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Abstract  
A mathematical model of the spread of rotavirus diarrhea based on a continuous time 
ordinary differential equation modeled two viral strains of influenza is presented. The 
existing influenza models is extended to include the case ofco-infection when a single 
individual is infected with both strains of rotavirus and to explore the effects of maternal 
antibodies, vaccination and seasonality. The model exhibits two equilibria, disease-free 
equilibrium (DFE) and the endemic equilibrium (EE). Equilibrium analysis is conducted in the 
case with constant controls for both epidemic and endemic dynamics. By the use of 

Lyapunov function, it is shown that if the effective reproduction number, 10 c , the DFE is 

globally asymptotically stable and in such a case, the EE is unstable. Moreover, if 10 c , 

the endemic equilibrium is globally asymptotically stable. 
 
Keywords: Co-infection, Maternal antibodies, Rotavirus, Rotarix, Viral strains, Seasonality, 

Caccination. 

Introduction 
Rotavirus is the most common cause of gastroenteritis in children 6 months to 2 years of 
age (Parasharet al., 2006). Approximately 55,000 children are hospitalized each year with 
rotavirus in the United States and about 611,000 children die from the disease worldwide. 
Rotavirus also causes gastroenteritis in adults and is associated with as many as 36% of 
cases of traveler's diarrhea (Sheridan et al., 1981). Immunity after a rotavirus infection is 
incomplete. After initial exposure children are more susceptible to diarrheal illnesses of any 
kind (Reveset al, 1989), but repeat infections with rotavirus tend to be less severe than the 
original infection. Severe cases of diarrhea are reported more often with thefirst infection 
than with secondary infections. Even serotype specific immunity from rotaviral diarrhea is 
incomplete (Reveset al., 1989; Yuan et al., 2004). 

Rotavirus infects almost all children in both developed and developing countries by age 5 
years, but severe, dehydrating gastroenteritis occurs primarily among children aged 3 - 35 
months. Rotavirus illness can range in severity from mild, watery diarrhea of limited duration 
to severe diarrhea with vomiting and fever that can result in dehydration with shock, 
electrolyte imbalance, and death (Kang, 2006; Rodriguez et al., 1987). The incubation 
period lasts 1 - 3 days. Illness is characterized by vomiting followed by fever and diarrhea. 
Up to one-third of patients have a temperature of >102oF (>39oC). Gastrointestinal 
symptoms generally resolve in 3-7 days. 

Rotavirus is shed in high concentrations in the stools of infected children and istransmitted 
primarily by the fecal-oral route, both through close person-to-person contact and through 
contact with inanimate objects which have become infected with the disease. It is 
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hypothesized that rotavirus is also transmitted through respiratory droplets, in the same 
manner as influenza (Parashar, 1998; Widdowson, 2004). 

Co-infection is the concurrent infection with more than one strain of rotavirus in a single 
individual. It is during co-infection that reassortments of rotavirus can arise. Rotavirus is 
ubiquitous in the environment, so rotavirus has not mutated to the extent that the influenza 
virus has. Most often these reassortants occur between different human strains. Because 
recombination can occur between human and animal strains of influenza, it is hypothesized 
that this type of recombination can occur with different strains of rotavirus as well 
(Dennehy, 2007; De Graziaet al., 2007). 

There are only a few published models of rotavirus transmission in existence. Knowledge of 
the transmission cycle of rotavirus is the main factor restricting growth in this field. In light 
of the uncertainty regarding the modes of transmission, it ishypothesized that the only 
means to control the spread of rotavirus is to create aninexpensive and effective vaccine. 

Mathematical models, in general, have become important tools in predictingthe behavior of 
epidemics and in evaluating prevention measures. Modeling is aquantitative measure that 
can be used to guide public health policy by providingconceptual results like threshold 
measures and contact rates. Modeling can alsohelp to clarify certain parameters, variables, 
and assumptions (Brauer& Castillo-Chavez, 2000; Castillo-Chavez et al., 2001). 

