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Abstract 

A great many physical occurrences give rise to problems that often result in 

differential equations. When we solve a differential equation, we are in effect 

solving the physical problem it represents. Traditionally, solutions to 

differential equations were derived using analytical or exact methods. These 

solutions are often useful as they provide excellent insight into the behavior of 

some systems. However, certain differential equations are very difficult to 

solve by any means other than an approximate solution by the application of 

numerical methods. These methods can be classified into two thus: One-step 

and multistep methods. However, in this work, our focus is on a class of 

multistep methods known as the Linear Multi-step Methods. We thus use 

Taylor series expansion to derive a linear multistep method of order eight. The 

method is tested for consistency and zero-stability in order to establish its 

convergence. Also, provided are some examples of problems solved using the 

new scheme, and the results compared with exact solution. 

 

 

Introduction 

 

We consider the initial value problem (IVP): 

y' = f(t,y),   y(t0) = y0,   t > t0 (1) 
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 Let yn be an approximation to the theoretical solution at tn, that is, to y(tn), and let 

fn=f(tn,yn). Then, we say a linear multistep method (LMM) of step number k, or a linear k -

step method is a computational method for determining, the sequence {yn} that takes the form 

of a linear relationship between yn+j, fn+j, j = 0,1, …, k. 

Thus the general lmm may be written: 
k k

j n j j n j
j 0 j 0

y h f+ +
= =

α = β∑ ∑  (2) 

where αj and βj are constants; we assume αj = 1 and that not both α0 and β0 are zero. We say 

that the method is explicit if βk = 0, and implicit if βk ≠ 0 [1]. 

 Convergence is a minimal property which any acceptable linear multistep method 

must possess. Thus, the necessary and sufficient conditions for a linear multistep method to be 

convergent are that it be consistent and zero-stable [1]. 

 Consistency demands that, 

ρ(1) = 0 and ρ'(1) = σ(1) (3) 

where, 

( )
k

j
j

j 0=

ρ ξ = α ξ∑  (4) 

( )
k

j
j

j 0=

σ ξ = β ξ∑  (5) 

are called the first and second characteristic polynomials of (2) respectively. 

 The lmm (2) is said to be zero-stable if no root of (4) has modulus greater than one, 

and if every root with modulus one is simple [1]. 

 

 

Derivation of the Lmm of Order 8 

 

We use the method of Taylor series expansion described by [1] as follows: 

Let  be the linear difference operator defined by: 
k

'
j j

j 0

[y(t);h)] [ y(t jh) h y (t jh)]
=

= α + − β +∑  (6) 

where y(t) is an arbitrary function, continuously differentiable on [a , b]. 
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 Suppose we choose to expand y(t+jh) and y’(t+jh) about t+rh; where r need not 

necessarily be an integer. We obtain: 

( ) ] ( ) ( ) ( ) ( )' 2 " q q
0 1 2 qy t ;h D y t rh D hy t rh D h y t rh . . . D h y t rh = + + + + + + + + (7)

The formulae for the constants Dq expressed in terms of αj, βj are: 

( )

( )

0 0 1 2 k

1 0 1 2 k

0 1 2 k

q q q q
q 0 1 2 k

q 1 q 1 q 1 q 1
0 1 2 k

D . . .
D r (1 r) (2 r) . . . (k r)

. . .
.
.
.

1D ( r) (1 r) (2 r) . . . . (k r)
q!

1 r (1 r) (2 r) .. . . (k r)
(q 1)!

− − − −

= α +α +α + α

= − α + − α + − α + + − α

− β +β +β + β

 = − α + − α + − α + − α − 

 − − β + − β + − β + + − β −

 (8) 

q = 2, 3, … 

 In this research work, we wish to derive an optimal 6-step method. Therefore, all the 

roots of the first characteristic polynomial ( )ξρ  must be on the unit circle. We know that 

( )ξρ  is a polynomial of degree 6. Hence, by consistency, it has one real root at +1 and 

another real root at -1. The four remaining roots must be complex. 

