
JOAEN JOURNAL OF ORGANIC AGRICULTURE AND ENVIRONMENT

Volume 7

December, 2019

An official (International) Journal of the Organic Agriculture Project in Tertiary Institutions in Nigeria Federal University of Agriculture, P.M.B. 2240, Abeokuta, Nigeria

Editor-in-Chief Prof. C.O. Adejuyigbe

Deputy Editor-in-Chief Prof. E.A. Makinde

Editorial Board Members
Prof. P.J.C. Harris (UK)
Prof. I.O.O. Aiyelaagbe (Nigeria)
Dr. N.A. Burelle (USA)
Prof. G.O. Adeoye (Nigeria)
Dr. V. Kindhominou (Benin)
Prof. A.O. Dipeolu (Nigeria)
Dr. M. Renco (Slovakia)
Prof. V.I.O. Olowe (Nigeria)
Dr. J. Tenywa (Uganda)
Prof. J.J. Atungwu (Nigeria)

Managing Editor Dr. O.M. Odeyemi

Subscription information & Mailing to: joaenjournal@gmail.com

Advisory Board Members
Prof. P.J.C. Harris (Germany)
Prof. M.T. Adetunji (Nigeria)
Dr. J. Cole (Ghana)
Prof. F.O. Olasantan (Nigeria)
Prof. O.J. Ariyo (Nigeria)
Prof. B. Sinsin (Benin)
Dr. O.O. AdeOluwa (Nigeria)

Handling and Page Charges

OAEN charges authors of all types of papers at \$130 handling fee and page charges for up six printed pages and additional \$50 for paper of 6 printed pages but not more than 8 pages within two weeks of acceptance of manuscript.

Scope of the Journal

JOAEN is a reputable international scientific journal of organic agriculture and environment. The journal publishes biannually in June and December, high-quality solicited and unsolicited research papers and critical review articles, in English, in all aspects of organic or sustainable agriculture including:

- Soil fertility building, reclamation research and composting
- Biological agriculture
- * Biodiversity and climate change
- * Horticulture and crop production
- Feed science, livestock production, pasture and range research
- * Ethno-veterinary practice
- * Tree fruit production
- Biopesticide science
- Post harvest handling and processing technology
- Organic seed science research
- Irrigation, agricultural engineering, water resources management
- * Aquaculture, fish and fisheries
- * Agro-forestry system
- * Permaculture
- Bioherbicide
- *Agricultural economics and enterprise development
- * Health and food safety issues.

Subscription Form

•••
••••
•••

Contents

1. Marke Influer	Ainika J.N., Yusuf S.T., Odofin A.J., Ibrahim H. and Arunah, U.L. stable Yield and Fruit Quality of Two Tomato (Lycopersicum esculentum (L.) H. Karst) Varieties as need by Nitrogen Source and Organic Mulching Material in the Dry Season
2. Soil Fo	Bello, W. B, Adejuyigbe, C.O., Adigun, J.A. and Dare, M.O. ertility Status, Nutrient Uptake and Maize (Zea mays L.) Yield as Influenced by Animal Manure and ost
3.	Mustapha, Y., Hamma, I. L., Hayatuddeen, A.M. and Ogbonna, M. s of Moringa (Moringa Oleifera Lam) Leaf Extracts on Growth and Yield of Maize (Zea Mays L.)
4.	Mohammed Z.H. and Mohammed F.K. s of Neem Seed Oil Spray Regimes on Cercospora Leaf Spot Disease (Cercospora sesami Zimm) of the (Sesamum indicum L.) in the Sudan Savannah Zone of Nigeria
5. Ethno	Adenubi O. T. and Akande F. A. oveterinary Plant Species and Practices used for the Control of Internal and External Parasites of estic Animals in Ogun State, Southwest Nigeria)
6. Organ L. Ini	Garba, Y., Alhassan, J., Gulumbe, A. A. and Usman, A aic Manure Application Rate and Plant Population Effects on Maize Varieties in a Striga hermonthica fested Field in North Central - Nigeria

1 45.4

JOAEN is a reputable international scientific journal of organic agriculture and environment. The journal publishes biannually in June and December, high-quality solicited and unsolicited research papers and critical review articles, in English, in all aspects of organic or sustainable agriculture including soil fertility building and reclamation research, composting, biological agriculture, biodiversity and climate change, horticulture, feed science, pasture and range research, ethno-veterinary, tree fruit production, biopesticide science, post harvest handling and processing technology, organic seed science research, irrigation, agricultural engineering, water resources management, aquaculture, fish and fisheries, forestry, systematic crop rotation, permaculture, bioherbicide, agricultural economics and enterprise development, health issues. The journal welcomes the submission of manuscripts that meet the general criteria of significance and academic excellence. All articles published in JOAEN will be peerreviewed. Papers will be published approximately one to two months after acceptance.

