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Abstract— The performance of Artificial Neural Network (ANN)
is contingent on a host of factors; for instance, the network optimisation
scheme. In view of this, the study examined the general implications of
ANN training optimisation algorithm on its forecast performance. To
this end, the Bayesian regularisation (Br), Levenberg-Marquardt (LM),
and the adaptive learning Gradient descent: GDM (with momentum)
algorithms were employed under different ANN structural
configurations: (1) Single-hidden layer, and (2) Double-hidden layer
feedforward back propagation network. Results obtained revealed
generally that the Gradient Descent with momentum (GDM)
optimisation algorithm, with its adaptive learning capability, used a
relatively shorter time in both training and validation phases as
compared to the Levenberg- Marquardt (LM) and Bayesian
Regularisation (Br) algorithms though learning may not be
consummate; i.e., in all instances considering also prediction of
extreme flow conditions for 1-day and 5-day ahead, respectively
especially using the ANN model. In specific statistical terms on the
average, model performance efficiency using coefficient of efficiency
(CE) statistic were Br: 98%, 94%; LM: 98 %, 95 %, and GDM: 96 %,
96% respectively for training and validation phases. However, on the
basis of relative error distribution statistics (Mean Absolute Error:
MAE, Mean Absolute Percentage Error: MAPE, and Mean Squared
Relative Error: MSRE), GDM performed better than the others in the
overall. Based on the findings, it is imperative to state that the adoption
of ANN for real-time forecasting should employ training algorithms
that do not have computational overhead like the case of LM that
requires the computation of the Hessian matrix, protracted time, and
sensitivity to initial conditions; to this end, Br and other forms of the
gradient descent with momentum should be adopted considering
overall time expenditure and quality of the forecast as well as
mitigation of network overfitting. On the whole, it is recommended that
evaluation should consider implications of (i) data quality and quantity
and (ii) transfer functions on the overall network forecast performance.
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L INTRODUCTION

THE Artificial Neural Networks (ANNs) uses difference or
differential equation to capture the relationship between inputs
and outputs without detailed attention to the internal structure
of the physical processes[1]; being generally a nonlinear model,
it can be mathematically treated as a universal approximator[2],
in other words, a black box model. Basically, ANNs mimic the
functioning of the human brain by acquiring knowledge through
a learning process that involves finding an optimal set of
weights for the connections and threshold values for the nodes.
The ANN models have been considerably adopted in flow
forecasting; this is due to the fact that implementation and
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calibration of conceptual models is difficult and requires
sophisticated mathematical tools [3]. The ANN model structure
possesses the capability of modelling complex relations;
especially, it stands out in the modelling of nonlinear dynamics
[3]. Though, physical models, based on continuum mechanics
offer one possible forecasting method, simpler approaches
oftered through black box solutions are fast becoming attractive
alternatives. System-theoretic / black box or neural network
forecasting and prediction offers various benefits ahead of the
traditional conceptual modelling [4]. The ANN technology is
an alternate computational approach based on theories of the
massive inter-connection and parallel processing architecture of
biological systems.

However, though an artificial neural network (ANN) has a
robust mathematical structure that enhances its modelling
capability, its overall performance is dependent on a whole lot
of associated variables; for instance, neural network type,
network structure, methods of pre- and post-processing of input
and output data, training algorithm and training stop criteria [2].
But since an ANN does not depend solely upon the physical
parameters used in the analytical approach, it could be designed
with much different architecture to achieve optimal
performance. On the other hand, it suffices to note that as in the
identification of other nonlinear types of models, the calibration
(training) procedure is fraught with problems [5]. The ANN
objective surface is typically highly non-convex with extensive
regions; these regions are insensitive to the variations in the
values of the network weights (parameters) and do contain
numerous multi-local optima of generally high dimension [6].
Therefore, the success of the calibration (training) procedure
depends largely on the power of the optimisation method used
to search for the best parameter estimates [5]. Most procedures
employed to train ANNs are the back propagation algorithm
(BPA) and the step size-adaptive BPA in a Multi-layer
perceptron network (MLP); but because these procedures
employ a gradient search strategy, their performance is sensitive
to the initial starting point [S]; in addition, they are easily
trapped by local optima and are often ineffective when
searching parameter spaces of high dimension.

