to investigate the role of operating parameters on 
droplet lifetime. This model which relies on several assumptions is based on the conservation of total 
mass, chemical species, momentum and energy written in transient state mode of operation. The 

governing parameter of the problem are the Eckert number ( cE ), Peclet energy number ( eP ), 

Reynolds number ( eR ), Peclet mass number ( emP ), Darcy number ( aD ), Nusselt number ( Nu ) and 

Sherwood number ( Sh ).The study revealed the following: 
 
The mixture temperature, hydrocarbon concentration, pressure and velocity of droplet are increasing 
function of time. 

The 
2CO  concentration is a decreasing function of time. 

The mixture temperature is higher at the centre of droplet than at the end of domain. 

There is higher concentration of 
2CO  at the centre of droplet than at the end of domain. 

There is higher concentration of hydrocarbon at the end of domain than at the centre of droplet. 
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The velocity of droplet is higher at the end of domain than at the centre of droplet. 
 The pressure is higher at the end of domain than at the centre of droplet. 
 
The results highlighted above showed that the particle formation in drug production could be 
controlled by the governing parameters involved. These results are useful in pharmaceutical industries 
for achieving very small drug particles of interest. The results of this study may be of importance to 
engineers and scholars attempting to develop programming standards and to researchers interested in 
the theoretical aspects of computer programming. 
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