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(pe),
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e de .nsity, C IS the volumetric volu >
Y me expansion coefficient and p,, is the density of the particles g is the acceleration due

ophcric diffusion coefficient and 7 = : 4
is the re iae, b B ‘
e ratio between the effective heat capacity of the fluid with o being
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oreé S c ey
) oravity, p isth volumetric coefficient of thermal expansion, ¢, is the radiative heat flux.
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Following Roseland approximation we have ¢, = __4}9—_ o1
o= , where (f and O are the Stefan-Boltzmann constant and

30 Oy

mean absor; tion coefficien s tempe
a p nt respectively. 1 I'he temperature differences within the fluid is assumed sufficiently small such

the
{hat 7" may be expressed as a lincar function of Temperature. Expanding 7'* in Taylor’s series about 7 and neglecting
higher order terms, we get T* = 4TT: - 3T, %)
oq, 160 8 -
therefore, — =
Pk
Defining the dimensional stream funclion((//(x,y)) in the usual way such thatz/ =—"= and V= —gl/iand using the
oy ox :

following dimensionless variables:-
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1=(2) o w=(e)t /)00 S

9
\less fluid distance, velocity pr

where 77 , f(]]) ; 0(77) ; ¢(l7) are the dimcnsiox

nanoparticle concentration.
An order of magnitude analysis of the

e

,and ¢(7) = (8)

ofile, temperature profile, and

y direction momentum equation (normal to the sheet) using the usual boundary layer

approximations we have :-
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Substituting the expressions in (8) into (1)- -(5), and (6) and neglecting the pressure gradient the equations reduces 10 the

followmo local smnlarlty solution:-
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/ +// j +G)“+GI(‘=O

[1+41§“j0 +Prf0 +PrN, 90 +PrN,0’ (10)

¢+L/‘¢+—’—0—-KS¢ 0 (1)
h
with corresponding boundary conditions:

f)=0, 7 ©=1 0(0)=1. ¢(0) 0,
7'(0)=0, 0(»)=0, g(0)= (12)
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e = 3 are the local Thermal Grashof number, local concentration Grashof number, Radiation, Prandtl
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a Similarity solution, the p
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y : ‘e rtional to x. We
Lo g volumetric coefficient of thermal expansion /}’ is propo ¢
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Whe : 3 7 o 3 (‘ﬁ(")
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Which G ang Gr,. defineq by (15), the

solution of (9) to (1 1) yield the simil
;-0 Analysis of Method
1 i

domian Decom

arity solutions.

gin with the (deterministic) form F(u) = gt

ar items. We could represent the linear term L
' > A |
We write the linear term Ly + py where we choose I as the highest-ordered derivative. Now 1,
IS simply n-folq Integration for an nth order. The remain
present in linear operator i

der of the linear operator is

ude a stochastic Operator term Ru ). The nonli

R (in case where stochastic terms arce
near term is represented by Nu . Thus,
' Nu for initial valye

problems we conveniently define [-! =
operator from 0 to t. For the o

(L . . .
2 = as the n- fold definite integration
dt
d2
perator, = preT for example we have,

an indefinite integral
first three terms are identified
U=} 0 Un ; g ;

Finally, assuming Nu is analytic, we write _
NU:Z;1=0 Ap(ug...u,)where the A, are specially

and write
as uy in the

generated Adomian polynomials for the specific nonlincarily.