White et al. (1997) created a model of rotavirus transmission and observed the levels of 
cross-immunity necessary to suppress similar strains. They addressed the issue of 
heterogeneity among strains of the same pathogen. Another study of rotavirus by Shim et 
al.(2006a) examined the role of maternal antibodies in age-structured models with and 
without vaccination. Shim's models delve further into the dynamics of passive immunity and 
consider only one strain of rotavirus.In another development, Shim et al. (2006b) examined 
the role of seasonality of rotavirus infection with its vaccination. Ortega (2008) formulated a 
model of the spread of rotavirus diarrhea based on a continuous time ordinary differential 
equations model of two viral strains of influenza. He expanded this influenza model to 
include the case of co-infection and further to explore the effects of vaccination. 

The objective of this paper is to test the role of maternal antibodies, seasonality and 
vaccination on rotavirus transmission both theoretically and through analytical simulations 
by including the possibility of co-infection with both circulating strains of rotavirus. 

Model Formulation 
The new model for the transmission dynamics of rotavirus, in the presence of two co-
circulating strains and co-infection, within a population, is formulated by divided the total 

population at time t  (denoted by  tN ) into twelve sub-populations of susceptible  tS , 

breastfeeding  tM , latently infected  tL , infectious with rotavirus strain 1  tY1 , infectious 

with rotavirus strain 2  tY2 , recovered from infection with rotavirus strain 1  tZ1 , 

recovered from infection with rotavirus strain 2  tZ2 ,infectious with rotavirus strain 1 after 

already being infected with strain 2  tI1 , infectious with rotavirus strain 2 after already 

being infected with strain 1  tI 2 , infectious with both strains of rotavirus simultaneously 

 tC , recovered from both strains of rotavirus  tW , and vaccinated  tV , so that 
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                         tVtWtCtItItZtZtYtYtLtMtStN  212121   (1) 

It is assumed that the total population,  tN  is constant. This is appropriate since 

demographic changes and rotavirus-induced mortality are negligible under the temporal 
scale consideration.  

We also assume the protection role of maternal antibodies provided by breastfeeding. 
Therefore, the infection rate among infants who are breastfed is assumed to be reduced by 

factor   where 10    over a short window in time. 

In fact, it is assumed that only the proportion q  of newborns per unit time is breastfed with 

an average effective immune period to rotavirus infection (due to breastfeeding) of


1
. The 

average life span of an individual is


1
. The total death rate 

 VWCIIZZYYLMS  212121  is assumed to be equal to total birth 

rate N ; 
   c21

1
 is the average effective latent period;   is the transmission 

rate per infective and is assumed to depend on the season and consequently, it is modeled 
by 

       tt 2cos1 10 ,   (2) 

where 0  is the mean transmission rate, 1  its amplitude and   the lag-associated with 

seasonal transmission. 

In this study, we consider two vaccines namely, neonatal vaccine (given to infants 
immediately after birth) and Rotarix (given to infants at two months and four months of 

age).  It is assumed that the neonatal vaccine is applied only to the proportion   of non-

breast-fed newborns  q1  per unit time and that the vaccine effectiveness wanes after 

an average period of


1
. It is further assumed that infants who are neither breastfed nor 

vaccinated enter directly the susceptible class and that vaccination provides 100% 
protection until it wanes. We consider vaccinating (with Rotarix) individuals from susceptible 
class at the rate . 

Using these definitions and assumptions we arrive at the following non-autonomous 
nonlinear system of equations that models the transmission dynamics of rotavirus infections 
in a homogeneously mixing population: 

      WSVMSCSq
dt

dS
c   2111 (3) 

    MMCMq
dt

dM
c   21                                                                             

(4) 
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     LMCSC
dt

dL
ccc   212121 (5) 

  111
1 YL

dt

dY
                                (6) 

  222
2 YL

dt

dY
                                (7) 

  12211
1 ZY

dt

dZ
                                (8) 

  21122
2 ZY

dt

dZ
                                (9) 

