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Editor’s Introduction 

There can be few better examples of the complex and unanticipated 

interactions of basic research and technological innovation than the 

development of magnetic resonance imaging (NMR/MRI) techniques for 

multidisciplinary research. The method has the rather unusual and 

attractive features that it is totally non-destructive and non-invasive and 

for these reasons it has interesting applications in almost all fields of 

research. 

Nuclear magnetic resonance imaging (NMRI) is an important 

modality of medical imaging. NMRI uses magnetic fields to manipulate 

magnetization in a way that makes it a conveniently measurable signal 

which encodes spatial location and density information. Physically, this 

is a complicated process which relies on effects at both the quantum and 

macroscopic levels. Mathematically, with correctly designed sequence of 

magnetic field applications, the recorded signal can be extensively 

explored for maximum applications. 

The image is essentially the distribution of water molecules in a tissue 

slice of the patient. Since tissue densities have varying water contents 

and NMR has very high contrast, it is possible to obtain detailed images 

of internal soft tissue. The advantage of this method is that it is very 

good at contrasting soft tissue since it primarily measures water content 

of tissues with no ionizing radiation. The disadvantages are that it is 

expensive, it has long scan times and poor imaging of bone tissues, and it 

is too slow to image dynamic processes at high resolution. 
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Nuclear magnetic resonance is a physical phenomenon which is based 

on the magnetic property of an atom’s nucleus. All nuclei that contain 

odd numbers of nucleons and some that contain even numbers of 

nucleons have an intrinsic magnetic moment. Hydrogen nuclei, fluorine, 

carbon-13 and oxygen-17 all have distinctive magnetic properties that 

make them suitable for NMR studies. 

First introduced in the 1940’s by Felix Bloch and Edward Purcell to 

measure the magnetic moment of nuclei in liquids and solids, NMR is 

based on protons in a nucleus having an intrinsic spin angular 

momentum, thus a magnetic moment. When a constant magnetic field is 

applied, a nucleus will resonate like a mechanical oscillator when driven 

in to an excited energy state by an electromagnetic (EM) wave (in the 

radio frequency range for NMR) at the correct frequency, which is 

determined by the strength of the magnetic field and the magnetic 

moment of the nucleus. Traditionally, NMR was done by sweeping the 

magnetic field strength while applying a continuous EM wave and 

measuring where the signal from the nuclei emitted peaked (continuous 

wave NMR, or CW NMR). However, modern NMR is usually done by 

applying a pulse of rf wave (pulsed NMR), which contains a broad 

spectrum of frequency components, and measuring the radio signal, 

termed the free induction decay (FID) as the signal decays like a damped 

oscillator, emitted from the nuclei after the pulse. Using a Fourier 

transform of the FID signal, the resonance frequency of the nuclei can be 

determined. Moreover, pulsed NMR can provide information concerning 

the physical properties of the nuclei measured. One of the very 

important properties of NMR/MRI is the relaxation times, or the time 

required for the nuclei in the sample to return to their ground state after 

being saturated by a strong EM pulse of the sample. These parameters 
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make MRI unique and vastile with many applications in the fields of 

science, medicine, engineering and agriculture. 

Nuclear magnetic resonance is inherently a three-dimensional 

phenomenon. The spatial resolution of a three-dimensional set of data is 

usually equal in all three directions. At the core of the NMR, a magnetic 

resonance imaging (MRI) makes use of the fields dependency on the 

precession frequency by superimposing a magnetic field gradient onto 

the static polarizing field H0 = Hz to spatially encode information into 

the rf (radio frequency) signal. With this three-dimensional data in hand, 

surfaces can be detected mathematically. A computer translates these 

signals into highly detailed cross sectional images. The images are 

essentially maps of the locations of hydrogen in the body. 

The sensitivity of nuclear magnetic resonance to molecular structure 

has made it a valuable research tool in organic chemistry, enabling 

chemists to determine hydrogen locations in crystals, something that 

cannot be done using X-ray diffraction. Nuclear magnetic resonance has 

also been used to study electron densities, chemical bonding, the 

compositions of mixtures, and to make purity determinations. 

The basic requirements for NMR spectroscopy are that the magnetic 

field be homogenous over the volume of the sample, that there be a radio 

frequency field rotating in a plane perpendicular to the static field, and 

that there be a means of detecting the interaction of the frequency field 

with the sample. 

Techniques that have been developed for the observation of NMR 

signals fall into two categories: pulsed and continuous wave. In the case 

of the pulsed methods, an applied rotating (or alternating) magnetic field 
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with a frequency at or near the Larmor frequency (that is, frequency of 

precession) of the nucleus to be studied is directed at right angle to the 

static field. If the rotating field is applied at exact resonance, the nuclei 

precess about that field as though there was no static field. Continuous 

wave methods are either high resolution or broad line. Broad line widths 

are produced by most oriented molecules exhibiting strong magnetic 

dipolar interactions, so broad line spectroscopy does not permit 

measurements of chemical shifts and spin-spin coupling. High 

resolution on the other hand, has been used to identify molecules, to 

measure the electronic effects, to determine structure, to study reaction 

intermediates, and to follow the motion of molecules or groups of atoms 

within molecules. For high resolution studies, the magnetic field must be 

uniform to 1 part in 108 for a 100MHz instrument, if a resolution of 

7MHz is to be obtained. In the case of broad line studies, 5 parts in 106 

may be adequate. 

Nuclear magnetic resonance has been used to study the physics and 

chemistry of solids, including metals, semiconductors, magnetic solids 

and organic materials. Physical phenomena that can be studied by NMR 

include conduction-electron paramagnetism; spin waves and magnetic 

fluctuations in ordered magnetic materials; metal molecular transitions; 

charge density wave phenomena; spin-freezing in spin glasses and 

frequency shift and spin-lattice relaxation effects. At low temperatures, 

NMR has been used to make temperature measurements and to study 

the super fluid phases of 3He. 

In the fields of organic chemistry and materials science, NMR has 

been used to study polymers, amorphous systems and complex 

molecular solids. In many of these systems, the NMR line widths of the 
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nuclei are dominated by dipolar fields arising from neighbouring 

magnetic moments. These systems exhibit complex NMR spectra due to 

shifts in nuclear magnetic resonance frequencies. 

In the case of complex molecules in liquid environments, the 

molecules undergo a tumbling motion, producing very sharp NMR 

spectra. The technique used to study these systems is known as Fourier 

transforms NMR Spectroscopy. 

