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diversification of mono-cultural economies using green research and Innovation towards
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ABSTRACT

Statistical Data Normalization is a very important input preprocessing operation that should be done before data
is fed into the training network. However, there is need for a suitable selection of normalization technique since
normalization on the input has potential of varying the structure of the data and may impact on the outcome of
the analysis. This paper investigates and evaluates some important statistical normalization techniques by
studying thirty published papers that used wine dataset available in the UCI repository and their impact on
performance accuracy. Results reveal that Min-Max normalization technique had the best performance accuracy
0f 95.91% on the average among all the other normalization types.

Keywords: ANN, GA, Min-Max, Z-Score.

1 INTRODUCTION

In an unprocessed datasets the presence of distortions,
unwanted values, inadequate and omitted values and
values recorded in error and insufficient sampling is
inevitable. Omission of these major qualities in a data set
may be as a result of human error or computer/equipment
error during data entry which will definitely affect the
result of data analysis.

The pre-processing of data before use is very
necessary, which includes data cleaning, data preparation,
data integration, data transformation and data reduction.
Therefore, Data Normalization is the process of cleaning
of data by inputting missing values, filtering the unwanted
data, identifying and getting rid of outliers and resolving
all inconsistencies. It involves rescaling of attributes.
However, care must be taken during the process of data
normalization so as to avoid over cleaning of data. Hence
appropriate pre-processing data technique must be
adopted. Although there is no generally defined rule for
normalizing datasets, the choice is solely dependent on
the discretion of the user (Vaishali et al., 2011).

Data Normalization can be defined as transformation
done on a single data input for even distribution and
scaling into a range that is acceptable for the network. It
has a lot of importance. Data input can be transformed
into better form for the network use thereby enhancing the
performance of the network. Normalization process on
raw data makes the data fit for training without which it
will be very slow.

Training time is being sped up when data is
normalized since it involves scaling of data that has the
same value range for each input thereby reducing to the
barest minimal the differences within the network. For
inputs that are on widely different scales, data
normalization enhances modeling application as well as
the quality of the data. It also corrects distortion within
the network and enhances quality of images.
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2 DATA NORMALIZATION TECHNIQUES

Data normalization ensures that the quality of the data
is sustained prior to being fed to any learning algorithm.
Several types of data normalization exist. It is important
to reduce bias within the neural network for one feature to
another. To achieve this, data normalization is used to
scale the data in the same range of values for each input
feature. There are various techniques used for data
normalization such as Min-Max, Z-score, Decimal
Scaling, Median Normalization, Sigmoidal
Normalization, Statistical Column Normalization, Mean
and Standard Deviation. These techniques are discussed
here.

2.1 MIN-MAX NORMALIZATION

This technique maps the input data to a predefined
range of 0 and 1 or -1 and 1. Min-Max normalization
technique can be employed for preserving privacy during
the mining process (Manikandan et al., 2013). The Min-
Max normalization method normalizes the values of the
attributes of a data set according to its defined minimum
and maximum values as shown in Equation (1).

)X (xi _xmin) +
(xn'lax

X =(x ey

max xmin

X,

) min
X, min

Where

Xmin 18 the lower bound of attribute x;
Xmax 18 the upper bound of attribute x;
x'is the Normalized Value of attribute x;

Min-max normalization preserves the relationships
among the original data values. A problem may occur if a
value of an unseen data point to be predicted is out of x,,;,
and x,,,, interval.
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2.2 Z-SCORE

This is also known as Zero-Mean Normalization. In this
normalization method the values of an attribute x; are
normalized according to their mean and standard
deviation, as shown in Equation (2). (Jayalakshmi &
Santhakumaran, 2011).

X = (x, — 4,)
o.

1

@)

Where

4;1s the mean and

o; 1s the standard deviation

If u; and o; are not known they can be estimated from the
sample. Z-score normalization may be sensitive to small
values of g;.

