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Abstra g . . 3
Ana/;ticcat/ study of heat transfer on flow of a nanofluid in a porous medium with heat generation

is presented. The partial differential equation ‘representing the problem was reduced to
ordinary differential equation using some similarity transformation var/ables.'The transformed
equations were solved using the Adomian decomposition method wh/ch. results were
compared with existing results in the literatures. A good agreement was established between
the new method and the existing ones, which shows the re//ab///ty' of the present method. The
physical parameters that occurred in the solutions such as mqgnet/c paramgter, Darcy number,
Ekcert number, Prandtl number, Schmdt number were varied to determine their respective
effects on the flow. It was observed that the Magnetic parameter and inverse Darcy number are

all reduction agents of the fluid velocity.

Keywords: Adomian decomposition method, Brownian motion, Darcy number, Eckert
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Introduction

Nanofluid is a new kind of heat transfer medium, containing nanoparticles (1-100 nm) which
are uniformly and stably distributed in a base fluid. These distributed nanoparticles, generally
a metal or metal oxide greatly enhance the thermal conductivity of the nanofluid, increases
conduction and convection coefficients, allowing for more heat transfer (Yusufetal., 2018).

Vasu and Manish (2015) studied the problem of two-dimensional transient hydrodynamic
boundary-layer flow of an incompressible Newtonian nanofluid past a cone and plate with
constant boundary conditions. Gireesha et al. (2015) introduced a numerical solution for
hydromagnetic boundary-layer flow and heat transfer past a stretching surface embedded in a
non-Darcy porous medium with fluid-particle suspension. The unsteady forced convective
boundary-layer flow of an incompressible non-Newtonian nanofluid over a stretching sheet
when the sheet is stretched in its own plane is investigated by Gorla and Vasu (2016). Gorla et
gl. (2016). investigated the transient mixed convective boundary-layer flow of an
Incompressible non-Newtonian quiescent nanofluid adjacent to a vertical stretching surface.
Th.e unsteady flow and heat transfer of a nanofluid over a contracting cylinder was studied by
Zaimi et al. (2014). Srinivasacharya and Surender (2014) studied the effects of thermal and

mass stratification on natural convection boundary-layer flow over a vertical plate embedded
N a porous medium saturated by a nanofluid.

An analytical study of heat transfer on flow of a nanofluid in a porous medium with heat
generation using the adq

literature. mian decomposition method is presented, which is new in the

Problem Formulation

Consideri -di . : :

over a s?rr;%cmno dimensional Incompressible viscous flow of a water-based nanofluid past

is the coordinatg sheet. The sheet stretches with a velocity ax, where a is a constantandx
€ Measured along the stretching surface. The fluid flow at y=0, where y is B
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is taken as 7, and at largey

the coordinate normal to the surface. The surface tempél’atucl;e ;ls i onr:-:
i icle concentration C,

values, it is taken as 7. The nanopart ' ation In Mabood gl
stretcr:ing surface and C, at larger values of y. Following the form d

: verning equations
Mastroberardino (2015) in a porous medium with heat genr?;:g?r";rt if)zeagg writteg ag: ons
of continuity, momentum, temperature, and nanoparticle cor
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Subject to the boundary condition:
y=0iu=ax, T=T,C=C, (5)
y=2oiu=0,T=T,C=C,

where velocity along x and y axes are uand v respectively, p, is the density of the base

fluid, v is the kinematic viscosity, o is the electrical conductivity, ais the heat diffusivity,
B, external magnetic field, C, is the specific heat capacity at constant pressure, D, is the

Brownian diffusion coefficient, D, is the thermopheric diffusion coeffi (po), is
(pc),

with &, as permeability, Qis heat f

cientand 7 =

the ratio between the effective heat capacity of the fluid
generation, ¢ is porousity.

wheren, f(n), 6(n), ¢(n) are the
and nanoparticle concentrations,
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Introducing equation (7) into equations (1) to (5), the PDEs reduces to

f/// +ﬁ'// _f/l -(M+w-l)f/ =0
¢' +Pfd +PN,8¢ +ENG’ +PEcf" + PO0 =0

' +S.f¢ 4}%6” =0

7(0)=0.1'(0)=16(0)=1,4(0) =1
f'(0)=0,6(0) =0,4(o0) =0
where
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Are Magnetic parameter, inverse D
: arcy nur
thermophoresis parameter, Eckert number, Heat,
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Method of Solution