Specifically, nuclear magnetic response is extremely useful for 

analyzing samples non-destructively. Radio waves and static magnetic 

fields easily penetrate many types of matter and anything that is not 

inherently ferromagnetic. For example, various expensive biological 

samples, such as nucleic acids, including RNA (Ribonucleic Acid) and 

DNA (Deoxyribonucleic Acid), or proteins, can be studied using nuclear 

magnetic resonance for weeks or months before using destructive 

biochemical experiments. This also makes nuclear magnetic resonance a 

good source for analyzing dangerous samples. 

Nuclear magnetic resonance has been used in data acquisition in 

petroleum industry for petroleum and natural gas exploration and 

recovery. A borehole is drilled into rock and sedimentary strata into 

which nuclear magnetic resonance logging equipment is lowered. 

Nuclear magnetic resonance analysis of these boreholes is used to 

measure rock porosity, estimate permeability from pore size distribution 

and identify pore fluids (water, oil and gas). 

NMR is also a tool used not only in well logging, but also in 

petrophysics. Additional applications of surface NMR (SNMR or 

magnetic resonance sounding - MRS) have shown the power of the 
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method for hydrogeophysical purposes. The power of the NMR method 

relies on the fact, that it is the only geophysical method which delivers 

direct information of the water content in samples or the subsurface. 

Moreover, it allows the determination of important structural 

parameters like porosity, surface/volume ratio or hydraulic conductivity. 

Recently there is an increasing demand for reliable information of the 

water content and structural parameter like water retention capabilities 

of soils. For applications on the meter and decimeter scale – like soil 

physics, precision farming (agrogeophysics) or dam quality and stability 

investigations – NMR could therefore be a valuable instrument in the 

fields of agriculture and geophysics. 

Nuclear magnetic resonance has also entered the arena of real-time 

process control and process optimization in oil refineries and 

petrochemical plants. Two different types of NMR analysis are utilized to 

provide real time analysis of feeds and products in order to control and 

optimize unit operations. Time-domain NMR (TD-NMR) spectrometers 

operating at low field (2-20MHz for 1H) yield free induction decay (FID) 

data that can be used to determine absolute hydrogen content values, 

rheological information, and component composition. These 

spectrometers are used in mining, polymer production, cosmetics and 

food manufacturing as well as coal analysis.  

Volume I, of this book series presents the Bloch phenomenological 

equation, which provides a model for the interactions between applied 

magnetic fields and the nuclear spins in the objects under consideration. 

It analyzes macroscopic averaged models that describe the interaction of 

aggregates of spins, with applied magnetic fields. This is an integrated 

science text in the direction of promoting a long-term future filled with 
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important developments in quantitative, theory-based biology towards 

addressing current disadvantages of MRI. The goal and intention is to 

see exactly diseased conditions at quantum (molecular) level, in order to 

have thorough understanding of their specific causes (or how they are 

caused), trace and monitor their progression and get the best treatment 

for them. This book is another effort to break down the traditional 

boundaries between mathematics, physics, chemistry, and biology, and 

does so in a compelling fashion. 

The audience for whom the book is intended is mathematical scientists, 

biomedical physicists, biomedical engineers, geophysicists and computer 

scientists. The book can be useful to people that do research in the field 

of NMR/MRI. It will be more useful to the beginners or scientists that 

want to see the connection between medical biophysics and mathematics. 

The book is relevant to current research trends and may advance a 

beginner’s ability to do research in medical MRI physics. The book is of 

great usefulness for all those persons who want to develop a carrier in 

MRI. 

The Editor wishes to thank Professor M. A. Akanji, the Vice Chancellor, 

Federal University of Technology, Minna, Nigeria, for his love for 

academic excellence, Professor Solarin, the Director General, National 

Mathematical Centre, Abuja, Nigeria, for promoting academic excellence 

among young scientists and Professor Dilip K. De, my former supervisor 

and esteemed colleague, who first suggested to me that analytical 

solutions of the Bloch phenomenological equation might be worth a 

crack. The useful suggestions, advice and thoughtful comments of 

Professor Ioannis Gkigkitzi, Department of Mathematics, East Carolina 

University, USA and Professor Manuel Malaver, Universidad Marítima 
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del Caribe, Departamento de Ciencias Básicas, Catia la Mar, Venezuela 

are highly appreciated. Finally, the editor appreciates the support from 

International Centre for Theoretical Physics, Trieste, Italy and the timely 

suggestions and advice of Professor Akin Ojo, Department of Physics, 

University of Ibadan, Nigeria and Engineer Olufemi Folorunsho Moses. 

 

By 

The Editor 

Omotayo Bamidele Awojoyogbe 
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1 

Fundamental Concept for the Theory, Dynamics 

and Applications of MRI 

Abhishek Gupta, Timothy Stait-Gardner, Bahman Ghadirian  

and William S. Price
1 

Nanoscale Organisation and Dynamics Group, School of Science and Health, 

University of Western Sydney, Australia 

 

1.1  Introduction 

Since its inception in 1973,
1
 magnetic resonance imaging (MRI) has been a 

powerful diagnostic tool which is now routinely used in clinical medicine. 

Contrary to other non-invasive imaging techniques such as X-ray computed 

tomography and positron emission tomography, MRI does not use harmful 

ionizing radiation. Also, MRI offers much better soft-tissue contrast. MRI 

possesses many contrast generating mechanisms which are sensitive to various 

tissue parameters and ultimately provide information-rich images.  

                                                           
1 Author for correspondence. Email: w.price@uws.edu.au 
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‘MRI’ is a branch of nuclear magnetic resonance (NMR), but the word 

‘nuclear’ is generally omitted to avoid confusion with ionizing radiation.
2, 3

 In 

simple terms, MRI is the use of one or more magnetic gradients to provide a 

well-defined spatial dependence to NMR observables. As will be considered 

further below, the recorded NMR signals are then reconstructed to form a 

spatial image.
4
  

Some fundamental NMR concepts are discussed in the next section followed 

by a brief description of the theory, contrast and applications of MRI. Although 

an attempt has been made to make this chapter self-complete, due to the vast 

subject matter the coverage is nevertheless superficial. Therefore, the reader is 

suggested to refer to other texts
4-11

 for further information. 

