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Abstract - In this study, an expression for the discriminant rule in the situation of two groups was derived. This was used to identify the 
relative contributions of the subjects to the separation of the groups. Group dependent Fisher discriminant analysis was employed in 
classifying students into various departments on the basis of their cumulative results for one year foundation programme (Preliminary 
Degree Programme in a University of Technology). The discriminant scores for each department was predicted with probability of correct 
classification of 0.796 and apparent error rate of 0.204.  
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1.   INTRODUCTION 
 

    Discriminant analysis is an exploratory multivariate 
procedure of determining variables and a reduced set of 
functions called discriminants or discriminant functions. 
Discriminants that are linear functions of the variables are 
called linear discriminant functions (LDF). The number of 
functions required to maintain maximum separation for a 
subset of the original variables is called the rank or 
dimensionality of the separation. At the basis of observations 
with known group membership, the training data, called 
discriminant functions are constructed aiming at separating 
the groups as much as possible. These discriminant functions 
can then be used for classifying new observations to one of 
the populations. Discriminant analysis is used in situations 
where the groups are known a priori. For example, in 
personnel management one may want to discriminate among 
groups of professionals based upon a skills inventory. In 
medicine one may want to discriminate among persons who 
are at high risk or low risk for a specific disease. In a 
community, the mayor may want to evaluate how far apart 
several interest groups are on specific issues and to 
characterize the groups. In industry, one may want to 
determine when processes are in-control and out-of-control. 
A multivariate technique closely associated with discriminant 
analysis is classification analysis. Classification analysis is 
concerned with the development of rules for allocating or 
assigning observations to one or more groups. While one may 
intuitively expect a good discriminant to also accurately 
predict group membership for an observation, this may not be 
the case. A classification rule usually requires more 
knowledge about the parametric structure of the groups. 
Because linear discriminant functions are often used to 
develop classification rules, the goals of the two processes 
tend to overlap and some authors use the term classification 
analysis instead of discriminant analysis. Because of the close  

 
 
association between the two procedures we treat them 
together in this study.  
 

   The Fisher�s method for two populations leading to linear 
discriminant functions was adopted to design a classification 
rule for predicting which course/department a preliminary 
degree student is most likely to be admitted into at the end of 
the one year preparatory programme. The main objectives of 
this study are to find a set of rules, based on the student�s 
results in classifying them into the five departments of the 
faculty, identify the relative contribution of the variables 
(subjects) to separation of the groups, and evaluate how well 
the rule performs in assigning a student to the correct 
programme. 
 

2 LITERATURE REVIEW  
 

  Universities admissions processes often depend on the 
ability to predict student success. However, the use of a test 
to help determine admission has traditionally been 
problematic and continues to be so. Fisher (1938) introduced 
discriminant analysis as a statistical method for separating 
two groups of populations. Rao (1948) extended this 
multivariate technique to multiple populations.Charles and 
June (1970) carried out a study to determine if a 
differentiation or separation among students graduating, 
withdrawing or failing could be identified. Adebayo and 
Jolayemi (1998, 1999), applied the statistic to investigate 
how predictable the final year result would be using the first 
year result or Grade Point Average (GPA) of some selected 
University graduates.        
 

  It was cited in  (Selingo & Brainard, 2001) that,  the 
chancellor of the University of California called for the end 
of using testing for admissions to college. This was not a new 
call: a plethora of research has shown that standardized tests 
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do not predict success equally well for all groups (Cleary, 
Humphreys, Kendirick, & Wesman, 1975; Melnick, 1975; 
Nettles, Thoeny, & Gosman, 1986; Tracey & Sedlacek, 1985) 
and that standardized tests do not measure what they claim to 
measure (Riehl, 1994; Sturm & Guinier, 2001). As an 
alternative to standardized tests, Sturm and Guinier (2001) 
suggested the use of multiple measures as a better way of 
deciding entry into law school.  
 