  11211
1 IZ

dt

dI
  (10) 

  22122
2 IZ

dt

dI
  (11) 

 CL
dt

dC
cc              (12) 

 WCII
dt

dW
c   2211                              (13) 

   VSq
dt

dV
  1 ,(14) 

where  

 111 IY   ,    222 IY       and  ac   

The initial conditions are: 

           

            000202101202

101202101000

0,0,0,0,0,0

,0,0,0,0,0,0

VVWWCCIIIIZZ

ZZYYYYLLMMSS




      

(15) 

Basic Properties of Model 
For the special case when the transmission rate per infective   is a positive constant, i.e. 

,0  we will examine the positivity and invariant region of the solutions of equations (3) – 

(15).  

Positivity of solution 
Since the model monitors human population, we need to show that all the state variables 
remain non-negative for all times. 
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Theorem 1: Let 

     

             

      

























00,00,00

,00,00,00,00,00,00,00

,00,00:,,,,,,,,,,,

212121

12

212121

VWC

IIZZYYL

MSVWCIIZZYYLMS

  

then the solutions                         tVtWtCtItItZtZtYtYtLtMtS ,,,,,,,,,,, 212121
 of the 

system of equations (3) – (15) are positive for all 0t . 

Proof: Consider equation (3)  

      WSVMSCSq
dt

dS
c   2111 (16) 

i.e. 

    Sq
dt

dS
  11                                                                                                        

(17) 

     qS
dt

dS
 11                                                                                                        

(18) 
Solving, we have 

 
  

 
    tt cee

q
tS 



  



 1

11
                                                                                    

(19) 
Taking initial condition, we get 

 
  

 
  

 
  0

1111
0 

















  te

q
S

q
tS 








    (20) 

Consider (4) 

    MMCMq
dt

dM
c   21                                                                         

(21) 
i.e. 

 Mq
dt

dM
                                                                                                                  

(22) 

   qM
dt

dM
                                                                                                               

(23) 
Solving, we have 

 
 

    tt cee
q

tM 



  


 1                                                                                     

(24) 
Taking initial condition, we get 

 
   

   00 












  te

q
M

q
tM 








                                                                     

(25) 
Similarly, it can be shown that 
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           

           

       

 
 
 

 
 

  0
11

,0,0

,0,0,0,0

,0,0,0

0

00

202101202101

2021010

21

2121


































t

tt

tttt

ttt

e
q

V
q

tV

eWtWeCtC

eItIeItIeZtZeZtZ

eYtYeYtYeLtL

c

c

















(26) 

for all time 0t . 

 

Invariant region 

Theorem 2: Let                         tVtWtCtItItZtZtYtYtLtMtS ,,,,,,,,,,, 212121
 be the 

solution of system (3) – (14) with initial conditions

 000201020102010000 ,,,,,,,,,,, VWCIIZZYYLMS . The compact set, 

  1,,,,,,,,,,,, 12

212121   HWVWCIIZZYYLMS  is positively invariant and attract all 

solution in 
12

 . 

Proof: We follow the proof given inMushanyuet al. (2018). Consider, 

     VWCIIZZYYLMSWtW H  212121 .                                     

(27) 

The time derivative of  tW  is given by 

 

 H

H

W

dt

dV

dt

dW

dt

dC

dt

dI

dt

dI

dt

dZ

dt

dZ

dt

dY

dt

dY

dt

dL

dt

dM

dt

dS

dt

dW

dt

tdW

 





















212121            

(28) 
This gives 

0 H
H W

dt

dW
 for 1HW                               (29) 

From (29), we have 0
dt

dW
 which implies that   is a positive invariant set. We also note 

that by solving (29), we have 

  t

HH eWW  010                                                                                           

(30) 

where  0HW is the initial condition of  tWH . Thus,  10  HW as t  and hence   is 

an attractive set. 

Model Analysis 
The model system (3) – (14) is analysed qualitatively to get insights into its dynamical 
features which give better understanding of the impact of control strategies on the 
transmission dynamics of Rotavirus. 