1.2  Preliminary Concepts  

1.2.1  Nuclear Spin and Magnetic Moment 

All atomic nuclei have four important properties: mass, electric charge, 

magnetism and spin. Mass and electric charge are responsible for the physical 

and chemical properties of matter whereas the latter two properties form the 

basis of NMR (and hence MRI). Atomic nuclei can act as small bar magnets 

when placed in an external magnetic field. Spin is an intrinsic quantum 

mechanical property which is difficult to visualize, but simplistically can be 

described as atomic nucleus spinning about its own axis. This is associated with 

an inherent angular momentum, called the spin angular momentum, I, which 

gives rise to a magnetic moment μ, related to I by: 

 μ I  (1.1) 
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where the proportionality constant, γ, is the gyromagnetic ratio (rad s
-1

 T
-1

). 

Equation (1.1) indicates that only the spins
2
 with I ≠ 0 possess a magnetic 

moment and are thus ‘NMR active’. Most elements have at least one NMR 

active isotope. Commonly used isotopes in NMR studies include 
13

C, 
15

N, 
17

O, 

and 
19

F, however MRI is mainly performed with 
1
H because of its high natural 

abundance (i.e., 99.9%), high NMR sensitivity (high gyromagnetic ratio) and 

high concentration in molecules in the body (i.e., water, fat and other organic 

molecules).  

Larmor Precession and Net Magnetization 

 

Figure 1.1  (a) A bicycle wheel spinning about its own axis will start precessing if hung 

by one end of its axle. (b) Similarly, when placed in an external magnetic field (B0), a 

nuclear spin starts precessing about the direction of B0 with the Larmor precessional 

frequency, ω0. 

MRI involves the application of a strong static magnetic field, B0, to the spins. 

To understand how spins behave in the presence of B0, it is useful to discuss the 

following analogy. Imagine a bicycle wheel hung by one end of its axle as 

shown in Figure 1.1 (a). If the wheel is not spinning, it will simply fall down 

under the effect of gravity. But if the wheel is spinning, it will instead start 

revolving around the fixed end while rotating about its axle. This simultaneous 

                                                           
2 In NMR jargon, atomic nuclei are often denoted as ‘nuclear spins’ or ‘spins’. 
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rotating revolving motion is called precession. This is precisely how (the 

magnetic property of) a nuclear spin interacts with the external magnetic field. 

Instead of flipping towards the magnetic field, it starts precessing about it 

(Figure 1.1 (b)). The angular frequency of precession, ω0, is referred to as 

Larmor frequency (i.e., the resonance frequency) and its magnitude is 

dependent on the external magnetic field strength as:  

 0 0.B 
 

(1.2) 

A small digression: the magnetic field experienced by a nucleus is not 

necessarily exactly that of the externally applied magnetic field. The electron 

shells surrounding a nucleus ‘shield’ the nucleus from the magnetic field and thus 

the Larmor frequency is slightly changed by the local chemical environment (‘the 

chemical shift’). Thus, for example, the –OH proton of methanol will resonate at 

a slightly different frequency than the –CH3 protons. Typically though these are 

extremely small perturbations to the resonance frequency with the values 

normally being within a few parts per million of 0.
12, 13

  

Of course, as is the case with the spinning bicycle wheel, the nuclear spin 

does try to align its magnetic moment with the external magnetic field to 

minimise the energy of magnetic interaction between them as given by: 

 0.E   μ B
 

(1.3) 

However, in the case of protons, it turns out that the average thermal energy 

associated with the absolute temperature, kT (where k is the Boltzmann’s 

constant), is much higher than E. For example, using Equations (1.1) and (1.3), 

the difference in the energy of magnetic interaction of a proton between the two 

spin states (aligned and anti aligned with external magnetic field) can be 

calculated to be 4.23×10
-26

 J at 1.5 T magnetic field strength (same as that of 
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most clinical MRIs). Whereas, the thermal energy associated with the proton at 

physiological temperatures (37 °C or 310.15 K) is 4.28×10
-21

 J, about 10
5
 times 

larger than E. This implies that even in the presence of the magnetic field, the 

spins are mostly randomly oriented with only a small preference towards the 

direction of the applied field. But since there are an extraordinary number of 

nuclei even in the smallest sample (e.g., a mg of tissue), this statistically tiny 

alignment can conduce to a net macroscopic magnetisation, M0 (Figure 1.2), 

referred to as the thermal equilibrium value of the net magnetisation. 

 

Figure 1.2  A schematic representation of nuclear spins before (left) and after (right) 

the application of an external magnetic field, B0. In the absence of B0, the magnetic 

moments of nuclear spins are randomly oriented resulting in no net magnetisation. 

Whereas, in the presence of B0, there is a slight preference of magnetic moments to 

align with B0 resulting in a small net magnetisation, M0. 

1.2.2  Radiofrequency Pulse and Signal Detection 

To extract information from the sample, it is necessary to be able to detect the 

net magnetisation. Only the component of the net magnetisation that is oriented 

perpendicular to B0 (i.e., transverse magnetisation) is detectable. Thus, an NMR 

(or MRI) experiment begins by nutating M0 away from B0 using a perpendicular 

magnetic field, B1, oscillating at the Larmor frequency for a short time. Since 

the Larmor frequencies at most practical magnetic field strengths lie within the 
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radio-frequency (rf) range (3 kHz – 300 GHz), this short burst of an oscillating 

perpendicular magnetic field is termed a radio-frequency pulse (rf pulse). Note 

that MRI can also be performed in the earth’s magnetic field which results in 

the Larmor frequencies of approximately 2 kHz for protons, lying in the ultra-

low frequency or audio frequency range (300 Hz – 3 kHz).
14

 However, since 

clinical MRI and cryogenically cooled research grade MRIs all have Larmor 

frequencies in the radio-frequency range, the term ‘rf pulse’ is generally 

accepted as standard. The resonance between the rf pulse and the Larmor 

frequency of the nuclei (i.e. ωrf = ω0) ensures that the net magnetisation receives 

a continuous push (actually a nutation) towards the transverse plane. The angle 

by which the net magnetisation is rotated (rotation angle) depends on the 

strength and duration of the rf pulse. It is common in NMR to name the rf pulse 

based on the rotation angle. For example, an rf pulse which rotates the 

magnetisation by 180° is called a π pulse or a 180° pulse. 