Against the backdrop of the foregoing, considering that the
ANN model structure is ideally suited for modelling highly
nonlinear input-output relationships, the emphasis in this study
is on the optimisation algorithm, and vis-a-vis intrinsically on
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the associated architecture; i.e. how the combination of these
two may inadvertently or otherwise affect the overall ANN
model forecast performance; especially, knowing that daily
streamflow processes exhibit a high degree of nonlinearity [2].
In addition, it suffices to note too that in one of the early
applications involving streamflows, [7] as reported in [2],
ANNs and autoregressive moving average models were
employed to predict daily and hourly streamflows in the Pyung
Chang River basin in Korea. This study in particular confirmed
the robustness of ANN as a useful tool for forecasting
streamflows. In similar manner, many studies (e.g., [8]; [9];
[10]; [2]) attest to the superiority of ANN models over or
equality to the traditional statistical and/or conceptual
techniques in modelling the hydrological process.

1L METHODOLOGY

A.  Data Collection and Management

For this study, daily streamflow sequence of the River Benue
at the Makurdi (Figure 1) gauging station was obtained from
the Benue State Water works and National Inland Waterways
Authority (NIWA), Makurdi, Nigeria. Figure 1 basically shows
the traverse of the River and its flow regime for Makurdi
section. The data sequence spanned through an entire period of
thirty (30) years. To be able to effectively use the data obtained,
quality analysis was carried out; to this end, in particular,
consistency test and continuity tests were done. Based on these
tests, non-continuous data years were removed thus reducing
the length to 26 years (i.e., 9490 data elements). The entire time
series of length of 9490 daily values was thus partitioned into
two-set constituents of 8670 and 730 data points corresponding
to training and validation phases, respectively.
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Figure 1: Basic details of River Benue: (a) Map of Nigeria showing
River Benue and its traverse, (b) Flow regime of River Benue at
Makurdi

B. Development of ANN Model
i. Network Topology

Since network architecture mainly denotes the number of
input/output variables, the number of hidden layers and the
number of neurons in each hidden layer, and considering that a
univariate data type is used for this study, the time delay
coordinate method [12]; [13] is used to reconstruct the phase-
space from the scalar time series. This is informed by the fact
that to describe the temporal evolution of a dynamical system in
a multi-dimensional phase-space with a scalar time series, there
is need to unfold the multi-dimensional structure using the
available data. To do this, the optimum lag time or delay time,
T (tau) is set to 78 based on the analysis of the autocorrelation
function of the daily streamflow series (i.e., the point where the
autocorrelation function plot first crosses the zero line).
Detailed implementation of this strategy was effected by
applying the method for the determination of minimal sufficient
dimension (m), in other words, called the ‘false nearest
neighbour’ method” [11]. That is, supposing the point
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If R, exceeds a given threshold R, (a suitable value is

10< R, <50 ), the point "/ is marked as having a false
nearest neighbour. As a consequence, the embedding dimension
p is high enough if the fraction of points that have false nearest
neighbour is actually zero, or sufficiently small, say, smaller

R
than a criterion 7 . In this case, the false neighbour threshold

T is set to 10. Based on this, the fraction of false nearest
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neighbour as a function of the embedding dimension is
calculated on phase-space reconstruction using embedding
dimension. Here, the minimal embedding dimension is taken as
8; this implies that the state of the streamflow process can be
determined by eight lagged observed values (Figure 2).
Following from the analysis, eight lagged values of input
variables were used when fitting the ANN model to the series;
specifically, based on the phase-space reconstruction, this

implied the discharges Q720G of day t-7 to day t.
The eight lagged input values were used to forecast the
discharge from time t+1, i.e., the next day, to t+5; i.e., 5-ahead
values, using a multiple-output approach rather than a single-
output (Figure 3).