: \ blem (8) by lettine
The method of Adomian (1994) is employ to obtain the solution of pro b

—d—3~ =L and i = L, and from problem (8), we have
dn’
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Introducing the operators into equations (9), we have
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Where L' = j j j(o)dndndn and L' = H(o)dndn
Introducing the Adomian polynomials into (10) we have
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where 4, = f.f!, B = fﬁ,_k,C =f0,4:D, =64, ., E =g E = f/ fit
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r to obtain the solution to problem (8),
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cussion

_comparison of the present method With
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(13)

the initial guess for (13) which satisfied the

L (14)

from the above section are presented an

agreement is observed among the methods.

18 to evaluate the integrals we have the final solutions as:

the e
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Q ith existing solutions
Table 4.1: Comparison of values of — £"(0) with 2
Mabood and Xu and Lee
M Present Results Mastroberardino (2015) (2013)
i -1.000008 g
(1) 1.3305610 1.4142135 12.‘:1‘&1
5 2 384890 2.4494897 .
10 3.267599 3.3166247 ;13{:163
50 7.118200 7.1414284 16 it
100 10.03333 10.049875 ¢
500 22.375586 22.383029 22.38302
1000 31.633317 31.638584
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Figure 1: Variation of inverse Darcy number on velocity Figure 2: Variation of inverse Darcy number
on temperature
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Figure 5: Variation of magnetic
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Figure 7: Variation o temperature
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Figure 9: Variation of Brownian motion on
concentration
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Figure 1 to 3 present the variation of inverse Darcy number ?gcxlofé%feﬁiggsgxgaetand E
concentration profile. As the inverse Darcy number increases, Ve asir?creasing k. 0be F
a reduction agent while the temperature and concentration appear . 3

Figure 4 to 6 display the variation of magnetic number on yelog:lty, thpedraturg and 8
concentration profile. As the magnetic increases, velocity profile is 0 serve oth rop due t.o
drag like force. The temperature and concentration appear to be increasing as the magnetic
parameter is enhance.

Figure 7 show the variation of Prandtl number on the fluid temperature. The temperature gf
the fluid drops as the Prandtl number increases which can be use to regulate the fluid
temperature.

Figures 8 to 9 are the graphs showing the variation of Brownian motion on temperature and
concentration respectively. As the Brownian motion increases, the fluid temperature rises
slightly and concentration also rises. On the concentration profile, as the concentration
approaches free stream (n = 2.5) no changes was observed.

Figure 10 to 11 depict the variation of thermopheric parameter on temperature and

concentration profiles. As the parameter rises, temperature and concentration profile all
increases. No change was observed on concentration profileat M = 2.5 i

Figure 12 show the variation of Eckert number on fluid temperature. It is seen that as the

Eckert number increases the temperature profile also increases. This shows that the fluid
temperature boundary thickness thickens as the fluid becomes more viscous.

Figure 13 present the variation of Schmdt number on concentration profile. It shows that the
fluid concentration reduces as Schmdt number is enhanced.

Figure 14 show the effects of heat generation on the temperature profile. As the heat
generation number increase, the fluid temperature continue to increase.

Conclusion

This work presents the analytical study of heat transfer on flow of a nanofluid in a porous
medium with heat generation. The partial differential equations representing the problem
were reduced to ordinary differential equation using some similarity transformation variables
The transformed equations were solved using the Adomian decomposition method whicl';

results were compared with existing results in the literatures. A good 1
established between the new method and the existing ones, which de : agreemant, Wik

present method. The infinity was observed atn =3 The physical parglr;t:tter:: teri?t“g deis Of;he E
the solutions such as magnetic parameter, Darcy number, Ekcert number, Prand ?curre in
Schmdt number were varied to determine their respective effects on the floy Iian tl numbe

that the Magnetic parameter and inverse Darcy number are all reducti o s
velocity. The results presented are real and applicable in var or dasnts of Ui

thatinvolved the movement of heat energy from one proceséosl:lf)eaasn'::(if)t:r(\)t;j;\]:el::| Strial et

i
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