Since there are two precessions involved (one about B0 and one about B1) 

during the application of an rf pulse, it is much simpler to visualize this effect in 

a reference frame rotating at the frequency of the rf pulse
3
, otherwise known as 

the rotating frame of reference (RFR). In the RFR, at thermal equilibrium, the 

spins precessing about B0 will appear stationary and B0 can be ignored as its 

effect has already been accounted for in the rotation of the reference frame. 

Also, the rf pulse will appear static and the spins will appear as if only 

precessing about B1 at a frequency ωrf = γB1 (Figure 1.3). In this chapter, RFR is 

represented by italiced axes (x, y, z) and laboratory frame by non-italiced axes 

(x, y, z). 

                                                           
3 In many texts, RFR is arbitrarily chosen to be rotating at the Larmor frequency instead of the rf 

pulse frequency. Although in the present case it would not make a difference since they are both 

equal, in the quantum mechanical description of MRI it is more useful to describe ωrfr = ωrf to 

account for the very small difference between ωrf and ω0 at the resonance condition. 
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Figure 1.3  The effect of an rf pulse on the net magnetisation in the laboratory and 

rotating frame of references. In the laboratory frame of reference, the two simultaneous 

precessions about the external magnetic field, B0, and oscillating magnetic field B1 

makes the overall motion of the net magnetisation appear as a spiral. This can be 

simplified by using a reference frame rotating at the frequency of the rf pulse (or 

Larmor frequency), called the rotating frame of reference (RFR). In RFR, the effect of 

B0 can be ignored and B1 appears stationary. Thus, the net magnetisation appears to be 

precessing about B1 only. 

After the rf pulse is turned off, the net magnetisation, now in the transverse 

plane, continues its usual precession about B0. This precessing magnetisation 

generates a changing magnetic field which induces an oscillating electric 

current via Faraday induction in a nearby receiver coil. The induced current is 

then amplified and digitized by an analogue-to-digital converter to give an 

NMR signal known as the free induction decay (FID). The FID is an 

exponentially decaying sinusoidal signal in the time domain. As can be seen 

from Figure 1.4, it is very hard to deduce the Larmor frequencies of nuclei in 

differing chemical environments (such as situated in or near different functional 

groups) with different resonance frequencies from the FID. To resolve this, the 

FID is Fourier transformed to the frequency domain (i.e., an NMR spectrum) in 

which each exponentially decaying signal is converted to a Lorentzian shaped 

peak. In an NMR spectrum, the Larmor frequencies can be easily identified by 

the corresponding peaks (Figure 1.4).
15, 16
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Figure 1.4  Simulated free induction decays (left) and their NMR spectra (right) 

obtained by applying the Fourier transforms. The offset Larmor frequencies were set to 

(a) 30 Hz and (b) 30 and 50 Hz (a situation where either different nuclei are present or 

the same nuclei are present in two different environments). T2 was set to 2s in both 

cases. Whilst it is hard to deduce directly the Larmor frequencies of the nuclei 

contributing to the FID signal (time domain), the frequencies can be easily identified by 

the corresponding peaks in the NMR spectrum (frequency domain). 

1.2.3  Relaxation 

After the rf pulse, the net magnetisation returns to its equilibrium position by 

a process known as spin relaxation. This includes the reduction of the transverse 

magnetisation to zero (transverse relaxation) and the longitudinal magnetisation 

back to its equilibrium value (longitudinal relaxation).
9, 11

 The two processes are 

outlined in Figure 1.5 and briefly discussed below. Note that for the sake of 

discussion, B0 is assumed to be directed along the z-axis, although depending on 

magnet construction it could be along any direction. Indeed in clinical whole 

body magnets it is generally taken as being along x. 
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Figure 1.5  A schematic representation of the relaxation process. The net magnetisation 

is along the direction of the applied magnetic field, B0, at equilibrium. The π/2 rf pulse 

rotates it to the x-y plane. Relaxation drives the transverse magnetisation to zero 

(transverse relaxation) and the longitudinal magnetisation to its equilibrium value 

(longitudinal relaxation). 

(1) Longitudinal Relaxation 

Longitudinal relaxation is also known as spin-lattice relaxation or somewhat 

erroneously, T1 relaxation. At the microscopic scale, it refers to the movement 

of spin populations back to their Boltzmann distribution values.
9
 The return of 

the z-component of the net magnetisation, Mz, to its equilibrium value, M0, is 

usually a first-order process given by:  

 

z 0z

1

( - )
-

M MdM

dt T


 

(1.4) 

where T1 is the spin-lattice relaxation time constant.
17

 After one T1, Mz returns 

to 63% of its equilibrium value and by 5T1, Mz has returned to almost 100% of 

its equilibrium value. The T1 values can be measured experimentally by using 

the inversion recovery method.
18

 

(2) Transverse Relaxation  

Transverse relaxation, also known as spin-spin relaxation or, somewhat 

erroneously, T2 relaxation corresponds to the loss of transverse magnetisation. 

This results from the loss of coherence amongst the spins precessing in the 
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transverse plane. The decay of the x and y components of magnetisation, Mx and 

My, is also usually a first order process given by: 

 
y yx x

2 2

-  or -
dM MdM M

dt T dt T
   (1.5) 

where T2 is the spin-spin relaxation time constant.
17

 It is important to note that 

the line-width at half height of the signal (in an NMR spectrum), Δv1/2, depends 

on the T2 of a signal as given by: 

 1/2

2

1
      

*T



   (1.6) 

where 

 

*

2 2 2 inhomogenousT T T 
 

(1.7) 

and T2 inhomogeneous is the contribution from the inhomogeneities in the static 

magnetic field.
19

 Therefore, a sample with short T2 will give a broad peak and 

vice-versa. Although a rough estimate of T2 can be obtained from the line-width 

at half height, for accurate measurement it is necessary to suppress the 

inhomogeneous broadening. This is achieved by using the ‘spin-echo’ technique. 

The simplest ‘spin-echo’ pulse sequence was first proposed by Hahn
20

 in 1950 

and later modified by Carr and Purcell
21

 and Meiboom and Gill
22

 to give a 

widely used pulse sequence named after their initials i.e. the CPMG pulse 

sequence. 