 Hence we have: 

ξ1 = +1 , ξ2 = -1, ξ3 = eiθ1, ξ3 = e-iθ1, ξ3 = eiθ2, ξ3 = e-iθ2  

 Hence: 

ρ(ξ) = (ξ - 1)(ξ + 1)(ξ - eiθ1)(ξ - e-iθ1)(ξ - eiθ2) (ξ-e-iθ2)  

α6 = +1, α5 = -2(a+b), α4 = (4ab + 1), α3 = 0, α2 = -(4ab+1), α1 = 2(a+b), α0 = -1  

 We require the method to have order 8. We now state the order requirement in terms 

of the coefficients Dq . 

 From (8) we have the following: 

D0 = α0 + α1 + α2 + α3 + α4 + α5 + α6 

D1 = -rα0 + (1 - r)α1 + (2 - r)α2 + (3 - r)α3 + (4 - r)α4 + (5 - r)α5 + (6 - r)α6 -  

         - (β0 + β1 + β2 + β3 + β4 + β5 + β6) 

D2 = 1/2![(- r)2α0 + (1 - r)2α1 + (2 - r)2α2 + (3 - r)2α3 + (4 - r)2α4 + (5 - r)2α5 + 

         + (6 - r)2α6] - [-rβ0 + (1 - r)β1 + (2- r)β2 + (3 - r)β3 + (4 - r)β4 + (5 - r)β5 +  
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         + (6 - r)β6] 

. 

. 

. 

D8 = 1/8![(- r)8α0 + (1 - r)8α1 + (2 - r)8α2 + (3 - r)8α3 + (4 - r)8α4 + (5 - r)8α5 +  

         + (6 - r)8α6] - 1/7![(-r) 7β0 + (1 - r)7β1 + (2- r) 7β2 + (3 - r) 7β3 + (4-r) 7β4 +  

         + (5 - r) 7β5 + (6 - r) 7β6] 

D9 = 1/9![(- r)9α0 + (1 - r)9α1 + (2 - r)9α2 + (3 - r)9α3 + (4 - r)9α4 + (5 - r)9α5 +  

         + (6 - r)9α6] - 1/8![(-r)8β0 + (1 - r)8β1 + (2- r)8β2 + (3 - r)8β3 + (4 - r)8β4 +  

         + (5 - r)8β5 + (6 - r)8β6] 

 Setting r = 3 and Dq = 0, q = 2, 3, 4, 5, 6, 7, 8 we have: 

D2 = 1/2![32α0 +22α1 + α2 + α4 + 22α5 + 32α6] -  

         - [-3β0 - 2β1 - β2 + β4 + 2β5 + 3β6] = 0 

D3 = 1/3![-33α0 - 23α1 - α2 + α4 + 23α5 + 33α6] -  

         - 1/2![32β0 + 22β1 + β2 + β4 + 22β5 + 32β6] = 0 

D4 = 1/4![34α0 + 24α1 + α2 + α4 + 24α5 + 34α6] -  

         - 1/3![-33β0 - 23β1 - β2 + β4 + 23β5 + 33β6] = 0 

D5 = 1/5![-35α0 - 25α1 - α2 + α4 + 25α5 + 35α6] -  

         - 1/4![34β0 + 24β1 + β2 + β4 + 24β5 + 34β6] = 0 

D6 = 1/6![36α0 + 26α1 + α2 + α4 + 26α5 + 36α6] -  

         - 1/5![-35β0 - 25β1 - β2 + β4 + 25β5 + 35β6] = 0 

D7 = 1/7![-37α0 - 27α1 - α2 + α4 + 27α5 + 37α6] -  

         - 1/6![36β0 + 26β1 + β2 + β4 + 26β5 + 36β6] = 0 

D8 = 1/8![38α0 + 28α1 + α2 + α4 + 28α5 + 38α6] -  

         - 1/7![-37β0 - 27β1 - β2 + β4 + 27β5 + 37β6] = 0 

 

 However, on inserting the values we have obtained for the αj into these equations we 

have: 

-3β0 - 2β1 - β2 + β4 + 2β5 + 3β6] = 0 

32β0 + 22β1 + β2 + β4 + 22β5 + 32β6 = 2/3[28 + 4ab - 16(a + b)] 

-33β0 - 23β1 - β2 + β4 + 23β5 + 33β6 = 0 

34β0 + 24β1 + β2 + β4 + 24β5 + 34β6 = 2/5[244 + 4ab - 64(a + b)] 