3.2 Implementation of Method

The nonlinear coupled differential equations (9) to (11) with boundary conditions (12)

are solved using the ADM methods.
L d nd L 4 tl

=——.a 208 o aithie

If ADM is applied on (9) to (11) and we defined L, dn’ R RS

LIfl=—ff +f?~Gr,-Gr. (16

1L
1= =2 (10 N 0e N 0°)
L l0l= (4Ra +3)

N (18)
Llg) =L 9= 0 K5 4
> ‘ N, n equation (16) to (18), we have
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.« ADM solution is obtained by: JOfNAMP

\:,m(,])zl—be_" ZA,,,]+L ZB ZGr] i [ZG
| -

3Pm =0 m=0 m=0 (22)
| s m=0
y.0,(1)=ce + (\ 53
) G+4Ra) )\ 2 [;C, N L] ZD,,] + N, I [ZE |J (23)
; n=0 n=0
So0)= e LRS-
2, [g 1+ KS.L'[4 ] (24)
where
1m 5 fm v f 2
< (25)
== v (26)
C,=Ya. 8
2, 27)
l)” = 0.”—\'¢‘\'
\Z:O (28)
E=).6,.8,
X : (29)
Zf,, s )

In 01~h.er. to take care of problems at infinity, we therefore take functions which satisfies the boundary conditions at infinity as
our initial guesses.

foln)=1-be¥ (31)
0, (n) = ce”” (32) ,
¢ ()= he* (33)

For determination of other components of f(n), h(77) and 0(7]), we have:

S ) =L LD A T D Bl L D Gl LD G G4

m=0 m=0 m=0 m=0 m=0

e i : i
Z MUE ((3 or 1)}( [”Z)c,,]uv /3 [;)D,,]+ N,L [;]E"]) (35)
Zm. (n)= —LL.L;‘[ZF ]———HJ ZO']+ KS, L,'[¢,] (36)
n=0 n=0 n=0

where b, ¢, and h are all constants to be determined for actual solutions.
The general solutions are:

f(77)=ifm (7)=fo + /i + form G7)
=i9m (7)=6, +6, +06,.. (38)
¢(’7)=i¢m (7)=¢ + & + b (39)

for conveniences, we used Maple-18 to compute the integrals.
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~ X! p. =0,and Gr. =0
1able 1: Comparison between the previously published work with the present work for f () at Gry
Khan and
\'I\Cranﬂg\pqp““ Present work
0.0 1 | |
0.5 0.60653066 0.60653066 0.60653066
1.0 0.367879441 0.367879441 0.367879441
L5 0.22313016 0.22313016 022313016
2.0 0.135335283 0.135335283 0.135335283
&3 0.082084999 0.082084999 0.082084999
3.0 0.049787068 0.049787068 0.049787068
2 0.030197383 0.030197383 0.030197383
4.0 0.018315639 0.018315639 0.018315639
4.5 0.011108997 0.011108997 0.011108997
5.0 0.006737947 0.006737947 0.006737947
5.5 0.004086771 0.004086771 0.004086771
6.0 0.002478752 0.002478752 0.002478752
Table 2: Values of —f (0) ] ~0'(0) and —¢'(0) with N,, N, =0.01 and K =1.
Gr’l‘ Gr(' Pr Sc Ra Le o "(0) *0'(0) _¢'(O)
0 0 10 0.01 0.01 10 1 0.918406966 0.91307301
1 0 10 0.01 0.01 10 0.980196465  0.514959356 0.355908768
10 0 10 0.01 0.01 10 0.907586914  0.265304341 0.241188888
0 0 10 0.01 0.01 10 1 0.918406966 0.91307301
0 ] 10 0.01 0.01 10 0.980196465  0.514959356 0.355908768
0 10 10 0.01 0.01 10 0.907586914  0.265304341 0.241188888
0 0 0.1 0.01 0.01 10 1 0.938486161 0.685002882
0 0 1 0.01 0.01 10 1 0.88965977 0.911533062
0 0 10 0.01 0.01 10 I 0.938486161 0.91307301
0 0 10 0.01 0.01 10 l 0.918406964 0.913073011
i 0 10 10 0.01 10 1 0.918407029 0.965715561
0 0 10 10 0.0l 10 l 0.918407033 0.99485203
0 0 10 0.01 0.01 10 1 0.918406966 0.913073011
0 0 10 0.01 10 10 I 0.864504429 0.798848546
. 0 10 0.01 60 10 1 0.97352682 0.646282701
. 0 10 001 001 001 1 0.993832011 0.997939766
A 0 10 0.01 0.01 10 I 0.918406966 0.913073011
s 5 10 0.01 0.01 200 I 0.92089133