Both T1 and T2 contribute to the tissue-contrast in an MRI image by affecting 

the signal intensity. In MRI, the protons with shorter T1 conduce to brighter 

regions whereas the protons with shorter T2 generate darker regions. This is 

further discussed in Section 0.  
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1.3  MRI Theory 

1.3.1  Gradients - One Dimensional Imaging 

Thus far, it has been discussed how an NMR spectrum can be obtained from 

a sample placed in a homogenous magnetic field. The next step is to consider 

how NMR can be used to obtain an image of the sample. Recall that the primary 

objective of imaging is to obtain information on the nuclear spin density, ρ, at 

each point in the sample (i.e., (r)). To do so, it is necessary to spatially vary the 

behaviour of the nuclear spins so that spins at different positions give different 

signals. This can easily be achieved in NMR by varying the external magnetic 

field in some direction by applying a spatially well-defined magnetic gradient, 

G. This spatially varying magnetic field results in otherwise identical spins at 

different positions having different Larmor frequencies. Thus, in the presence of 

the magnetic gradient, the Larmor frequency becomes a function of position, r, 

as given by: 

 0( )    r B G r  (1.8) 

with the detected signal having the following form: 

 
( ) ( )e d .i tS t   

G r
r r  (1.9) 

For example, an hour-glass filled with water placed in a magnetic field 

gradient will result in an NMR spectrum which is the projection of the 

distribution of spins onto the gradient direction (Figure 1.6). The amplitude of 

the signal at each frequency will be proportional to the number of spins in that 

frequency region, that is  (r).
4, 8
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Figure 1.6  An example of the use of a 

magnetic gradient to obtain a one 

dimensional image (i.e., (z)) of an hour-

glass filled with water. The external 

magnetic field and the gradient are 

applied in the z-direction. Due to the 

applied gradient, the Larmor frequency 

becomes a function of the z-position and 

thus the NMR spectrum represents the 

distribution of the Larmor frequencies 

with the signal-amplitude at each 

frequency proportional to the number of 

spins in that frequency region. Thus, the 

image is a 1D projection of (r) along 

the direction of the gradient, i.e.,  (z). 

1.3.2  Three Dimensional Imaging - Spatial Encoding 

Although the previous example is useful for understanding the effect of 

applying a magnetic gradient, it is important to consider that for normal (incl. 

medical) imaging, ρ is almost always a three dimensional (3D) quantity. And by 

extension of the previous example, the acquisition of a 3D image entails the 

application of three orthogonal gradients at appropriate junctures in the MRI 

pulse sequence. How these three gradients are utilized to impart spatial 

dependence to the nuclear spin density, a process known as spatial encoding, is 

discussed in the following sections. 

1.3.3  Slice Selection 

The first gradient is used to select a two dimensional (2D) region of interest 

from the sample, a process known as slice selection. This is attained by 

applying a spatially well-defined gradient known as the slice gradient along (say) 
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the z-axis throughout the sample in conjunction with a frequency selective rf 

pulse.
2
 As depicted in Figure 1.7a, the slice gradient, Gz, varies the precession 

frequency of the spins linearly along the z-axis while the frequency selective rf 

pulse affects only those spins within the frequency range of excitation. The 

result is that only a limited part of the sample (the slice) is excited. 

Consequently, only the magnetisation contained within the slice is rotated into 

the transverse plane and contributes to the NMR signal. The slice thickness, ∆z, 

is dependent on the strength of the applied gradient and the bandwidth of the 

frequencies incorporated into the rf pulse, Δωrf,  

 

rf

z

z .
G






 

 

(1.10) 

It should be noted that regardless of the physical thickness, the selected slice 

is considered as a 2D object which can be manipulated to give a 1D or 2D 

image only. In other words, the selected slice is always considered one voxel 

(volume element or a ‘3D pixel’) thick and all the information from ∆z is 

averaged to one signal. To get a 3D image, multiple slices can be selected, 

imaged and stacked on each other. The position of the slice depends on the 

resonance frequency of the rf pulse with respect to the Larmor frequency,  

 

rf 0

z

z .
G

 






 

(1.11) 

The two commonly used slice selection schemes are shown in Figure 1.7b 

and c. The magnetisation components within the slice are dephased immediately 

after the application of the rf pulse which results in the destructive interference 

of the signals originating from the different positions of the slice.
4
 Thus, a 

negative gradient is applied for a short period of time immediately after the use 
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of the rf pulse to refocus the magnetisation. Alternatively, depending on the 

pulse sequence, a π pulse can be used, in which case, the magnetisation 

refocuses automatically. 

 

Figure 1.7  (a) A schematic representation of the slice selection process in MRI. Before 

the application of a magnetic gradient, all the spins are precessing at the same 

frequency, ω0. In the presence of a gradient along the direction of B0 (i.e. z-axis), the 

spins at different z-positions start precessing at slightly different frequencies. If a 

frequency selective rf pulse is applied, only the corresponding spins are rotated into the 

transverse plane, thus a ‘slice’ is selected. The two commonly used pulse sequences are 

shown in (b) and (c). A short negative gradient is applied to refocus the magnetisation 

that had been dephased after the application of the rf pulse. Alternatively,  

a π pulse can be used. 

The other two gradients are used to localize the signal within the selected 

slice so that eventually every voxel gives a different NMR signal. The two 

common parameters that can be modulated to provide spatial dependence are 

phase and frequency as discussed in the next section.
23

 For simplicity, it has 

been assumed that the selected slice has nine voxels and every voxel contains 

only one spin. 
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1.3.4  Phase Encoding 

After the slice has been selected, all the spins within the slice are in the 

transverse plane. If a gradient is applied along (say) the y-axis for a fixed time t 

before acquiring the signal, the phase, φ, will become a function of position y as 

given by: 

 
0 φ

0
(y) ( y)

t

B G dt  
 

(1.12) 

where Gφ is the phase gradient. This is because in the presence of the phase 

gradient, the nuclear spins along the y-axis will start precessing at slightly 

different frequencies and thus will have different phases at any instant. So when 

the gradient is stopped, although the spins retain their original precession 

frequency, the phase differences amongst them still remain the same. This 

process is known as phase encoding and is depicted in Figure 1.8a. Note that the 

amplitude of the signal recorded after phase encoding is inversely proportional 

to the strength of the applied phase gradient. The reason for this is that a 

stronger phase gradient results in a larger phase difference between the 

neighbouring spins and although this helps to resolve them better, the total 

signal from the spins is dephased resulting in lower amplitude.
24

 

Rapid switching of the gradients generates eddy currents in the nearby 

conducting materials, creating a secondary source of gradients.
25, 26

 This results 

in a distorted FID and hence the resulting image contains artifacts. A common 

solution for this is to use an echo sequence to allow the field distortions to 

dissipate before signal acquisition begins. The two common types of echo 

sequences are: ‘spin-echo’ sequences and ‘gradient-echo’ sequences. In the 

‘gradient-echo’ sequence, only the gradient induced phase dispersions are 

refocussed in contrast to the ‘spin-echo’ sequence, in which phase dispersions 

due to the magnetic inhomogeneities and chemical shifts are refocused as well.
8, 
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27, 28
 The phase encoding in the ‘spin-echo’ and ‘gradient-echo’ pulse sequences 

are shown in Figure 1.8b and c.  