Letters to the Editor-in-Chief are welcome when these comment on matters relevant to organic agriculture, sustainable human, animal and environmental health. In addition, high priority is accorded publication of New Organic Agriculture Technology Research Reports in JOAEN.

electronic submission of manuscripts is strictly electronic and authors are strongly encouraged to submit the entire manuscripts (the text, tables, and figures) in a single Microsoft Word file in Times New Roman font size 12 with double space. Manuscript for publication in June (Volume XX number 1) should be submitted before March 31 and those for December publication (Volume XX number 2) should be submitted before September 30. Manuscript must be submitted as e-mail attachment to joaenjournal@gmail.com Acknowledgement of the receipt of manuscript will be mailed within 72 hours to the corresponding author.

Manuscript Preparation and Formatting of Regulararticles

All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

Title: The title should be a brief, concise and informative phrase describing the content of the paper. Each title should be unique and not more than 30 words.. It should be followed by a list of the authors, with first names as initials only (preceding the name) and with each name separated by a comma, except for the last two which are separated by 'and'. The list of names should be followed by a list of authors' addresses. The address (including e-mail, phone and fax) and author for correspondence should be indicated by superscript letters and symbols where there is more than one author and address A short title of no more than 60 characters (including spaces) should be provided at the top of the title page, in italics, with Latin names not in italics.

Abstract: This should indicate concisely, not exceeding 250 words in one paragraph stating why and how the work was done, scope, major findings and conclusions. Abstracts should not be unnecessarily descriptive and must, where appropriate, contain quantitative data. The Abstract should. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations as well as literature should be avoided.

Following the abstract, about 3 to 5 key words that will provide indexing references should be listed alphabetically.

Introduction: The introduction section should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution in a logical manner. It should be understandable to readers from a broad range of scientific disciplines.

Materials and methods: This section should be as detailed as possible to allow experiments to be reproduced. Sufficient information must be given in this section to allow the reader to understand the experimental design and statistical methods used in the data analysis. Details of specific statistical package used for the analysis should be given. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures

should be mentioned briefly. Capitalize trade names and include the manufacturer's name and address. Subheadings should be used. Methods in general use need not be described in detail.

Results: Results of the experiment should be concise and clearly expressed. The results should be written in the past tense when describing findings in the authors' experiments. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

Discussion: The discussion section should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined but preferably separated.

Acknowledgments: Acknowledgments of people, grants, funds, organization, etc should be very brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The same data should not be presented in both table and graph form or repeated in the text. Tables should be prepared in Microsoft Word.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Use Arabic numerals to designate figures and upper case letters for their parts (Fig 1). The figure should be self explanatory.

References: In the text, a reference identified by means of an author's name should be followed by

the date of the reference in parentheses. When there are more than two authors, only the first author's name should be mentioned, followed by 'et al.'. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like 'a' and 'b' after the date to distinguish the works.

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. O. Oni, University of Agriculture, Abeokuta, personal communication). Authors are fully responsible for the accuracy of the references. All journal titles in the Reference List should be written out in full and in italics. Examples are

Journals

given below.

Standard journal article

Oduguwa, O. O. and Sowande. O. S. 2009. Prospects, opportunities and challenges of the emerging organic livestock sector in Nigeria. Journal of Organic Agriculture and Environment 1 (1):1 - 6.

Anonymous author

Anonymous, 1947. The measurement of potato blight. *Transactions of the British Mycological Society* 31, 140-1.

Journal supplement

Enikuomehin, O. A. 2009. Biosuppression of Cercospora sojina in organic soybean. Organic Agriculture Project in Tertiary Institution Newsletter 1 (Suppl. 1), 14.

Online journal

Gibbs M. J, Ziegler A, Robinson D. J, Waterhouse P. M, Cooper J. I. 1996. Carrot mottle mime virus (CMoMV): a second umbravirus associated with carrot motley dwarf disease recognized by nucleic acid hybridization. *Molecular Plant P a t h o l o g yè*. O n l i n e [http://www.bspp.org.uk/mppol] 1996/1111gibbs.

Books and other monographs

Personal author

Sanni, L. O. 1998. Post Harvest Technology. Oxford, UK: Blackwell Scientific Publications. 140p.