  Often, colleges may rely on two tests as a means of using 
multiple criteria, but if the two tests are highly correlated 
with each other, there is needless duplication in measuring 
the same aspect of a construct (Anastasi, 1982). Because the 
use of standardized tests has been shown to be problematic, 
multiple selection methods are being used to predict student 
success (Ebmeir & Schmulbach, 1989). The use of using 
multiple measures is called triangulation, the goal of which is 
to �strengthen the validity of the overall findings through 
congruence and/or complementarity of the results of each 
method� (Greene & McClintock, 1985, p. 524). This method 
is used extensively in education for admissions (Markert & 
Monke, 1990; McNabb, 1990) and involves using a variety of 
techniques simultaneously to measure a student�s knowledge, 
skills, and values (Ewell, 1987).  

   Colleges can benefit from combining cognitive and non 
cognitive variables in predicting student academic success 
(Young & Sowa, 1992). Because the essence of triangulation 
is to measure the same construct in independent ways 
(Greene & McClintock, 1985), the more non-related 
information gathered, the better the prediction. Triangulation 
can also minimize or decrease the bias inherent in any 
particular method by counterbalancing another method and 
the biases inherent in the other methods (Mathison, 1988). 
For instance, most researchers rely heavily on survey 
research; however, the assumptions of survey research (e.g., 
the survey asked all the pertinent questions in a format the 
respondent can understand) are usually never questioned as a 
study is designed (Stage & Russell, 1992) which may lead to 
incomplete or inaccurate conclusions.  

   In the California Community Colleges, the required 
assessment process dictates the use of multiple measures in 
placing students into courses. Though the use of a test as one 
of the multiple measures is highly regulated, the use of 
multiple measures is not � unless using another test. Because 
of this, most multiple measures are chosen based on 
anecdotal or gut reactions and rarely on statistical evidence. It 
is the lack of research-based decisions for using multiple 
measures that inspired this study. 
 

3.   MATERIALS AND METHODS 
 

3.1  Derivation of Expressions for First choice and Second 
choice and Discriminant Rules  in the Setup of the 
Preliminary Degree Admission. 
 

  The preliminary degree final scores of students that applied 
to five departments of School of Engineering and 
Engineering Technology data set, X , contains five courses. 
Let us denote all the students that make first choice and 

second choice by f  and s , respectively. The 

corresponding linear combinations are y a  , f fy a   

and s sy X a . 

The within-group sum of squares satisfies the relation  

               T T T
f f f s s sy H y y H y a Wa 

                                                                                
(3.1.1)   

                                                           
 

where fH  and sH  denote the appropriate centering 

matrices of dimensions
 

100f sn n  . Observe that  

               ( )T T T T
f f f s s sa Wa a X H X X H X a                                                                         

(3.1.2)   
And, hence, the matrix W can be written as:  

             T T
f f f s s sW X H X X H X 

                                                                                  
(3.1.3)  

                  T T
f f f f s s s sH X H X H X H X   

                  f f s sn S n S   

                  100( )f sS S                                                                                                                

where fS  and sS denote the empirical covariances w. r. t. 

the f  and s . 
For the between-group sum of squares we have  

           
2 2( ) ( )T

f f s sa Ba n y y n y y   
                                                                                

(3.1.4) 

where y , fy  and sy  denote respectively the sample 

means y , fy  and sy . It follows that 

  

{ ( )( ) ( )( ) }T T T T
f f f s s sa Ba a n x x x x n x x x x a     

 , 

where x , fx  and sx  denote respectively the column 

vectors of sample means of X , fX  and sX . Hence, we 

obtain  

    
( )( ) ( )( )T T

f f f s s sB n x x x x n x x x x                                                                      

(3.1.5)        

            100{( )( ) ( )( ) }T T
f f s sx x x x x x x x       

            

100{( )( )
2 2

f s f s T
f f

x x x x
x x

 
  

( )( ) }
2 2

f s f s T
s s

x x x x
x x

 
    

            

100
{( )( ) ( )( ) }

4
T T

f s f s s f s fx x x x x x x x       

            
25( )( )T

f s f sx x x x  
                                                                                               

The vector a  maximizing the ratio T Ta Ba a Wa  can be 

calculated as the eigenvector of 1W B  corresponding to the 

largest eigenvalue. It is easy to see that the matrix 1W B  
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can have at most one none zero eigenvalue since rank 1B  . 