0.9 -
0.8 4
0.7 4
0.6 4
0.5 4
0.4 4
0.3 4
0.2 4
01 4

0 & o

1] 1 2 3 4 4 43 7 g | 10

Embedding Dimension

Fraction of false neighbours

Figure 2: Fraction of false nearest neighbours as a function of
embedding dimension
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Figure 3: Schematic of three-layer feedforward artificial neural
network architecture

To address the thrust of the study, two model types using the
MLP were considered corresponding to two model architectures
with different nodal configurations in all the instances.
Precisely, single and double hidden layers were thus considered
to examine the implications of model structural complexity; i.e.,
ANN models adopted were (i) 8 7 5 single-hidden layer with 7
nodes, 8 input nodes in the input layer while 5 represent five
nodes in the output layer (ii) 8 5 2 5 double-hidden layers with
5 and 2 nodes, 8 nodes in the input layer, 5 nodes in the output
layer, respectively.
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ii. Network Training

The ANN training is a problem of nonlinear optimisation; it
minimises the error between the network output and the target
output according to a pre-determined algorithm. In this regard,
error back-propagation (BP) is by far the most popular
algorithm for optimising feedforward ANNs [2], [14], [6]; this
basically is gradient descent technique that minimises the
network error function [2]. For the purposes of the stated aim of
the study, the multi-layer feedforward back propagation
network was used by considering a number of optimisers for
objectivity. Specifically, network training was implemented
using the trainbr function (Bayesian regularisation), traingdm
function (Gradient descent with momentum), trainlm function
(Levenberg-Marquardt) in MATLAB Neural Network Toolbox.
The choice of these optimisers is informed by the following
facts: (i) Networks trained with the back-propagation algorithm
are sensitive to initial conditions and may get stuck in local
minima of error surface, (ii) trainlm unlike others, requires the
computation of the Hessian matrix and thus, time involving [6];
(iii) on the other hand, the traingdm enhances stability of the
network training whereas the Bayesian regularisation guides
against network overfitting [6]; [2].

Since in neural network training, the transfer function is of
critical relevance and predictability of future behaviour is a
direct consequence of the correct identification of it, for the
identified network structure, the tansigmoid and purelin transfer
functions were used in the hidden and output layers,
respectively. The purelin transfer function was considered for
the output layer because it allows the network outputs to take on
any value, whereas the last layer of a multi-layer network with
sigmoid neurons constrains the network outputs to a small
range. On the other hand, as reported in [14], not only training
with the hyperbolic tangent function (tansigmoid) faster than
training with the sigmoidal transfer function, but predictions
obtained using networks with the hyperbolic tangent are slightly
better than those with sigmoid transfer functions. Before
applying the ANN, both input and output data were pre-
processed and normalised.in the range [-1 1]. The scaling
strategy was adopted; rescaling was done to scale the data series

'

to fall within this bound. Scaling of the original data, say u to
the network range was done by

(Ux —Lx)x; +(MxLx —mex)
i M —m

@

X S X .
where, ~7 = the original input data, =’ = the input data scaled

M m .
to the network range, * and ¥ are respectively the
maximum and the minimum of the original input data, while

U

* and L, are the upper and the lower network ranges for the
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network input, respectively. Similarly, the original output, say
Yt is scaled to the network range by
(U,-L,)y,+(M,L,-mU,)
M,—m,

Y=
3

where, Vi the systems’ output is scaled to the network range,

Y and 7 are respectively the maximum and minimum

. ' U
values of the original output data Vi , whereas ” and 7 are
respectively the upper and the lower network ranges for the
network output. After scaling the inputs and outputs, the

resulting output, say ¥ ? is in the scaled domain. Hence, one
needs to rescale the output Y back to its original domain; this
is by inverting Equation (3) and using y I as
_ (My _my)j)t _(MyLy _myUy)
. U,v - Ly
“