Editor, compiler, chairman as author

Palti J, Kranz J, eds, 1980. Comparative Epidemiology. A Tool for Better Disease Management. Wageningen, the Netherlands: Centre for Agricultural Publishing and Documentation.

Chapter in a book

Fabusoro, E., George, F. A. O, Idowu, O. M. O, and Adigbo, S. O. 2009. Consumers' Perceptions for Organic Produce. In: Olowe, V. I. O. eds. *Inroduction to Organic Agriculture*. Oxford, UK: Blackwell Scientific Publications, 40-49.

Published proceedings paper

McIntosh R. A, 1992. Catalogues of gene symbols for wheat. In: Miller T. E, Koebner R. M, eds. *Proceedings of the Seventh International Wheat Genetics Symposium*, 1987. Cambridge, UK: IPSR, 1225-323.

Agency publication

Harvey JM, Pentzer WT, 1960. Market Diseases of Grapes and Other Small Fruits. Washington, USA: United States Department of Agriculture: USDA publication no. 189. (Agriculture Handbook Series.)

Dissertation or thesis

Lenné JM, 1978. Studies of the Biology and Taxonomy of Colletotrichum Species. Melbourne, Australia: University of Melbourne, PhD thesis.

Units and Quantities SI units are preferred. Others should be related to SI units at the first mention. Numbers preceding units should be written as numerals; those preceding other items up to nine should be spelt

out; e.g. 8 cm, 2 days, nine fields, 10 leaves. Units should preferably be explicit, e.g. 1 g/L or 1 g L-1 rather than 0.1% w/v. Whereas grams per litre can be indicated as g L-1, spores per litre is written as spores per L.

Latin binomials

Except in taxonomy papers, Latin binomial names are given without authorities.

Offprints

Electronic offprint of the published article will be provided free of charge to the corresponding author upon request. Paper offprints of the printed published article may be purchased if ordered via the method stipulated on the instructions and must accompany the proofs. Printed offprints are posted to the correspondence address given for the paper unless a different address is specified when ordered. Note that it is not uncommon for the printed offprints to take up to 8 weeks to arrive after publication of the journal.

General Caution:

Failure to follow authors guide may result in manuscript rejection.

Authors also particularly encouraged to examine the most recent publication of JOAEN for confirmation Printed/sample copy may be requested by e-mail to: joaenjournal@gmail.com

Copyright:

Submission of a manuscript implies that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere or simultaneously; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the JOAEN.

MARKETABLE YIELD AND FRUIT QUALITY OF TWO TOMATO (Lycopersicum esculentum (L.) H. Karst) VARIETIES AS INFLUENCED BY NITROGEN SOURCE AND ORGANIC MULCHING MATERIAL IN THE DRY SEASON

Ainika J.N., Yusuf S.T., Odofin A.J., Ibrahim H. and Arunah, U.L.

¹Institute for Agricultural Research, Ahmadu Bello University Zaria

²School of Agriculture and Agricultural Technology, Federal university of Technology Minna Niger State

Corresponding author-aininkajoseph@yahoo.com

ABSTRACT

Postharvest losses in tomato can be either quantitative or qualitative. Even though emphasis in crop research nowadays is increasingly shifting from quantity to quality of produce, there is still little improvement in the quality of commercially- produced tomato varieties, hence resulting in high quality losses. Two field trials were conducted in the dry seasons of 2016 and 2017 at the Irrigation Research Farm of the Institute for Agricultural Research, Kadawa, Kano State (11°39' N 080' 027'E, 500 m above sea level) in the Sudan Savanna ecological zone of Nigeria. Treatments consisted of two tomato varieties (UC82B and Rio Grande), two organic mulches (Rice straw and Sugar-cane peels) at recommended rates of 5.5 t ha⁻¹ and 11.0 t ha⁻¹ (4 cm thick), respectively, with a control (No mulch) and three nitrogen sources (Mineral fertilizer, Poultry droppings and Mineral fertilizer + Poultry droppings at recommended rate of 90 kg N ha' with a control (No application). Varieties and nitrogen sources were assigned to the main plots while sugar-cane peels mulch was assigned to the sub plots and replicated three times. The two varieties did not differ significantly (P≤0.05) in all the quality traits evaluated. Tomato fruit qualities (appearance, decay, shelf life) as well nutritional qualities and marketable fruit yield were significantly enhanced by nitrogen sourced from organic sources(poultry manure and mineral fertilizer + poultry manure relative to the unfertilized plots (control) while inorganic nitrogen sources was significantly lower. It can be concluded that poultry droppings at recommended rate of 2.88 t 1 could be applied for enhanced fruit quality and marketable yield of tomato on sustainable bases. The two organic mulching materials are recommended for increased marketable and fruit quality of tomato. For better fruit quality of tomato any of the variety could be used in the Sudan ecological zone of Nigeria.