Disease free equilibrium (DFE) 
The disease-freeequilibrium of model system (3) – (14) is obtained by setting 
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0212121 
dt

dV

dt

dW

dt

dC

dt

dI

dt

dI

dt

dZ

dt

dZ

dt

dY

dt

dY

dt

dL

dt

dM

dt

dS
,           (31) 

and in the absence of disease, 02121  CIIYYL  so that: 

        
  

 
 
  






































0
0

0

0

1

1

Sq
V

q
M

qq
S

(32) 

Hence DFE is  

 
        

    
 
  





























 0

0000

2

0

1

0

2

0

1

0

2

0

1

000

1
,0,0,0,0,0,0,0,0,0,,

1

,,,,,,,,,,,

Sqqqq

VWCIIZZYYLMS

        

(33) 

Basic reproduction number, 0  

The basic reproduction number denoted by 0 is the average number of secondary 

infections caused by an infectious individual during his or her entire period of infectiousness 
(Diekmanet al., 1990). The basic reproduction number is an important non-dimensional 
quantity in epidemiology as it sets the threshold in the study of a disease both for predicting 
its outbreak and for evaluating its control strategies. Thus, whether a disease becomes 

persistent or dies out in a community depends on the value of the reproduction number, 0

. Furthermore, stability of equilibria can be analysedusing 0 . If 10  it means that every 

infectious individual will cause less than one secondary infection and hence the disease will 

die out and when 10  , every infectious individual will cause more than one secondary 

infection and hence the disease will invade the population. A large number of 0 may 

indicate the possibility of a major epidemic. For the case of a model with a single infected 

class, 0 is simply the product of the infection rate and the mean duration of the infection. 

Since the infection components in this model are 2121 ,,,, IIYYL  and C , then from 

equation (5) and (12)  

  

























 



0

0

0

0

0

2211 MSaCIYIY

Fi



                            (34) 

Partial differentiation of iF  with respect to 2121 ,,,, IIYYL  and C gives the new infection 

matrix 
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         
























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000000
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F



      

(35) 
On the other hand, 

 
 
 

 
 

  







































CL

I

I

YL

YL

I

V

cc

c

i













22

11

222

111

21

                           (36) 

Partial differentiation of iV with respect to 2121 ,,,, IIYYL  and C gives the transition matrix 



































4

3

2

32

21

1

0000

00000

00000

0000

0000

00000

k

k

k

k

k

k

V

c





                           (37) 

It follows that 











































441

3

2

331

2

221

1

1

1

1
0000

0
1

0000

00
1

000

000
1

0

0000
1

00000
1

kkk

k

k

kkk

kkk

k

V

c





                                      (38) 

It follows that the next generation matrix is given by 
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



























000000

000000

000000

000000

000000

32121

1

aaaaaab

FV                                                                                                  

(39) 
where 

     
3

1

2

1

2
1

1

1

4

00

3

3

00

2

2

00

1

42312211

,,,

,,,,

a
k

a
a

k
a

k
b

k

MS
a

k

MS
a

k

MS
a

kkkk

c

cc


















 

The spectral radius for 1FV  gives the effective reproduction number (basic reproduction 

number with controls) denoted by c

0  which is given by 

  c

C

c

Y

c

Y

cc

k

MS

k

a

kk
000

1

00

43

2

2

1
0 21

















(40) 

which provides a measurement for the disease risk during rotavirus transmission. The first 

term in c

0  comes from rotavirus strain 1, the second term comes from rotavirus strain 2, 

and the third term represents the contribution from both strains. 
 