The nonzero eigenvalues 1  can be calculated as 

              
5

1 1
1

1

25( )( )T
j f s f s

j

trW B trW x x x x   



                                                

(3.1.6) 

                  125 ( ) ( )T
f s f str x x W x x    

                  125( ) ( )T
f s f sx x W x x  

                                                                                  
             

From the equation (3.1.6) 
          

1 1 1 1( ) 25( ) ( ) ( )T
f s f s f s f sW BW x x x x W x x W x x         

In the context of the pre-degree result data set, the �between-
group-sum of squares� is defined as 

                    2 2100 ( ) ( ) T
f sy y y y a Ba     

for some matrix B . Here, fy  and sy denote the means for 

the first choice and second choice and  1 2 f sy y y  . 

The �within-group-sum of squares� is 
                    

   
100 1002 2

1 1

( ) ( ) T
f i f s i s

i i

y y y y a Wa
 

      

with ( ) T
f i iy a x and 100( ) T

s i iy a x   

 for 1, 2, ..., 100i   

It follows that the eigenvector of 1W B  corresponding to the 

largest eigenvalue is 1( )f sa W x x  . 

The resulting discriminant rule consists of allocating student 
to the first choice programme if 

1{ : ( ) ( ) 0}T
f f sR x x x W x x        (3.1.7)                                                       

and of allocating student to the second choice programme 
when the opposite is true. 
Considering ABE programme and analyse, we get 

 ( 0.066, 0.000, 0.171, 0.304, 0.380)Ta    

Thus, substituting these values of the linear discriminant 
coefficients, in equation (3.1.7), we get: 

0.066( ) 0.000( ) 0.171( ) 0.304( ) 0.380( )fR Eng Maths Phy Chem Agric     

 

0.066(46.20) 0.000(48.00) 0.171(50.40) 0.304(51.60) 0.380(56.86)fR      

 

43fR   
 

3.2 Test of significance with Multivariate Data 
 

  Several tests of significance are useful in conjunction with a 

discriminant function analysis. In this study, the 2T  test for 
equality of group means and Box�s M test approximation to 

W using 2  were employed for each of the five courses 

(English Language, Mathematics, Physic, Chemistry, and 
Agricultural Science).  
 

3.2.1       Equality of Group Means 
 

To test the Hypothesis 

           0 : 0f sH     against 0f s    

Using F-transformation of Hotelling�s 2T , as our test 
statistic. 

           2( 1) {( 2) }f s f sF n n p T n n p       

where 2 2( )f s f sT n n n n D   and 2D  is Mahalanobis 

distance with p and ( 1)f sn n p   d.f. 

Reject 0H  if , 1, 1f scal p n n pF F    
  

At the 0.05 level of significance, we rejected the hypothesis 
of equality of group means. This implies that there exist 
significant differences between the group means. 
 

3.2.2     Equality of Covariance Matrices 
 

To test the Hypothesis 

             0 : 0f sH     against 0f s    

The test statistic is Box�s M test approximation to W using 

a 2 . 

                 
1

( )
k

i i
i

W n k Log S v Log S


    

where  
1

( )
k

i i
i

S v S n k


   

This approximation is reasonable provided in > 20 and both 

p and k are less than 6. Multiplying W by 1 c    where 

           
2

1

2 3 1 1 1

6( 1)( 1)

k

i i

p p
C

p k v n k

  
  

   
  

the quantity  

          2 2(1 ) 2 ( )dX C W LogM h       

where ( 1)( 1) 2h p p k   . 

Reject 0H  if 2 2
1 ( )X X h  

At the 0.05 level of significance, as expected, we accepted 
the hypothesis of equality of variance-covariance matrices. 
This analysis shows that the equality of variance assumption 

required when using Hotelling�s 2T  statistics is tenable. 
 