Key word: Fruit quality, Nitrogen sources, Organic mulches, Tomato

INTRODUCTION

Postharvest quality status of tomato partly depends on some pre-harvest practices carried out during production. Some of these factors are fertilizer application, pruning, maturity stage, cultivar selection, and irrigation. The fruit potential quality is dependent on the cultivar type. Different cultivars are characterized by different quality parameters, making some more desirable to the producers The choice of a highyielding tomato cultivar with desired fruit qualities and longer shelf life is therefore a vital decision a producer must take (Hanna, 2009). Failure to select an appropriate cultivar may lead to lower yield, low fruits quality or less market acceptability. Fruits of different cultivars differ in size, colour, texture, and flavor as well as storage potential.

Getinetet al., (2008) reported the influence of tomato cultivar on some postharvest qualities of tomatoes stored under different conditions. Getinetet al., (2011) established that tomato cultivar Roma VF had higher sugar content while maintaining lower weight loss as compared to cultivar Marglobe. Cultivar selection is therefore critical to the postharvest storage life and eating qualities of tomato.

Fertilizer application is a major part of crop production expenses for tomato but it is critical for successful crop yields and high fruit quality. Recommended target nutrient rates are currently 300 Kg NPK (15:15:15) + 45 Kg N ha⁻¹ urea (46% N) with phosphorus (P) and potassium (K) rates adjusted downward or eliminated if soils can supply some or all of these nutrients as determined by soil testing (Mylavarapu, 2009; Olson et al., 2010; Isah et al., 2014).

Use of mulches in vegetable production is undergoing a radical change away from high input, non-renewable resources, such as plastic, to the use of high-residue organic materials from cover crops. It has been reported that organic mulch also can increase the incidence of diseases such as fruit worm and sun scotch on fruits. According to Rwenzaula et al., (2005), rice straw was the best in enhancing crop performance, followed by grass and finally, saw-dust. All the organic mulch regimes used in their work excelled the control in reducing weed and blossom end rot in tomato. Bender et al. (2005) also reported that grass mulch caused significant negative effect on cracking of most of the varieties of tomato used. The use of organic mulching material is recommended as a more viable option for vegetable growers instead of inorganic mulch material in an attempt to reduce chemical inputs for weed control in tomato production (Elainet al., 2011). Plant-based mulch is reported to be more effective in reducing soil temperature and that these improvements of crops growing environment resulted in increased tomato growth and fruit yield (Awodoyinet al., 2007). Bienuenida (2014) evaluated organic mulch sources from dry papaya and dry banana leaves and recommended papaya mulch for enhancing plant growth. Moses and Tuarira (2014) evaluated two different organic mulching materials (trash grass mulch and sawdust mulch) on onion production and reported that trashed grass mulch played a significant role in terms of growth and yield. Mateen-ul-Hassan et al., (2005) on effectiveness of organic and inorganic mulching reported that economic comparison indicated that 4 inch (10.2 cm) thick wheat and grass mulch was more efficient than expensive polythene mulch in tomato production in Pakistan.

According to Ferreira et al. (2006), tomato yield was previously the main criterion used to evaluate the efficiency of various farming practices for crops such as tomato, while the fruit quality was not an important criterion. However, due to the emphasis on the importance of healthier foods, attention has recently been focused on the agronomic practices implemented during the production of food in order to develop products with better nutritional qualities. Cultural practices such as nutrient application are presumed to be factors influencing quality of

tomato before and after harvest (Watkins and Pritts, 2001).

Acceptance of crop produced can be influenced by the source of nutrients involved in its production. In the recent past, some studies have been conducted to elucidate the beneficial effects of adding crop residue compost into the soil. The practice improves soil physical, chemical and biological activities as well as improving crop yields and nutritional values (Akanbi and Togun. 2002). Aurelice, et al. (2013) observed and suggested that tomato fruits from organic farming experienced stressing conditions that resulted in oxidative stress and an accumulation of higher concentrations of soluble solids as sugars and other compounds, contributing to fruit nutritional quality such as vitamin C and phenolic compounds.