-35β0 - 25β1 - β2 + β4 + 25β5 + 35β6 = 0 

(9) 
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36β0 + 26β1 + β2 + β4 + 26β5 + 36β6 = 2/7[2188 + 4ab - 256 (a + b)] 

-37β0 - 27β1 - β2 + β4 + 27β5 + 37β6 = 0 

 We can satisfy the first, third, fifth and seventh of these equations if we choose: β2 = 

β4, β1 = β5, β0 = β6. The remaining three equations give: 

32 β0 + 22 β1 + β2 = 1/3[28 + 4ab - 16(a+b)] (10)

34 β0 + 24 β1 + β2 = 1/5[244 + 4ab - 64(a+b)] (11)

36 β0 + 26 β1 + β2 = 1/7[2188 + 4ab - 256(a+b)] (12)

 From (10) we have: 

β2 = 1/3[28 + 4ab - 16(a+b)] - 9β0 - 4 β1 (13)

 Substituting (13) into (11): 

81β0 + 16β1 + 1/3[28 + 4ab - 16(a+b)] - 9β0 - 4 β1 = 1/5[244 + 4ab - 64(a+b)] 

72β0 + 12β1 = 1/5[244 + 4ab - 64(a+b)] - 1/3[28 + 4ab - 16(a+b)] 

72β0 + 12β1 = 1/15[592 - 8ab - 112(a+b)] 

(14)

 Substituting (13) into (12): 

729β0 + 64β1 + 1/3[28 + 4ab - 16(a+b)] - 9β0 - 4 β1 = 1/7[2188 + 4ab - 

256(a+b)] 

720β0 + 60β1 = 1/7[2188 + 4ab - 256(a+b)] - 1/3[28 + 4ab - 16(a+b)] 

720β0 + 60β1 = 1/21[6368 + 4ab - 656(a+b)] 

(15)

 From (14) and (15), solving simultaneously to have: 

β0 = 1/945[278 + 5ab + 16(a+b)] = β6 (16)

 Substituting (16) into (14), we have: 

β1 = 1/150[160 - 8ab - 76(a+b)] = β5 (17)

 Substituting (16) and (17) into (13) gives: 

β2 = 1/105[62 + 167ab - 272(a+b)] = β4 (18)

 Finally, solving D1 = 0 gives: 

β 3 = 1/945[3008 + 5688ab - 1328(a+b)] (19)

 We solve for the error constant, D9: 

D9 = 1/9![-39α0 - 29α1 - α2 + α4 + 29α5 + 39α6] -  

         - 1/8![38β0 + 28β1 + β2 + β4 + 28β5 + 38β6] 

D9 = -1/907200[6016 + 736ab - 8576(a+b)] 

(20)

 Since a = cosθ1, b = cosθ2, 0 < θ1 < π, 0 < θ2 < π, a and b are restricted to the range -1 

< a < 1 and -1 < b < 1. Our choice of values for a and b is guided by the fact that we like to 
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minimize the error constant as well as the need to develop a method that makes computation 

easier by reducing the number of operations involved. 

 The following values are therefore, assigned to the variables: a = 3/4, b = -1/3. 

 Hence the following values are obtained for the coefficients αi, βi: 

α6 = + 1, α5 = - 5/6, α4 = 0, α3 = 0, α2 = 0, α1 = 5/6, α0 = - 1 

β0 = 3401/11340 = β6, β1 = 391/315 = β5, β2 = -1117/1260 = β4, β1 = 3848/2835 
 

 Substituting the values of a and b into (20), the Error constant is: -0.002489711924. 

 And finally, we have the scheme: 

yn+6 -5/6 yn+5 +5/6 yn+1 - yn =  

= h[(3401/11340)fn+6 + (391/315)fn+5 - (1117/1260)fn+4 + (3848/2835)fn+3 -  

   - (1117/1260)fn+2 + (391/315)fn+1 + (3401/11340)fn] 

(21)

 

 

Test for Convergence 

 

To prove that the scheme converges, it is sufficient for us to show that it is consistent 

as well as zero-stable. 

To prove consistency, we have from (3), (4) and (5): 

ρ(1) = 1 - 5/6 + 5/6 - 1 = 0 (22)

ρ'(1) = 6(1) - 5(5/6) + 1(5/6) - 0(0) = 2.666666667 (23)

σ(1) = 2.666666667 (24)

 

Equations (22) - (24) establish consistency. 