3.3  Classification Rules 
 

  To develop a classification rule for classifying an 
observation y  into one or the other population in the two 

group case requires some new notation. First, we let 1( )g y  

and 2 ( )g y  represent the probability density functions 

( )pdfs associated with the random vector X  for 

populations fX  and sX , respectively. We let 1p  and 2p be 

the prior probabilities that y  is a member of 1p  and 2p , 

respectively, where 1 2 1p p  . And, we let 1 (2 1)c C  

and 2 (1 2)c C  represent the misclassification cost of 

assigning an observation from sX to fX , and from fX  
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to sX , respectively. Then, assuming the pdfs 1( )g y  and 

2 ( )g y are known, the total probability of misclassification  

( )TPM  is equal to 1p  times the probability of 

assigning an observation to sX  given that it is from 

fX , (2 1)P C , plus 2p  times the probability that 

an observation is classified into fX  given that it is from 

sX  , (1 2)P C . Hence, 

                                 1 2(2 1) (1 2)TPM p P p P                                                                      

(3.3.1) 
The optimal error rate ( )OER  is the error rate that minimizes 

theTPM . Taking costs into account, the average or 
expected cost of misclassification is defined as 
                                

1 2(2 1) ( 2 1) (1 2) (1 2)ECM p P C p P C                                                 

(3.3.2) 
A reasonable classification rule is to make the ECM as small 
as possible (Neil, 2002). In practice costs of misclassification 
are usually unknown. 

Assuming that fy > sy , the classification rule becomes  

              Assign student to fX  if 2
fT R  

              Assign student to sX
 
if  2

fT R                

3.4  Evaluating Classification Rules 
   

  Given a classification rule and 1( )g y  and 2 ( )g y  are 

known (along with their associated population parameters), 
the TPM expression given in (3.3.1) may be evaluated to 
obtain the actual error rate ( )AER . Because the specification 

of 1( )g y  and 2 ( )g y  is seldom known one generally cannot 

obtain the AER , but must be satisfied with an estimate. The 
simplest nonparametric method is to apply the classification 
rule to the sample and to generate a classification table. This 
is called the substitution or resubstitution method. 
 

  Then, the observed error rate or apparent error 
rate ( )APER is defined as the ratio of the total number of 

misclassified observations to the total 

    1 2

1 2

Error Errorn n
APER

n n





                       (3.4.1) 

                                   
3.5  Application 
 

3.5.1  Data collection 
 

   The data used for this study is the final score of preliminary 
degree students of Centre for Preliminary and Extramural 
Studies (CPES) that applied to school of Engineering and 
Engineering Technology, obtained from the average of the 
scores of the 1st and 2nd semesters 2011/ 2012 academic 
session in a university of technology. There are five courses 
offered by every preliminary degree student and these courses 
were used in constructing the discriminant rules. These 
include: English language, Mathematics, Physics, 

Chemistry, and Agricultural Science. The school of 
Engineering and Engineering Technology has five 
departments namely: Agricultural and Bioresources 
Engineering (ABE), Chemical Engineering (CHEME), Civil 
Engineering (CIE), Electrical/Electronic Engineering (EEE), 
and Mechanical Engineering (MECE) 
 

3.5.2     Method of analysis 
 

   The two group Fisher�s linear discriminant rule (Fisher, 
1936) based on the maximization of the ratio of the between 

( B ) to the within variance (W ) of a projection Ta x  is used 
in this study. Every student makes two choices of 
departments/courses for admission. The first choice 
(department) is the first group and the second choice (defer 
from first department) is the second group.  
 

  Since the discriminant analysis technique, essentially is used 
to distinguish between two or more groups using 
characteristics on which the groups are expected to differ. 
These groups are expected to be statistically different from 
each other. This is achieved by forming a linear combination 
of the discriminating variables (independent variables) the 
coefficients are estimated so that they are in the best 
separation between the groups. Normally the first group gives 
the best discriminating coefficients. However, five different 
parameters arre used to adjudge which function gives the best 
discriminating coefficient, these are: wilks lambda, 
eigenvalue, canonical correlation, p-value and percentage 
variation.  
 