 
Endemic Equilibrium (EE) 
We now analyse the equilibria of the system (3) – (14) which will provide essential 
information regarding the long-term dynamics of the disease. Let 

 VWCIIZZYYLMS ,,,,,,,,,,, 212121  be an equilibrium of model (3) – (14), which satisfies 

the following equations 

      
   

    
 
 

  
  

   
   

 

 
    















































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0

0

0

0

0

0

0

0

0

0

011

2211

221222

112111

211122

122211

222

111

212211
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VSq

WCII
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IZIY

IZIY

ZIYY

ZIYY

YL
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LMSaCIYIY

MMaCIYIYq

SWVMSaCIYIYq

c
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c

























          (41) 

Theorem 3: A unique positive endemic equilibrium exists for the system (41) if and only if 

10 c . 
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Proof: Solving the equations (41) at the endemic steady-state gives: 
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
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q
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 
 

   
 
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1
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2

*
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1

*

1
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*
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2

*

2
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*

1*





























































aCIYIY

CII

aCIYIY

qq
A

S

c

  
 

 
 

















*
*

21

****

2

*

2

*

1

*

1* 1
,

Sq
V

MSaCIYIY
L

c

 

where 

   qA  11 ,    221A ,     *

1122

*

2222 YYA   ,
*

2

*

1123 YYA  ,          114A ,     *

2211

*

1115 YYA   ,

*

2

*

1216 YYA   

Therefore, a unique positive endemic equilibrium for the system (3) – (14) is 

 ****

2

*

1

*

2

*

1

*

2

*

1

**** ,,,,,,,,,,, VWCIIZZYYLMSE  (42) 

Global Asymptotic Stability 
Here, we investigate the global stability of the disease-free equilibrium point, 

 0000

2

0

1

0

2

0

1

0

2

0

1

0000 ,,,,,,,,,,, VWCIIZZYYLMSE   and endemic equilibrium point, 

 ****

2

*

1

*

2

*

1

*

2

*

1

**** ,,,,,,,,,,, VWCIIZZYYLMSE  . 

Theorem 4: If 10 c , the disease-free equilibrium (DFE) point 
0E  of the dynamical 

system (3) – (14) is globally asymptotically stable. 
Proof: Define a Lyapunov function: 

Ldx
x

M
dx

x

S
F c

M

N

S

N
0

00

11 
















  (43) 

Then, the derivative of F along solutions of system (3) – (14) is  

dt

dI

dt

dM

M

M

dt

dS

S

S

dt

dF c

0

00

11 
















 (44) 



Journal of Science, Technology, Mathematics and Education (JOSTMED), 17(2), June, 2021 

 

 

11 

 

       

    
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That is 

     MSaCIYIY
dt

dF c   22110 1  

If 10 c , we get 0
dt

dF
 which implies that the disease-free equilibrium 0E of system (3) 

– (14) is globally asymptotically stable. 

Theorem 5: If 10 c , the endemic equilibrium (EE) point *E  of the dynamical system (3) 

– (14) is globally asymptotically stable. 

Proof:We let 11 IYA   and 22 IYB  and define a Lyapunov function: 

 
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x
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L
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dx
x

A

L

AMS
dx

x

L
dx
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
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
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      (45) 

Then, the derivative of F along solutions of system (3) – (14) is  

 

   
dt
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C
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L
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dt
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(46) 

By direct calculations, we have that: 

   



















































































































































































**

*
**

**

*
**

**

*
**

*

*
*

*

*
*

*

*
*2*

**

*
**

**

*
**

**

*
**

*

1111

111111

1111

11111

CS

SC

S

S
CSa

BS

SB

S

S
BS

AS

SA

S

S
AS

W

W

S

S
W

V

V

S

S
V

M

M

S

S
MSS

SCS

SC

S

S
CSa

BS

SB

S

S
BS

AS

SA

S

S
AS

dt

dS

S

S












 



Journal of Science, Technology, Mathematics and Education (JOSTMED), 17(2), June, 2021 

 

 

12 

 

   




























































































































**

*
**

**

*
**

**

*
**2*

**

*
**

**

*
**

**

*
**

*

1111

1111

11111

CM

MC

M

M
CMa

BM

MB

M

M
BM

AM

MA

M

M
AMMM

MCM

MC

M

M
CMa

BM

MB

M

M
BM

AM

MA

M

M
AM

dt

dM

M

M










 

























































































