For zero-stability, we consider the following equation that represents the first 

characteristic polynomial of the scheme: 

ρ(ξ) = ξ6 - 5/6 ξ5 5 5/6 ξ - 1 (25)

 

 The following are the roots of (25): 

ξ1 = + 1, ξ2 = - 1, ξ3 = [(3 + √7)/4]i, ξ4 = [(3 - √7)/4]i, ξ5 = [(-1 +2√2)/3]i,  

ξ6 = [(-1 - 2√2)/3]i 
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 It is obvious that | ξ1| ≤ 1, I = 1, 2, 3, 4, 5, 6. Thus ζi = 1, 2, …, 6 satisfy the zero 

stability condition. Hence, we conclude that scheme 1 is convergent. 

 

 

Numerical Examples 

 
We use the scheme to solve some differential equations as follows. However, as with 

all k-step methods (k < 1) we need to use another method to calculate additional starting 

values. In this work, we decide to use the Fourth Order Runge-Kutta method to evaluate the 

starting values yn, n = 0, 1, …, 5, since the Runge-Kutta methods constitute the most efficient 

method for generating starting values for linear multistep methods. 

 The Fourth order Runge-Kutta method is given below: 

yn+1 = yn + h/6(k1 + 2k2 + 2k3 + k4) 

k1 = f(xn, yn), k2 = f(xn +1/2h, yn + 1/2hk1), k3 = f(xn +1/2h, yn + 1/2hk2), 

k4 = f(xn +h, yn + hk1) 

 

 We choose as our predictor, the fourth order Adams-Bashforth method: 

yn + 4 = yn + 3 +h/24(55fn+3 - 59fn+2 + 37fn+1 - 9fn)  

 

 

Discussion of Results 

 

In Table 1 the scheme produced errors as shown, within acceptable limits. The scheme 

is very accurate as exhibited in Table 2; there is no error at all. This is understandable because 

the solution of the differential equation is a polynomial of degree three, i.e., not greater than 

six, the step number. 

 

 

Conclusion 

 

Since we have used the numerical method to solve various differential equations we 

conclude that the method is accurate as it produced results which are comparable with those 

produced by other similar methods. 
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Table 1. Problem: F=X+Y; Y(0)=1; h=0.1; exact solution: Y(X)=2*EXP(X)-X-1 
x Exact ( )XY  Error 

0.0 1.0000000000 1.0000000000 0.0000000000E+00 
0.1 1.1103418362 1.1103416667 1.6948462878E-07 
0.2 1.2428055163 1.2428051417 3.7461895075E-07 
0.3 1.3997176152 1.3997169941 6.2102693121E-07 
0.4 1.5836493953 1.5836484802 9.1512116951E-07 
0.5 1.7974425414 1.7974412772 1.2642065803E-06 
0.6 2.0442376008 2.0442361876 1.4132161703E-06 
0.7 2.3275054149 2.3275025204 2.8945628872E-06 
0.8 2.6510818570 2.6510783589 3.4980860688E-06 
0.9 3.0192062223 3.0192004614 5.7608878645E-06 
1.0 3.4365636569 3.4365566462 7.0107547572E-06 

 

Table 2. Problem: F=3X2-6X+5; Y(0)=1; h=0.1; Exact Solution: Y(X)=X3-3X2+5X+1 
x Exact Y(X)  Error 
0.0 1.0000000000 1.0000000000 0.0000000000E+00 
0.1 1.4710000000 1.4710000000 0.0000000000E+00 
0.2 1.8880000000 1.8880000000 0.0000000000E+00 
0.3 2.2570000000 2.2570000000 0.0000000000E+00 
0.4 2.5840000000 2.5840000000 0.0000000000E+00 
0.5 2.8750000000 2.8750000000 0.0000000000E+00 
0.6 3.1360000000 3.1360000000 0.0000000000E+00 
0.7 3.3730000000 3.3730000000 0.0000000000E+00 
0.8 3.5920000000 3.5920000000 0.0000000000E+00 
0.9 3.7990000000 3.7990000000 0.0000000000E+00 
1.0 4.0000000000 4.0000000000 0.0000000000E+00 
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