2.3 DECIMAL SCALING NORMALIZATION

In this method, the decimal point of the values of an
attribute x; is moved to its maximum absolute value as
seen in Equation (3) (Luai et al, 2006). The number of
decimal points moved depends on the maximum absolute
value of the data set.

| X
x =—= 3)
10°

Where
x'is the Normalized Value of attribute x;
¢ is the smallest integer such that max(1x'1)<1

2.4. MEDIAN NORMALIZATION

This method normalizes each sample by the median of
the unprocessed data inputs of all the inputs in the sample.
It is a useful normalization technique that can be
employed when there is a need to compute the ratio
between two hybridized samples. Median is not
influenced by the magnitude of extreme deviations as
shown in Equation (4) (Jayalakshmi and Santhakumaran,
2011).

’ L 4)

N median(a,)

2.5. SIGMOID NORMALIZATION

This normalization method is the simplest one used for
most of the data normalization (Jain et al., 2005). The data
value of attribute x is normalized to x' as shown in
Equation (5).

| _ ex _e*x

)

X

X

e +e”
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The sigmoid normalization function is used to scale the
samples in the range of 0 and 1 or -1 to +1. There are
several types of non-linear sigmoid functions available.
Out of that, tan sigmoid function is a good choice to speed
up the normalization process. If the parameters to be
estimated from noisy data the sigmoid normalization,
method is used.

2.6. STATISTICAL COLUMN NORMALIZATION:

In the statistical column normalization, each data
sample is normalized with a column normalization value.
(Jayalakshmi &  Santhakumaran,  2011). The
normalization of each column can be done by normalizing
the columns to a length of one. Each sample is computed
by dividing the normalized column attribute and
multiplied by a small bias value as shown in Equation (6).

Il (R (6)

n(c,)

Where
n(c,) is the normalized column attribute
x"is the Normalized Value of attribute x;

2.7. MEAN AND STANDARD DEVIATION
NORMALIZATION

Network inputs and targets can be scaled by
normalizing the mean and standard deviation of the
training set, such that inputs and targets will have zero
mean and unity standard deviation (Abdi et al., 2010). It
can be calculated as shown in Equation (7).

y! = (xi - xmin)XM + ymin (7)

std

Where

Xmin 18 the lower bound of attribute input x;
Xgq 18 the standard deviation of attribute x;
'is the Normalized Value of attribute y
Vmin 18 the lower bound of attribute input y
Vga 18 the standard deviation of attribute y

3  REVIEWED PAPERS

Wine datasets were collected from the UCI repository
(Blake & Men, 2003) for the purpose of this review. Wine
data set has a total of 178 patterns and 13 features grouped
into three classes. Chemical analysis of wines grown in
the same region in Italy, but derived from three different
cultivars, should be sufficient to recognize the source of
the wine. The analysis determined 13 quantities, including
alcohol content, hue, color intensity and content of 9
chemical compounds. The number of data samples from
Classes 1, 2 and 3 is 59, 71 and 48, respectively.

In this work, thirty papers were reviewed that used the
wine data set from the UCI repository with the aim of
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analysing the normalization techniques used and the
proportion of performance accuracy.

4  ANALYSIS

Table 1 contains the summary of thirty published papers
that used wine dataset available in the UCI repository.
The table shows the technique used by each paper and the
performance accuracy. As seen in Fig. 1, out of the thirty
papers reviewed, twenty four used purely ANN technique
(80%), one used ANN and SVM (7%, one used ANN and
Fuzzy Logic (7%), one used Clustering (7%), one used
Fuzzy Logic (7%), one used GA (7%), one used
KLFANN and GA (7%). This clearly reveals that ANN is
the most used technique among all the other ones.