MATERIALS AND METHODS

Two field trials were conducted in the dry seasons of 2016 and 2017 at the Irrigation Research Farm of the Institute for Agricultural Research, Kadawa, Kano State, Nigeria (11° N 39',08° 02" E 500 m above sea level) located in the Sudan Savanna ecological zone of Nigeria. Soil samples from 0-15 cm and 15-30 cm depths were randomly collected from the experimental sites, using hand auger. The soil samples in each location were bulked, dried, ground, sieved and subjected to physico-chemical analyses. The poultry dropping was also analyzed for the chemical composition using methods described by Agbenin (1995).

Treatments consisted of two tomato varieties (UC82B and Rio Grande); two organic mulching materials (rice straw and sugar-cane peels) at recommended rates of 5.5 t hard and 11.0 t hard (4 cm thick) - Owen (2013); Mateen-ul-Hassan et al., (2005), respectively and a control (No mulch) and three nitrogen sources at a recommended rate of 90 kg N ha⁻¹ and a control plot (2×4×3). The nitrogen sources included mineral fertilizer (MF), poultry droppings (PD) and mineral fertilizer + poultry droppings. The mineral fertilizer was N.P.K 15:15:15 at 300 kg hard to supply 45 kg ha of nitrogen, 45 kg ha of P₂O₅ and K₂O at two weeks after transplanting and Urea (46% N) at the rate of 97.82 kg ha⁻¹ was used to supply 45 kg ha' of nitrogen as second dose to give a total of 90 kg N har fertilizer recommendation for tomato. The nitrogen content of the poultry droppings (PD) used was

determined in the laboratory and the value obtained was used to compute the quantity of poultry dropping needed to supply 90 kg N had A mixture of mineral fertilizer (N.P.K-15:15:15) and poultry dropping at 45 kg N had each was applied to supply a total of 90 N had. There was a control treatment that was left without any application of mineral fertilizer or PD. Varieties and nitrogen sources were factorially-combined and assigned to the main plots while organic mulches were assigned to the sub-plots at already established recommended rate. The experimental design was hence 2×4×3 factorial in split plot design, and there were three replications.

All the cultural practices were carried outeffectively from nursery practice to storage.

Data collected were subjected to analysis of variance (ANOVA) as described by Steel and Torrie (1987) and treatment means were separated using Duncan multiple range test as described by Duncan *et al.* (1997) at $p \le 0.05$ probability level.

RESULTS

The soil was of loam textural classwith mildly alkaline pH. Nitrogen content of the soil was low while organic matter was very high. Potassium content was medium while phosphorus was high. Calcium and magnesium contents were very high. Electrical conductivity of the soil was low, indicating that the soil was non saline at 0-30 cm depth in Table 1.

Nitrogen content of poultry droppings used was 2.57 % in 2016 and 3.67 % in 2017 and these values were used to determine the quantity of poultry dropping that supplied the recommended nitrogen need for the plants. However phosphorus was low in 2016 and high in 2017 while potassium was high in both years in Table 2.

Variety did not affect t all the fruit qualities (appearance, fruit decay, shelf life and marketable fruit yield) studied in both years (Table 3).

In 2016, PD and MF+PD significantly resulted to very good fruit appearance which was comparable than the control while in 2017, nitrogen sources did not affect fruit appearance. Application of PD as well as MF+PD resulted to significantly lower cases of fruit decay which are comparable than the control in both years. However, similar trend was observed for fruit

shelf life with PD and MF+PD resulting to a significant and comparable longer shelf life than the control plots in both years. Similar trend was also observed with marketable fruit yield in the mean result.

Apart from in 2016 that organic mulching materials did not affect fruit appearance, mulching materials enhanced all the fruit qualities studied in both years where the two organic mulching schedules produced significantly better fruit appearance, less cases of decay, longer shelf life as well as higher marketable fruit yield that were comparable than fruits from un-mulched plots.

Variety did not affect fruit vitamin A, E and C content (Table 4).

Nitrogen sources enhanced vitamins A, E and C. PD and MF+PD significantly produced fruit with statistically higher and comparablevitamin A concentration than fruits from MF and unfertilized plots. Vitamin E content of fruit was significantly increased with MF+PD than the other nitrogen schedules. However, any of the nitrogen sources significantly produced fruits with statistically comparable and lower vitamin C concentrationthan fruits from the unfertilized plots.

Organic mulching materials did not differ significantly on vitamin concentration of tomato fruit.

DISCUSSION

Results from this study showed that tomato varieties did not significantly affect any of the fruit qualities assessed (Tables 3 and 4). However, fruit qualities such as fruit appearance, fruit decay, fruit shelf life as well as vitamin (A, E and C) concentrations were significantly enhanced by nitrogen sources.