 

Figure 1.8  (a) An illustration of the phase encoding process in MRI. On the application 

of the phase gradient to the selected slice along the y-axis, the spins start precessing at 

different frequencies and, therefore, have different phases at any instant. After the 

gradient is stopped, although the spins all regain their original precession frequency 

(i.e., 0), the phase differences amongst them are retained as a function of position. (b) 

and (c) Phase encoding in the ‘spin-echo’ and ‘gradient-echo’ pulse sequences, 

respectively. The phase gradient can be applied either before or after the π pulse. 

1.3.5  Frequency Encoding 

Once the slice is selected and phase encoded, only one more direction needs 

to be resolved to get different signals from every voxel. The final gradient is 

applied along the x-axis while the signal is being recorded. This has the same 

effect as was explained in the one dimensional imaging example above i.e. the 

Larmor frequencies of the voxels along the x-axis become spatially dependent 

and Equation (1.8) can be written as: 

 0 f(x) ( x)B G  
 

(1.13) 
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where Gf is the frequency gradient, commonly known as the ‘read’ gradient.
29

 

This process is known as frequency encoding and is depicted in Figure 1.9a. It 

is clear that at the end of phase and frequency encoding, all the voxels in the 

selected slice are different from each other either in their phase or frequency 

and will, therefore, give different signals.  

Putting it all together, complete basic ‘spin-echo’ and ‘gradient-echo’ 3D 

MRI pulse sequences are illustrated in Figure 1.10 and Figure 1.11. TE (echo 

time) is the time between the application of the initial rf pulse and the 

acquisition of the signal and TR (repetition time) is the time between two 

successive applications of a pulse sequence. Thus, TE closely correlates with the 

loss of signal due to spin-spin relaxation and TR correlates with how much 

longitudinal magnetisation can reform before the next pulse sequence starts. 

Consequently, the magnitude of the acquired signal depends strongly on both TE 

and TR. It should be noted that although in the above discussion, the slice, phase 

and frequency gradients have been assumed to be along the z-, y- and x-axes, 

respectively, in an MRI experiment, they can be applied along any three 

orthogonal directions. 

It should be noted that whilst one frequency gradient is sufficient to resolve 

the voxels along the x-axis, the entire process from slice selection to signal 

detection needs to be repeated multiple times with different phase gradients 

(ranging from relative maximum negative to relative maximum positive) to 

completely resolve the voxels along the y-axis. The reason behind this is will 

become apparent in the following sections.  
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Figure 1.9  (a) A pictorial representation of the frequency encoding process in MRI. 

After phase encoding along the y-axis, the signal is recorded in the presence of the 

frequency gradient along the x-axis. (b) ‘spin-echo’ scheme in which the sign of the 

magnetic gradient is effectively negated by the π pulse. In this scheme, phase dispersion 

due to magnetic inhomogeneities and chemical shifts and gradient-induced dispersions 

are refocused. (c) ‘gradient-echo’ scheme in which the magnetic gradients are 

antiphase. In this scheme, only gradient-induced dispersions are refocused. 

 

Figure 1.10  A basic ‘spin-echo’ MRI pulse sequence. TR is the repetition time and TE is 

the time between the application of the initial rf pulse and the acquisition of the signal, 

also known as echo time. The phase gradient is drawn with equally spaced horizontal 

lines to indicate that its magnitude is incremented regularly when the sequence is 

repeated multiple times. 
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Figure 1.11  A basic 'gradient-echo' MRI pulse sequence. 

1.3.6  Raw Data Matrix, K - Space and Q - Space 

Since a number of scans are needed to obtain enough information on one 

slice that a detailed 2D MRI image can be reconstructed from it, an efficient 

way of storing the raw data is essential. An obvious choice is to digitize the 

recorded echo signal by sampling the amplitudes as a function of time. This 

digital form of an echo is stored as a row of complex numbers. The same 

process is repeated for the echoes obtained with different phase gradients and 

these rows of complex numbers are stacked on top of each other to give a 

(complex) raw data matrix with the bottommost row representing the maximum 

negative phase gradient and the topmost row maximum positive (Figure 1.12). 

It is usual to display the real and imaginary parts of the complex raw data 

matrix as separate matrices and convert the numbers to greyscale values.  
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Figure 1.12  An illustration of how the raw data is stored in MRI. The echoes are 

digitized by sampling their amplitudes as a function of time to give rows of complex 

numbers. The real (or imaginary) parts of the complex numbers can be displayed as 

greyscale values and stacked on top of each other to give a raw data matrix with the 

bottommost row representing the maximum negative phase gradient and the topmost 

row maximum positive. 

The raw data matrix has the dimensions of Nφ× Nf where Nφ is the number of 

phase gradients used and Nf is the number of data points recorded in the 

frequency encoding direction. The maximum signal is present in the centre of 

the raw data matrix because it corresponds to where the phase gradient was the 

weakest. The central region is mainly responsible for the image contrast. The 

outer regions of the raw data matrix have signals with low amplitudes due to 

strong phase gradients. These regions contain very little information about the 

image contrast and mainly contribute to the edge definition of the image.
2
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Figure 1.13  The effect of the gradient strength and/or duration on the wave number, k. 

The external magnetic field is assumed to be applied along the z-axis and the spins are 

shown after the application of a π/2 pulse (i.e. the spins are in the transverse plane). 

When there is no gradient, all the spins are rotating at the same frequency and 

therefore, in the rotating frame of reference rotating at ω0, the spins appear stationary 

with no phase difference. In the presence of a gradient, Gy, the spins start precessing 

with slightly different frequencies and hence a phase difference is induced, winding 

them into a helix of pitch  = 2/k. As the gradient strength and/or duration, t, 

increases, the pitch of a helix becomes smaller resulting in a shorter wavelength and 

correspondingly a higher k value. 