TABLE 1: SUMMARY OF REVIEWED PAPERS ON
WINE DATASET

Type of Techniqu
S/N | Reference Normalization e Used Accuracy
Jiang, et al.
1 Z-S ANN 94.949
(2004) core %
Doherty, et | Min-Max
2 ' ANN 94.90%
al. (2007) | Normalization ‘
Alpaydin o
3 (1997) Z-Score ANN 94.87%
Bilenko, et
4 ' Medi ANN 89.40
al. (2004) edian &
Borgelt & ANN and
5 Kruse Z-Score Fuzzy 92.20%
(2003) Logic
Orsenigo & .
6 | Vercellis I\NA;?I;II\:E;&OH ANN | 90.10%
(2009)
Duch Min-Max
7 ANN 969
(2004) Normalization &
Yang, et al.
8 Z-S ANN 86.86%
2011) core o
Hsu & Lin | Min-Max
9 ANN 99.449
(2002) Normalization &
Guvenir Min-Max
10 ANN 959
(1998) Normalization &
Raymer et o
11 al. (2003) Z-Score GA 98.90%
Viswanath,
12 etal. Z-Score ANN 91.03%
(2006)
Thimm &
13 Fiesler Sigmoidal ANN 90%
(1997)
Rodriguez . ANN and
14 Med 939
(2009) edian SVM &
Mean and
15 | Bklund g ndard ANN | 91.09%
(2002) .
Deviation
Calders et o
16 al. (2013) Z-Score ANN 94%
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Prabhu &
17 | Anbazhaga | Z-Score Clustering | 92.13%
(2011)
Deshpande .
Min-M
18 | & Karypis N;r:rnaﬁ;(ation ANN | 95%
(2002)
Domingos | Min-Max Fuzzy
1 902
? (1996) Normalization Logic 96.90%
Al & Mean and
20 Pazzani Standard ANN 93.30%
(1996) Deviation
Lietal Min-Max
21 ANN 96.23%
(2005) Normalization °
Ozgur C.
22 Z- Al 9
2014) Score NN 86%
Cortez. of Modified Min-
Z, e
23 ’ Max ANN 95%
al. (2009a) .
Normalization
Kraipeerap .
Min-M
24 | un,eral N;znaﬁ’z‘aﬁon ANN | 96.53%
(2006)
Cortez, et Min-Max
25 ’ ANN 96.209
al. (2009b) | Normalization &
Sharma Min-Max o
26 (2014) Normalization ANN 99.20%
Fu, et al. Min-Max
27 ’ ANN 98.829
(2012) Normalization &
Swain, et Min-Max
28 i ANN 96.66%
al. (2012) | Normalization °
Xiang, et Min-Max KFLANN
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Fig. 2 shows the percentages of the different
normalization types used in the papers reviewed. Min-
Max normalization has the highest percentage of 50%
while modified min-max and sigmoid had the least
percentage of 3% each.
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Fig. 3 presents the results for average performance
accuracy of the techniques used for the reviewed papers in
the wine datasets. These techniques are classified into
seven groups. Firstly investigation of the performance of
the different techniques was done. From the figure it was
observed that GA performs best with an average
percentage accuracy of 98.90%. However, the highest
percentage of accuracy was observed in the ANN with a
value of 99.44%.
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Fig. 4 shows the average performance accuracy for
each type of normalization adopted in the papers
reviewed. The Min-Max normalization has the highest
average performance accuracy with a value of 95.91% and
closely followed by modified Min-Max with a value of
95%. This clearly shows that the Min-Max normalization
gives the best performance accuracy while the sigmoidal
normalization gave the least value of 90%.
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5 CONCLUSION

Appropriate choice of normalization technique is very
important and impact greatly on performance accuracy. In
this paper, six important data normalization techniques
used in some published work were reviewed and
evaluated. The effect of normalization techniques on
performance accuracy for wine dataset as available in the
UCI repository was studied. From the results, Min-Max
normalization technique outperformed other
normalization method. In conclusion, it is important to
carefully select normalization method to avoid negative
influence on system performance.
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