There were observed variations and significant differences between varying nitrogen sources on fruit appearance and fruit shelf life with poultry droppings (PD) and mineral fertilizer (MF) + poultry dropping (PD) producing significantly longer shelf life and good fruit appearance than MF and unfertilized plots (Table 3). The performance trends of the organic nitrogen fertilizer source which showed superiority over application of mineral fertilizer might be due to the fact that organic N source have the ability to enhance soil physical properties (water holding capacity, aeration etc) and greater and gradual

release of nutrients. Similar findings by Rajiasree and Pillai (2009) reported that more frequent split application of nutrient N or greater proportion of organic source enhanced the shelf life of fruits. The observed significant differences between the applied nitrogen source treatments with regard to fruit decay (Table 3) with poultry droppings and mineral fertilizer + poultry droppings which produced significantly lower cases of fruit decay might partly be due to the origin of the nitrogen source which was from organic materials and hence enhanced marketable fruit yield.

Significant difference was observed in mean vitamins A, E and C concentrations, between the varying sources of nitrogen, with PD and MF + PD which were statistically comparable being significantly higher than from application of MF and the unfertilized plots which had the lowest vitamin A concentration (Table 4) while application of MF + PD had significantly higher vitamin E concentration than other nitrogen sources. The superiority in vitamins A and E concentrations recorded under PD and MF + PD treatment which are both of organic origin could be attributed to oxidative stress which most have exerted some pressure on the crops, thereby enhancing nutritional quality such as vitamin A and E concentration. This result corroborate with Aurelice, et al., (2013) who suggested that tomato fruits from organic farming experienced stressing conditions that resulted in oxidative stress and the accumulation of higher concentrations of soluble solids as sugars and other compounds contributing to fruit nutritional quality such as vitamins and phenolic compounds. Also, Poiroux-Gonordet al., (2010) reported that environmental stress (biotic or

abiotic) is a major factor that can increase the concentrations in photochemical in fruit and vegetables. However, organic N-sources (PD and MF + PD) were found to have reduced vitamin C concentration (Table 4). Similar findings were reported by Anon (2018) that nitrogen fertilizers, especially at high rates, seem to decrease the concentration of vitamin C in many different fruits and vegetables.

Significant (P≤0.05)difference was observed between the varying organic mulching treatments with the two organic mulching materials showing significantly higher and comparable fruit qualities such as good fruit appearance, less fruit decay, longer shelf life and higher fruit N concentration. Sugar cane peels mulch which was observed to be significantly similar but higher than rice straw mulch offered additional advantage of providing protection in additional to its role of moisture conservation for tomato fruit against direct contact with the soil which subsequently might have prevented infestation from soil born deceases and hence good fruit qualities thus further prolonged storage life of tomato fruit.

CONCLUSION AND RECOMMENDATION

It is recommended from this study that poultry droppings at recommended rate of 2.88 t had could be applied for fruit quality and marketable yield of tomato on sustainable basis. Sugar-cane peels mulch is recommended as a suitable replacement to rice straw mulch due to high cost of obtaining rice straw mulch. Any of the tomato varieties (Rio Grande or UC82B) are recommended for increased yield and quality of tomato in the Sudan ecological zone of Nigeria.

Table 1: Initial soil properties of the experimental site

	20	16
Soil properties	0-15 cm	15-30 cm
Sand (g kg ⁻¹)	420	400
Silt (g kg ⁻¹)	450	480
Clay (g kg ⁻¹)	130	120
Textural class	Loam	Loam
pH in H ₂ O 1:2.5	7.90	7.80
pH (CaCl ₂)	6.80	6.90
Organic matter (mg kg ⁻¹)	7.89	4.99
Available phosphorus (g kg ⁻¹)	10.92	10.38
Total nitrogen (g kg ⁻¹)	0.63	0.41
Ca ⁺⁺ (cmolkg ⁻¹)	4.60	3.60
Mg ⁺⁺ (meg/100g)	1.58	0.97
K+ (meg/100g)	0.15	0.16
Na ⁺ (meg/100g)	6.54	4.95
H++Al3+ (meg/100g)	0.05	0.05
ECEC (meg/100g)	6.59	5.00
EC (dS/m)	0.013	0.110

Table 2: Nutrient levels of the poultry droppings used

Chemical properties	2016	2017
N (g kg ⁻¹)	25.7	36.7
P (mg kg ⁻¹)	2.5	10
K(mg kg ⁻¹)	100	30
Ca (mg kg ⁻¹)	40	20
Mg(mg kg ⁻¹)	40	10
Na (mg kg ⁻¹)	50	30