C. Forecast analysis

In order to draw conclusions on the ANN model
performance, parameters for statistical analyses such as RMSE
(Root Mean Squared Error), MSRE (Mean Squared Relative
Error), MAE (Mean Absolute Error), CE (Coefficient of
Efficiency), and r?> (Coefficient of Determination): (See
Appendix I) as well as duration of training period, were
employed to evaluate the ANN model predictions. The choice
of these statistical performance indices is based on the following
facts: (i) the MSE or equivalently RMSE, provide a good
measure of the goodness-of-fit at high flows [2], whereas (ii)
MSRE provide a more balanced perspective of the goodness-of-
fit at moderate flows [2]; on the other hand, (iii) CE and 1? give
useful comparisons between studies since they are independent
of scale of data used [2]. In addition, 1> measures the variability
of observed flow that is explained by the model while CE
provides a measure of the ability of a model to predict flows that
are different from the mean [6], [2].

I1I. DISCUSSION

Table 1 shows the performance of the ANN model considering
some basic attributes. It is obvious from the Table that the mean
squared error (MSE) in all instances using the different
optimisation algorithms (Bayesian regularisation: Br,
Levenberg- Marquardt: LM, and Gradient descent with
momentum: GDM) does not indicate any staggering differences
as well as the maximum epoch for both training and validation
phases except for Br. It is instructive to note that considering the
relative time expended in the overall, two notable features are
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discernible; i.e., inadequate learning and over fitting. The GDM
with its adaptive learning capability only used a matter of
seconds as compared to both LM and Br, respectively and thus
much appealing but learning may not be consummate or
smooth. This gives room for circumspect in terms of the overall
performance of the Network especially as noted in the reports
of [2] and reaffirmed by [6], the LM has computational
overhead. The implication is that more time is used during
computation and may unnecessarily lead to over fitting though
the final error or forecast uncertainty might be minimal unlike
the case with Br that is designed purely to take care of over
fitting problems.

The forecast results are as reported in Tables 2-5 for both the
training and validation periods, respectively. Though the overall
accuracy of the model in terms of the statistical parameters: (i)
Coefficient of efficiency (CE), (ii) Coefficient of determination
(r?), and (iii) Root mean squared error (RMSE) (Tables 2, 3 and
4) are seemingly good, they do not really reveal the distribution
of the forecast errors since there are global statistics. The values
of MSRE and MAE in the wvalidation period increase
appreciably with the lead time (in days) indicating the distortion
in the distribution of the forecast errors. This aspect in the
forecast behaviour during the validation period is paramount
since from a practical stand point they serve to assess and
quantify the forecast errors of the ANN forecast model. Tables
2-4 succinctly illustrate this distortion with regards to forecast
of the entire flow regime. Generally, they provide an intuitive
outlook of ANN model prediction when a univariate time series
is used. In the same context, the increasing trend in the values
of the CE and r? in all instances of the validation phase with
corresponding decrease in the relative error statistics calls for
concern and perhaps cautious optimism. For instance, it suffices
to note that the concern should be whether the model is better
than seasonal mean values of the series rather than overall
observed mean; this finding accords with the results as in [2].
The only plausible explanation for this trend is that as the lead
time increases, the network input weights begin to stabilise and
learning becomes coherent since there is regularity in the data
elements due to the lagging process similar to phase-space
embedding.
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Table 1: Training and Validation attributes in terms of training
algorithm

Crptimization algorithm: Bavezian regularisation (Br)

Attributes Traming Walidation
MSE 0.0031 0.0028
Time (Mulins) 0:17:15 0:02:21
Iteration 2000 m
Effective number of parameters 101 101