In MRI, the raw data matrix is often described in terms of wave numbers. A 

wave number, k, is the number of wavelengths per 2π units of distance i.e. k = 

2π/λ (rad m
-1

), where λ is the wavelength. Analogous to frequency which is the 

number of oscillation per unit time, k is also called the spatial frequency. The 

spatial frequency is proportional to the gradient strength and the duration of the 

gradient. This is because a higher gradient strength gives a greater frequency 

differential and a longer duration gradient gives a greater phase differential 

which results in shorter wavelengths and correspondingly larger k-values 

(Figure 1.13).  
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Thus, the k-values along the phase and frequency encoding axes can be 

written as:  

 

y φ

x f

and

,

k G t

k G t








  (1.14) 

respectively. Also, after making the adjustments to Equation (1.9), the acquired 

signal (echo) can be written as a function of k, 
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  (1.15) 

Combining these equations, the total signal from the selected slice can be 

written as:  

 
x y2 ( )

x y( , ) (x y)e x y.
i k x k y

S k k , d d





     (1.16) 

Consequently, the raw data matrix can be edited to replace ‘time’ with ‘kx’ 

along the x-axis and ‘Gφ’ with ‘ky’ along the y-axis. In other words, each point 

along the frequency encoding axis now corresponds to the kx value and along 

the phase encoding axis to the ky value (Figure 1.14). This description of the 

raw data matrix is known as the k-space formalism; and the raw data matrix 

itself is in k-space. The k-space formalism is a convenient method for 

describing the different ways of acquiring data, as explained in Section 0. 
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Figure 1.14  Two descriptions of the raw data storage. Although both the matrices 

contain the same data, it is convenient to describe the signal as a function of the spatial 

frequency, k, as it makes it easier to describe different methods of acquiring data using 

various MRI pulse sequences. 

Similar to k-space which is conjugate to r-space (i.e., the laboratory frame), it 

is possible to define q-space which is conjugate to displacement r0 – r1. 

Obtaining q-space data allows construction of the nuclear spin self-correlation 

function, Ps(r1 – r0, Δ), which gives the conditional probability that a spin has 

been displaced by r0 – r1 during time Δ.
30

 Nuclear spin displacement over a 

given period Δ may be tracked by using a pair of magnetic gradient pulses 

sandwiching a 180° rf pulse with the leading edges of the gradient pulses 

separated by Δ. q is defined as: 

 2

 




g
q ,  (1.17) 

where δ is the duration of the gradient pulses and g is a constant gradient giving 

a linear variation in the z-component of the magnetisation. 

Evidently q has dimensions of inverse distance or m
-1

 in SI units and is 

analogous to k. q-space is useful for measuring both coherent motion (flow) and 

incoherent motion (diffusion) by measurement of the phase shift and attenuation 
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of the magnetisation helices using the pulse gradient spin-echo pulse sequence, 

respectively.
31

 The first gradient winds the magnetisation into a helix; the rf 

pulse changes the chirality of the helix so that the next gradient pulse will 

unwind the helix. The helix persists for a duration Δ during which it is affected 

by flow and diffusion. Diffusion causes the magnetisation helix to attenuate as 

nuclear spins from one part of the helix diffuse into other parts causing the 

phases to cancel. If there is flow along the axis of the helix the whole helix will 

move and there will be an effective phase shift. After unwinding the helix with 

the second gradient pulse, the attenuation and phase shift persist although the 

magnetisation is now back in spatial coherence. Information on diffusion and 

flow can now be acquired simply by acquiring and analyzing the FID (for a 

variety of gradient strengths). A detailed calculation of the effects of diffusion 

and flow reveal that the signal will be affected according to: 

       2 20 exp 3S S i          g g D g g v ,  (1.18) 

where D is the diffusion tensor and v is the flow velocity. The first term in the 

exponent of Equation (1.18) gives the attenuation of the signal resulting from 

diffusion. Note that the greater the diffusion coefficient the greater the 

attenuation. Attenuation is also greater for larger diffusion time Δ and more 

powerful gradient pulses. By holding δ and Δ constant and measuring the 

attenuation for different g the diffusion tensor (or diffusion coefficient for 

isotropic diffusion) can be constructed. The second term in Equation (1.18) 

gives the phase shift of the signal which is a function of the velocity of the fluid 

parallel to the applied gradients. Measurements of phase shift for a variety of 

gradient strengths provide information on laminar fluid flow characteristics.  
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1.3.7  Image Reconstruction 

In this section, reconstruction of an MRI image and the different ways of 

acquiring raw data are discussed using the k-space formalism. 

Recalling that an MRI image is essentially the nuclear spin density in ‘real 

space’ (i.e. ρ(x, y)) and realizing from Equation (1.16) that the signal in k-space 

is in fact an inverse Fourier transform of the nuclear spin density in ‘real space’, 

it is evident that an MRI image of the selected slice can be reconstructed by the 

2D Fourier transform of the signal in k-space (Figure 1.15) as given by:  

 x y2 ( )

x y x y(x y) ( , )e .
i k x k y

, S k k dk dk



 

     (1.19) 

 

Figure 1.15  An MRI image can be reconstructed by applying a 2D Fourier transform 

to the k-space data. Note only the magnitude of the k-space data is shown here (as k-

space data from MRI is inherently complex). 

Note that even though k-space stores all the data that is required to construct 

an image, it is usually hard to predict what the final image will look like after 

the 2D Fourier transform of the k-space data. This is exemplified in Figure 1.16 

by simulating some basic shapes and their k-space images.  
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Figure 1.16  A few 

simulated k-spaces 

and their 

corresponding 

images. For basic 

symmetrical shapes 

(circle, ellipse and 

square), it is 

possible to predict 

what the final 

image will look like 

from its k-space. 

But even for 

slightly 

complicated shapes 

(bottom most), the 

k-space becomes 

non indicative of 

the final image. 