Table 3: Main effects and interactions of variety, nitrogen source and organic mulch on tomato fruit qualities in 2016 and 2017 dry seasons

	Fruit appear	ance	Fruit de	cay	Fruit she (days)	elf life	Marketable fruit yield (t ha ⁻¹)
Factor	2016	2017	2016	2017	2016	2017	Mean
levels/interactions							
Variety (V)					0.40		14.02
UC82B	3.47	3.31	5.86	5.93	9.69	7.75	14.02
Rio-Grande	3.53	3.44	5.78	6.08	9.53	7.67	13.16
SE±	0.12	0.05	0.25	0.15	0.32	0.29	0.46
Nitrogen source (N)							
No application	2.11c	3.22	6.78a	6.39a	6.39c	5.11c	11.33c
Mineral fertilizer (MF)	3.28b	3.11	6.28ab	6.28a	8.11b	6.83b	13.50b
Poultry droppings (PD)	4.39a	3.83	4.83c	5.50b	11.89a	9.39a	13.89ab
MF.+ PD	4.22a	3.33	5.39bc	5.83ab	12.06a	9.50a	15.64a
SE±	0.41	0.22	0.36	0.21	0.45	0.42	0.65
Organic mulch (M)							
No mulch	3.33	2.50b	7.04a	7.58a	8.38b	7.00b	12.05b
Rice straw	3.50	3.72a	5.08b	6.67b	9.92a	7.58ab	14.78a
Sugarcane peels	3.67	3.92a	5.33b	3.75c	10.54a	8.54a	13.93a
SE±	0.152	0.206	0.326	0.172	0.37	0.35	0.56
CV (%)	29.94	29.94	14.03	14.03	18.94	18.92	34.94
Interaction							
N×V×M	ns	ns	ns	ns	ns	ns	ns

All means within a column/factor followed by same letters are not different at 5% level of significance using Duncan Multiple Range Test DMRT; ns=Not significant.

Table 4: Main effects and interactions of variety, nitrogen source and organic Mulch on Vitamins A, C and E concentrations of irrigated tomato fruit in the combined season

Factor levels/interactions	Vitamin A (mg/kg)	Vitamin E (mg/kg)	Vitamin C (g/kg)
Variety (V)	The same of the sa		
UC82B	6.24	7.73	1.53
Rio-Grande	6.57	7.62	1.58
SE±	0.17	0.13	0.11
Nitrogen source (N)			
No application	3.14c	3.92c	1.98a
Mineral fertilizer (MF)	5.42b	5.48c	1.54ab
Poultry droppings (PD)	7.83a	8.41b	1.39b
MF.+ PD	9.23a	12.88a	1.29b
SE±	0.34	0.35	0.15
Organic mulch (M)			
No mulch	6.53	7.87	1.63
Rice straw	6.66	7.59	1.57
Sugarcane peels	6.03	7.56	1.45
SE±	0.26	0.51	0.13
CV (%)	22.43	18.98	24.27
Interaction			
N×V×M	ns	ns	ns

All means within a column/factor followed by same letters are not different at 5% level of significance using Duncan Multiple Range Test DMRT; ns=Not significant.

REFERENCE

- Agbenin, J.O. (1995). Laboratory manual for Soil and plant analysis (selected methods and data analysis) 140 pp. Department of Soil ScienceAhmadu Bello University Zaria.
- Akanbi, W.B. and Togun, A.O. (2002). Productivity and Influence of maize Stover compost on Growth, Yield and Nutrient Uptake of Amaranth. Scientia Horticulture, (93):1-8.
- Anonymous.(2018). Nitrogen fertilizers and the amount of vitamins in plants. *A review*. https://www.researchgate.net/publication/2 61631231
- Aurelice, B., Calos, F.H.M., Eneas, G., Claudia, A.M., Laurent, U. and Maria R.A.M. (2013). The impact of organic farming on quality of tomatoes is associated to increased oxidative stress during fruit development. *PLoS One* 8(2).44. pp. Doi: 10.1371.
- Awodoyin, R.O., Ogbeide, F.I. &Olufemi, O. (2007). Effect of three mulch type on the growth and yield of tomato and weed suppression in Ibadan rain forest-Savanna transition zone of Nigeria. Tropical Agricultural Research & Extension Vol.10.pp 53-60).
- Bender, I., Roudseping, M. & Vabrit, S. (2005). Effect of organic mulch on the growth of tomato plant and quality of fruits in organic cultivation. ISHS ActaHorticulturae 779: International Symposium on Growing Media.
- Bienuenida, M.N. (2014). Paper presented at the DLSU research congress. Dela Salle University. Manila, Philippines. March 6-8.
- Duncan D. B. (1955). "Multiple Range and multiple" F-test Biometrics" 11:1-42.
- Elaine, M.G., Emilie, E.R. & Mark, A.B. (2011).
 The Ohio University, Dept of Horticulture and Crop Science Columbus, Ohio.