Optimisation algorithm: Levenberg-Marquardt (LD

Attributes Training Validation
MSE (.0031 0.0034
Time (Mins) 17:14 13:20
Tteration 2000 2000

Optimisation algorithm: Gradient descent with momentum (GDM)

Attributes Training Validation
MSE 0.0077 0.0083
Time (Mviins) 0:00:37 0:00:37
Iteration 2000 2000

There could be issues associated with data intermittency and
redundancy in characteristically phase-spaced embedding; for
instance, if the series is embedded some points that are actually
far from each other will appear as neighbours because the
geometric structure of the attractor has been projected down to
a smaller space. Though Br has a high capacity to overcome
generalisation problems due to over fitting unlike LM which is
fraught with excessive computational overhead (e.g.,
computation of Hessian matrix) leading to instability problems,
on the average, the GDM performed relatively better
considering all the statistics.

It is clear from the snapshot of the performance statistics that
one major problem in assessing ANN solutions is the use of
global statistics. For one-day lead time predictions, the solution
will in most cases produce a high or near perfect goodness-of-
fit statistic. It suffices to note as seen here that the measures do
not give an indication of what the network is getting right or
wrong or where improvements could be made. Comparative
scatter/correlation diagram (Figure 4) of the observed and
forecasted streamflow for one-day-ahead and 5-day-ahead
depicts the goodness-of-fit for the network trained using the
ANN structure as determined in this case; i.e., in terms of
effective overall correlation as noted in the values of the r? of
the fitted trend line. A cursory look at Figure 4 reveals that the
same pattern is exhibited except for GDM in (c) as the 12 for the
fitted trend line decreased with increasing lead time in an
expected fashion. It suffices to also note that the ANN model
prediction of medium to high flows as noted here is not good
enough. The findings suggest global measures are not good
indicators of peak predictions due probably to the
overwhelming presence of a large number of low flow situation.
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In summary, as noted in Tables 2-5 and Figure 4, the
statistics clearly reveal the power of each of the respective
optimisation algorithm. However, because most of the back
propagation algorithms as noted here employ a gradient search
strategy, their performance is sensitive to the initial starting
point. It is imperative to also note that they are easily trapped by
local optima and thus often ineffective when searching
parameter spaces of high dimension.

Table 2: Overview of Model Performance Statistics using
Bayesian regularisation (Br) optimization Algorithm

Optimisation algorithm: (LM)

T]i:i?:};g Performance Statistics
Lead time MAE MAPE RMSE MSRE CE 2
1 82.24 0.04 211.5 0.01 0.99 0.99
2 135.8 0.07 298.59 0.02 0.99 0.99
3 184.47 0.09 37421 0.03 0.98 0.98
4 229.93 0.11 442.08 0.05 0.98 0.98
5 272.38 0.14 505.6 0.06 097 097
Average 180.96 0.09 366.4 0.03 0.98 0.98
Vellsl‘i/;:tti:on Performance Statistics
Lead time MAE MAPE RMSE MSRE CE 2
1 592.31 0.21 1227.1 0.13 092 092
2 553.11 0.2 1151 0.13 0.93 0.93
3 516.51 0.19 1080.4 0.12 094 094
4 484.07 0.18 988.14 0.11 0.95 0.95
5 454 0.17 911.16 0.1 0.96 0.96
Average 520 0.19 1071.6 0.12 094 094

Table 3: Snapshot of Model Performance Statistics based on
Levenberg Marquardt (LM) optimisation algorithm

Optimisation algorithm: (LM)

T]i:;?;:g Performance Statistics

Lead time MAE MAPE RMSE MSRE CE r
1 90.54 0.05 21845  0.01 099 0.99
2 138.63 0.07  301.01 0.02 099 099
3 186.06 009 37506 003 099 0.99
4 230.68  0.11 4434 0.05 098 098
5 272.79 0.4 50637  0.07 097 0.97

