





























Table 1: Comparison of results for Problem |

X

Ye(X)

Ye(®)

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

1.9090909090909090909
1.8333333333333333333
1.7692307692307692308
1.7142857142857142857
1.6666666666666666667
1.6250000000000000000
1.5882352941176470588
1.5555555555555555556
1.5263157894736842105

1.5000000000000000000

1.8333333333313054109
1.7692307692266878581
1.7142857142820396358
1.6666666666634712705
1.6249999999970446828
1.5882352941150129362
1.5555555555532065746
1.5263157894715604936
1.4999999999980809096

1.0090909090883875693  2.5215216¢-12

Irror

2.0279224¢-12

Error
Kamoh et
a_rl.___(leI ALE

T 1.7533¢-10

2.3200¢-10

4,0813727¢-12  2.4115¢-10
3.6746499¢-12  2.3140¢-10
3.1953962¢-12  2,1484¢-10
2.9553172e-12  1,9660¢-10
2.6341226¢-12  1.7887¢-10
2.3489810e-12  1.6250¢-10
2.1237169¢-12  1.4773¢-10
1.9190904¢-12  1.3457e-10

Table 2:

Comparison of results for Problem 2

X

Ye(X)

Ye(X)

Error

0.2
0.4
0.6
0.8
1.0

0.91287092917527685577
0.84515425472851657752
0.79056941504209483300
0.74535599249992989883
0.70710678118654752440

0.91287092917487886036
0.84515425472778839334
0.79056941504147010303
0.74535599249940306961

0.70710678118609391550

3.9799541¢-13
7.2818418e-13
6.2472997e-13
5.2682922e-13

4.5360890e-13

CONCLUSION AND DISCUSSION

This research is centred on the derivation of eleventh order hybrid block method with six off
step points. The schemes were implemented on two nonlinear initial value problems, the
approximate solutions gotten through these schemes were compared with the exact solutions
in which a better accuracy was observed. It is shown that the hybrid block method derived for
the direct solution of nonlinear first order initial value problems in ODEs is of order eleven
and gives very low error terms. The consistency and zero stability of the new method
guarantee its convergence. Based on the result obtained in Table I there is improvement on
the convergence rate of the scheme, The new method is highly accurate and performs better
than the literature cited.
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