- Ferreira, M. M. M., Ferreira, G.B., Fontes, P.C.R. and Jose P Dantas, J.P. (2006). Qualidade do tomateemfunção de doses de nitrogênio e da adubação orgânica em duas estações. Horticultura Brasileira, Brasilia, 24, (2): 141-145.
- Getinet, H., Seyoum, T. & Woldetsadik, K. (2008). "The effect of cultivar, maturity stage and storage environment on quality of tomatoes," *Journal of Food Engineering*, Vol. 87, (4), pp. 467-478.
- Getinet, H., Workneh, T.S. & Woldetsadik, K. (2011). "Effect of maturity stages, variety and storage environment on sugar content of tomato stored in multiple pads evaporative cooler," African Journal of Biotechnology, Vol. 10, (80), pp. 18481-18492.
- Hanna, H. Y. (2009). "Influence of cultivar, growing media, and cluster pruning on greenhouse tomato yield and fruit quality," HortTechnology, Vol. 19 (2), pp. 395-399.
- Isah, A.S., Amans, E.B., Odion, E.C. & Yusuf, A.A. (2014). Growth rate and yield of two tomato varieties under green manure and NPK fertilizer in Samaru Northern Guinea Savanna of Nigeria. International Journal of Agronomy Volume 2014, Article ID 9 3 2 7 5 9, 8 pages http://dx.doi.org/10.1155/2014/932759.
- Mateen-ul-Hassan Khan., Tahir Hassain Chattha &Rifat Hayat. (2005). Growth and yield response of tomato to organic and inorganic mulches. Asian journal of plant schiences4 (2): 128-131. ISSN 1682-3974.
- Moses Mutetwa and TuariraMtaita (2014). Effects of mulching and fertilizer sources on growth and yield of onion. J. Glob. Innov. Agric. Soc. Sci., Vol. 2(3), 102-106. ISSN (Online): 2311-3839; ISSN (Print nt): 2312-5225.DOI:10.17957/JGIASS/2.3.561 http://www.jgiass.com.

Mylavarapu, R.S. (2009).UF/IFAS Extension Soil Testing Laboratory (ESTL) Analytical Procedures and Training Manual. Circular 1248. Gainesville: University of Florida Institute of Food and Agricultural Sciences. http://edis.ifas.ufl.edu/ss312.

Rwezaula, G.J., Luth S.M., Christine G.I., Shazia O.W.M Reuben., Susan N.M., Amon P.M., Paul J.R Njau., Ashimogo G.C., Tiisekwa T.,

Muena T. & Henry S.L. (2005). Effect of organic mulch type on common biotic, abiotic factors and component yield in determinate and indeterminate tomato (Lycpersiconesculentum Mill) commercial cultivar. Asian Journal of plant science 4: pp.580 -588.

Olson, S.M, & Santos, B. (2010). Vegetable Production Handbook for Florida. Gainesville: University of Florida Institute of Food and A g r i c u l t u r a l S c i e n c e s. http://edis.ifas.ufl.edu/topic_vph.

Owen, P. (2013). Sugar-cane mulch hit the sweet sport. http://www.goodfood.com.au/.../ sugarcane.

Poiroux-Gonord, F., Bidel, L.P.R., Fanciullino, AL., Gautier, and Lauri-Lopez, F. (2010). Health benefits of vitamins and secondary metabolites of fruits and vegetables and prospects to increase their concentrations by agronomic approaches.

Journal of Agric Food Chemistry 58: 12065-12082.

Rajiasree, G. and Pillai G.R. (2009). Effect of nitrogen nutrition on fruit quality and shelf life of cucurbitaceous vegetable bitter gourd. *Journal of Plant Nutrition* Vol. 35 (8): pp

Steel, R. G. D. and Torrie, J. H. (1987). Principles and procedures of statistics. A *Biometrical approach*. McGraw-Hill, New York, pp. 186-187.

Watkins, C.B. and Pritts, M.P. (2001). The influence of cultivars on postharvest performance of fruits and vegetables. Proceedings of the Fourth International Conference on Postharvest Science. Acta Hortic., 1(553): 59-63.