Average 183.74 0.09 368.86 0.04 0.98 0.98

Vfl;,;;ltti:on Performance Statistics

Lead time MAE MAPE RMSE MSRE CE r
1 87.97 0.22 11543 0.14 093 0.93
2 549.04  0.21 10754  0.14 094 0.94
3 510.11 0.19  997.71 0.13 095 095
4 470.59  0.18 91535 013 096 0.96
5 434.21 0.17  831.86 0.11 096 0.96

Average 510.3 0.19 994.92 0.13 0.95 0.95
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Table 4: Performance Statistics of the Model by employing the
Gradient descent optimisation algorithm

with momentum (GDM)

Event: Training

I;if::g MAE MAPE RMSE MSRE CE r’
1 369.9 0.18 7153 0.11 0.95 0.95
2 258 0.13 491.5 0.04 097 097
3 282.7 0.21 488.3 0.08 097 097
4 366 0.29 617 0.14 0.96 0.96
5 389.2 0.25 653.6 0.11 0.95 095
Average  333.1 0.21 593.1 0.1 0.96 0.96
Event: Validation
Lead
time MAE MAPE RMSE MSRE CE r?
1 318.8 0.18 631.5 0.08 0.98 0.98
2 510.6 0.13 1062 0.03 0.94 0.96
3 405.6 0.19 807.1 0.08 097 097
4 495.4 0.21 956.5 0.12 0.95 0.95
5 534.5 0.17 1008 0.07 0.95 0.96
Average 453 0.18 892.9 0.08 0.96 0.96
Table 5: Event-specific evaluation
Network Topology (8 7 5: Single hidden layer)
Opt1m1§at10 Training Validation
n algorithm
% correct event prediction % correct event prediction
Low . Low .
flow High flow flow High flow
lda  5da lda  5da lda  5da Ilda  5da
y y y y y y y y
Br 0.82 073 098 089 065 0.69 087 0.86
M 0.81 072 098 088 065 0.72 087 0.87
GDM 072 068 091 083 065 072 087 0.87
Average 0.78 0.71 096 087 065 0.71 0.87 0.7
Network Topology (8 5 2 5: Double hidden layer)
Opt1m1§at10 Training Validation
n algorithm
% correct event prediction % correct event prediction
Low High Low .
flow flow flow High flow
lda  5da Ida  5da lda  5da lda  5da
y y y y y y y y
Br 0.81 073 097 089 065 07 0838 0.87
M 0.81 073 098 089 0.65 0.69 088 0.86
GDM 0.67 0.7 084 084 053 056 073 0.78
Average 0.76 0.72 093 087 0.61 0.65 083 0.84
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Figure 4: Correlation/Scatter plots for ANN model (8 (Input
nodes), 7 (nodes in the Hidden layer), 5 (Output nodes)) in
terms of one and five-day ahead prediction using (a) Br, (b) LM,
and (c) GDM training optimisation algorithms, respectively.

Iv. CONCLUSIONS

Based on the results obtained in all instances, it could be
concluded that the success of an ANN training procedure
depends largely on the power of the optimisation method
employed to search for the best parameter estimates and not
specifically on the complexity of the neural network structure.

Thus resulting from the general conclusions drawn, the
following recommendations are proffered, namely: -

1. Effort should be geared towards using adaptive Neural
Networks. Similarly, because of volatility and
nonlinear deterministic problems, ARMA-GARCH
models should be considered as viable complement

2. To allow for an enhanced exploration of the parameter
space in terms of optimising time expenditure and
robustness of the forecast, radial-basis network, hybrid
models like Wavelet-ANN, FuNN (Fuzzy Neural
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Network) as well as Particle Swarm Optimisation
coupled ANN should be considered as good options.

3. Despite the popularity of the CE, for hydrological time
series which wusually have strong seasonality,
Seasonally Adjusted Coefficient of Efficiency: SACE
should be considered.
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APPENDICES

Appendix I: Statistical Indices
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