4 RESULTS AND DISCUSSIONS 
 

The data were analyzed using R software. The function used 
to carry out linear discriminant analysis is available in the 
MASS library and the results are shown in tables 4.1 to 4.3 
below.   
 

Table 4.1:  Prior Probabilities of Groups 
 

Programme 
fX  (First Choice) sX  (Second Choice) 

ABE 
CHME 

CIE 
EEE 

MECE 

0.546 
0.523 
0.500 
0.613 
0.540 

0.454 
0.477 
0.500 
0.387 
0.460 

 

Table 4.1 show that prior probabilities for all the departments 
are higher for the first choice courses as compared to the 
second choice courses except for civil engineering in which 
they are equal.  
 

Table 4.2:  Group Means  
 

Programme English Mathem
atics 

Physics Chemi
stry 

Agricultural 
science 

ABE  
CHEME  

CIE  
EEE  

MECE  

46.20 
51.69 
56.00 
50.55 
57.25 

48.00 
62.83 
52.70 
54.35 
56.87 

50.40 
52.35 
56.10 
53.20 
59.37 

51.60 
55.06 
52.10 
54.15 
65.37 

56.86 
51.09 
45.20 
51.65 
49.75 

 

Table 4.2 show the predicted group means for the five 
subjects and for each department. The group means of 
chemical engineering and electrical and electronic 
engineering are higher for the five subjects as compared to 
the other courses. 
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Table 4.3:   Estimated Coefficients of Linear 
Discriminants  
 

 
 

   Table 4.3 is the estimated discriminant function coefficients 
for the departments, identifying the relative contribution of 
the subjects to separation of the groups. ABE department 
indicates that physics, chemistry, and agricultural science 
have greater contribution to the discriminant function. 
Mathematics has zero contribution and English which has 
negative contribution. This may be due to the weak academic 
background of the students in English and mathematics. 
CHEME and EEE department show that English and 
agriculture science contributed negatively to the prediction of 
prospective students for chemical and electrical/electronic 
engineering department. From the functions of CIE and 
MECE departments, physics has the highest contribution to 
the discriminating process of the function,of CIE and MECE 
departments, physics has the highest contribution to the 
discriminating process of the function, with mathematics and 
English in that order. Chemistry and agricultural science have 
negative contributions to these departments. 
 

   It could also be observed that the discriminating power is 
better for the first choice candidates for civil engineering and 
electrical engineering departments with mechanical 
engineering having the lowest. For the second choice, 
electrical engineering also has better discriminating power 
while chemical engineering has the lowest discriminating 
power. 
 

Table 4.4: Assignment Rules 
 

Programme Assign candidate to  

fX  if 

fR   

Assign candidate 

to sX   if  

fR   

ABE 
CHEME 

CIE 
EEE 

MECE 

fR  43 

fR  68 

fR  61 

fR  80 

fR  71 

fR  43 

fR  68 

fR  61 

fR  80 

fR  71 

 

APER = 0.204. Probability of Correct Classification = 80%. 
Table 4.4 gives the assignment rules for the programmes. It 
shows that ABE would admit first choice with at least 43 
discriminant score, CHEME would admits first choice with at 
least 68 discriminant score, CIE requires first choice with at 
least 61 discriminant score, EEE requires at least 80 
discriminant score for first choice, and MECE admits first 
choice with at least 68 discriminant score. 

Evaluating the classification rules, there is misclassification 
of 39 students into second choice departments and 63 
students into first choice departments. The apparent 

probability of error (APER) is: (39 63) 500 20.4%  . 

Hence, if a new student gets admission, he will be correctly 
classified with probability approximately 80%. 

 

CONCLUSION 
 

The discriminant analysis in which students� admission into 
programmes of study is characterized by means of 
discriminant rule was designed for each programme.  Among 
the 500 Pre-Degree students, only 400 students are apparently 
classified correctly according to the first and second choices 
of year one degree programmes. The remaining 100 students 
are misclassified into year one degree programmes. This 
gives the proportion of correct classification rate to be 0.796 
and apparent error rate of 0.204. 
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