***

*
**

***

*
**

***

*
**

***

*
**

***

*
**

***

*
**

*

11

11

111

L

L

CM

MC

L

L
CMa

L

L

BM

MB

L

L
BM

L

L

AM

MA

L

L
AM

L

L

CS

SC

L

L
CSa

L

L

BS

SB

L

L
BS

L

L

AS

SA

L

L
AS

dt

dL

L

L







 

and 

    




























**

*
***

*

*

1

***

11
A

A

L

L

A

A
AMS

dt

dA

A

A

L

AMS





 

    




























**

*
***

*

*

2

***

11
B

B

L

L

B

B
BMS

dt

dB

B

B

L

BMS





 

    




























**

*
***

*

*

***

11
C

C

L

L

C

C
AMSa

dt

dC

C

C

L

aCMS

c





 

As a result, we get 

   

  




















































































































































































































































































**

*
***

**

*
***

**

*
***

***

*
**

***

*
**

***

*
**

***

*
**

***

*
**

***

*
**

**

*
**

**

*
**

**

*
**

**

*
**

**

*
**

**

*
**

1

11

11

11

1111

1111

111111

C

C

L

L

C

C
AMSa

B

B

L

L

B

B
BMS

A

A

L

L

A

A
AMS

L

L

CM

MC

L

L
CMa

L

L

BM

MB

L

L
BM

L

L

AM

MA

L

L
AM

L

L

CS

SC

L

L
CSa

L

L

BS

SB

L

L
BS

L

L

AS

SA

L

L
AS

CM

MC

M

M
CMa

BM

MB

M

M
BM

AM

MA

M

M
AM

CS

SC

S

S
CSa

BS

SB

S

S
BS

AS

SA

S

S
AS

dt

dF















For the function   xxxv ln1  , we know that 0x  leads to   0xv . And if 1x , then 

  0xv . Note that: 
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Consequently, we gain 
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One can see that the largest invariant subset, where 0
dt

dF
, is *E . By LaSalle’s Invariance 

Principle [7], *E  is globally asymptotically stable when 10 c .  

 

Results and Discussion 
There are only a few published models of rotavirus transmission in existence. Based on this, 
we have proposed a model to investigate the role of maternal antibodies, seasonality and 
vaccination on rotavirus transmission theoretically by including the possibility of co-infection 
with both circulating strains of rotavirus. The model proposed is a twelve-dimensional 
system that describes the time evolution of the susceptible, breastfeeding, latently infected, 
infectious with rotavirus strain 1, infectious with rotavirus strain 2, recovered from infection 
with rotavirus strain 1, recovered from infection with rotavirus strain 2, infectious with 
rotavirus strain 1 after already being infected with strain 2, infectious with rotavirus strain 2 
after already being infected with strain 1, infectious with both strains of rotavirus 
simultaneously, recovered from both strains of rotavirus and recovered human hosts, and 
the vaccinated. 
In the mathematical sense, the model is much easier to analyse and the results are 
standard, namely, the disease dynamics are completely determined by the basic 

reproduction number: if 10 c
 then rotavirus dies out; otherwise, the disease persists. 

That is, the model exhibits regular threshold dynamics.  

Regardless, our current study provides a modelling framework to investigate the complex 
rotavirus transmission under the impact of maternal antibodies and vaccination, and the 
findings from model confirm the positive effect of maternal antibodies and vaccination in 
lowering the infection risk and reducing the disease prevalence. That is, maternal antibodies 
and vaccination can help to reduce the prevalence of rotavirus. 
 
Conclusion 
We have conducted an analysis on the global asymptotic stability of the disease-free 

equilibrium and endemic equilibrium. Essentially, these stability results establish 10 c
 as a 

forward transcritical bifurcation point, or, a sharp threshold for disease dynamics, and 
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indicate that reducing 
c

0  to values at or below unity will be sufficient to eradicate the 

disease. In other words, the cholera model (3) – (14) exhibits regular threshold dynamics. 
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