0.918699974

ts and Discussion :
e nlli?:xzzsa:l]coupled differential. equations () to (1) with boundary conditions (12) are solye
The no

: d using lan
1 Methods. In order to assess the accuracy of the present method, we have compared ¢ the Adomia
0 - 0

ur solution for f‘(’])

‘able 1. It was observed

Decompositi . : .
g nt values of 77 at Gry = 0 and Gr, = 0 with the previously published work as shown in

for differe sent method is in good agreement with the work of Crane [3] and Khan et al[14].

that the pre
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. 7. shows the Adomian decomposition values for the skin friction (—./'"(1])) . reduced Nusselt number (- (/'(/]);

[abi€

qd the reduced Shawood number ( —(/)'(1]) X
di

sh \Vlh““‘ N 5 & L% i g ) v
sho ¢ effect of thermal Grashof number (G7;) and concentration Grashof number (Gr.) on the velocity
rmal Grashof number and concentration Grashol

he boundary layers as

oures 1 10 6

[
rofile, tempe
ymber enhances the

rature and concentration profile. It is observed that the the
fluid velocity, temperature, and concentration profile. This leads to increase in t

nt
<hown in the graph.
to 8 display the effect of prandtl number (7r) on the

thickness decreases for both temperature and conce
\hat smaller values of Prandtl number are equivalent to increase
Jble to diffuse away from the heated surface more rapidly for higher values of P
ure with increase in the Prandtl number.

temperature profile and the concentration profile. The thermal

as the Prandtl number increases. The reason IS
the fluid and therefore heat is
Hence there is a reduction In

Fioures 7

poundary ntration profile

in the thermal conductivity of
randtl number.

1cmpcrzu

Effect of Gr; on velocity profile

Fig 1:
i e, BISOBUSAE = W
1
N6
ainl
04
0z
0 Bt S
0 2 6 8 10 13
ek Gy Gry =10
Fig 2: effect of G, on temperature profile
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Fig 16: effect of N,on concentration profile

Figures 9 to 10 show that the fluid temperature and concentration respectively attai :

monotonically to free stream zero 1 y attains their maximum val i
plate surface and decreases mont B value away from the plate satisfyi value at the moving
is observe that increase 1 radiation (Ra) causes_both the temperature and concentration proﬂley ing the boundary conditions. It
Figures 11 to 12 display the effect of Schml_dt number (Sc), and it is observe that, it h sto increase.
temperature profile but enhances the concentration profile. : as no significant effect on the
Figures 13 to 14 present tl}e effict of Lewis number (Le) on both the temperature and the concentrati
It is observe that increase in Lewls number causes the both the temperature and concentration p ntration profiles respectively-

r

. : ofiles to r
5 to 16 show the Brownian motion ( N, ) causes both temperature and concentration o educe.

Figures 1 )
& les to increase

insignificantly-

Conclusion ; : '
2h(:: solution to the problem of laminar fluid flow resulting from the stretching of a flat sy

: : : ; b rface i ;s
convection and radiatiuon has been obtained using the Adomian Decomposition Method fi € In a nanofluid with thermal

e s : 4 or :
fluidwas presented in its rectangular coordinate system and incorporates the eftft;:e:tﬁrSt time. The modeh 4688
similarity solution was presented which depends on the Prandt] of Brownian motion, and

num :
ber P, , Lewis number L€,

sis parameter.A
thermophoresis qumber N, , and Schimidt number Sc , and Grashof ny g
moers (Gr,

thermophore

Brownian motion Ny,

G
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found thatsmaller values of Prandtl number are equivalent to increase in the thermal conductivity of the fluid and
e ihcat is able to diffuse away from the heated surface more rapidly for higher values of Prandtl number. Hence there
:w:rc“(;ru‘ction i temperature with increase in the Prandtl number.
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