It is important to acquire a detailed k-space data set to obtain a good quality 

image. In fact, the resolution of the image depends on the number of points in k-

space. For example, a 128×256 k-space data set will result in an image with 128 

pixels along the phase encoding axis and 256 pixels along the frequency 

encoding axis. So, the higher the number of points in k-space the better the 

image resolution. However, this requires a lot of time which is of prime 

importance in MRI. So, various pulse sequences have been designed to more 
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efficiently acquire sufficient k-space data. These sequences use different 

combinations of the phase and frequency gradients to map data in k-space in a 

quicker yet efficient manner. The geometry in which the k-space data is 

acquired is called a ‘raster’. Two common examples are the Cartesian raster 

sampling and polar raster sampling.
4, 32

  

 

Figure 1.17  Examples of different ways of acquiring k-space data in a geometry plane 

known as a ‘raster’.  Cartesian rasters can be obtained by 2D Fourier transform 

imaging pulse sequences such as a spin- or gradient-echo (a) and echo planar imaging 

pulse sequence (b). Projection reconstruction imaging pulse sequences, such as filtered 

back projection reconstruction pulse sequence (c), acquire k-space in polar rasters. 

The imaging process in which the selected slice is sampled in a Cartesian 

raster is called Fourier imaging. For example, the spin-echo and gradient-echo 

pulse sequences (Figure 1.10 and Figure 1.11) acquire the raw data in the 

Cartesian raster in a linear fashion as shown in Figure 1.17a. The stepping of 

the phase gradient from the most negative to most positive value in fixed 

intervals traverses k-space from -ky,max to ky,max and for each phase gradient, the 

applied frequency gradient samples the points from -kx,max to kx,max. Another 
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example of the k-space traversal in the Cartesian raster is shown in Figure 1.17b 

by using an echo planar imaging pulse sequence.
33

 

If k-space is traversed in a polar raster, the imaging process is called 

projection reconstruction imaging.
34

 For example, the filtered back projection 

reconstruction pulse sequence and its polar raster are shown in Figure 1.17c. In 

this pulse sequence, the phase and frequency gradients are applied 

simultaneously following the sine and cosine relationships respectively, which 

is equivalent to applying a net gradient,      
    

  rotating around the 

polar angle, tan θ = Gφ/Gf.
4, 35

 

1.4  MRI Contrast 

Contrast between different tissue types is of utmost importance for every 

imaging modality. In MRI, this contrast results from spatial variations in the 

spin density of the observed nucleus and the physical and chemical environment 

of the nucleus.
32

 These sources of contrast can be broadly classified into two 

categories: endogenous and exogenous. These are briefly discussed below.  

1.4.1  Endogenous Sources 

Important endogenous sources of contrast in MRI include spin density, 

relaxation times of the observed nuclei, magnetic susceptibility, diffusion and 

flow. Spin density contrast provides contrast on the basis of the number of spins 

(e.g. water protons) present in a voxel which differs across the tissue types. 

Since MZ of each voxel is composed of the individual spins within that voxel, 

this variation in spin density affects the signal intensity in an MRI image. For 

example, in 
1
H MRI, blood will appear brighter than muscles which in turn will 

appear much brighter than bones. Also, the molecular dynamics within the 
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tissue can affect T1 and T2 of the water protons. Therefore, the water protons 

present in different tissue types will have different relaxation times which again 

affect the net magnetisation and thus the signal intensity. By carefully 

engineering the imaging pulse sequence, it is also possible to obtain dynamic 

contrast in MRI due to diffusion and flow. An example of such pulse sequences 

is diffusion tensor imaging which can be used to probe the transport properties 

within a tissue e.g. diffusion of water in brain tissue (note that in such imaging 

techniques, the q-space formalism is used as well as the k-space formalism as 

explained in the section above).
36

 In MRI, it is possible to set the experimental 

parameters like the repetition and echo time to enhance or diminish the contrast 

based on one contrast factor. For example, in T1-weighted imaging, T2 effects 

can be minimised by setting the echo time such that TE << T2 (more details on 

this can be found in the literature
37

). However, regardless of the parameters 

selected, the resulting image will always depend on other contrast factors to 

some extent.  

The chemical environment of the observed nuclei can also induce contrast in 

MRI by affecting observables like chemical shift, spin-spin coupling constants 

and inter nuclear dipolar interactions. As an example, chemical shift imaging 

can be used to explore an extra dimension in the imaging experiment by probing 

the frequency spread due to different chemical shifts in a sample with two 

different chemical species (e.g. water and fat in biological systems).
38, 39

 Due to 

this extra dimension, in its ultimate form, chemical shift imaging is sometimes 

referred to as ‘four dimensional imaging’ (three from the spatial axes and one 

from the chemical shift).
40

 There are many other forms of contrast in MRI such 

as magnetic susceptibility,
41

 temperature
42

 and blood oxygenation level 

dependence (BOLD),
43, 44

 details on which can be found elsewhere. 
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1.4.2  Exogenous Sources - Contrast Agents 

The naturally occurring contrast between tissues is often insufficient to 

distinguish between diseased and healthy tissue especially in cases such as 

cancer. This gives rise to the need of contrast enhancement which is achieved 

by the use of chemicals known as contrast enhancement agents or contrast 

agents (CAs). In MRI, CAs modulate the relaxation times of water protons 

inside tissue to provide enhanced image contrast. The efficiency of a CA is 

measured in terms of its relaxivity (r1 or r2), which is defined as the change in 

the relaxation rate of water protons upon the addition of a CA, normalised to its 

concentration: 

 

1/
;    1,2.

[CA]

i
i

T
r i


   (1.20) 

All CAs increase both r1 and r2 to varying degrees, depending on whether 

they are categorised as positive (r2/r1 = 1–2) or negative (r2/r1 as high as 10 or 

more) CAs.
45

 Negative or T2 CAs are mostly constructed from 

superparamagnetic iron oxide (SPIO) and induce negative contrast by 

decreasing the signal intensity of the affected water protons.
46, 47

 Positive or T1 

CAs are mainly comprised of paramagnetic metal ions such as Gd (III) chelated 

to multi-dentate ligands. These CAs induce positive contrast by increasing the 

signal intensity of the affected water protons and are, therefore, preferred over 

the negative CAs by MRI practitioners.
48, 49

 There have also been some studies 

on 
19

F-based CAs, which can be detected directly by 
19

F MRI.
50, 51

 

1.5  Applications 

MRI has numerous applications in a vast variety of areas. However, 

unsurprisingly biological studies were and still remain the major application of 
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MRI. Due to its non-invasive and safe nature, MRI has been used to explore 

systems that were previously inaccessible. Also with the advancement of 

technology, clinical MRI scanners are constantly moving to higher fields to 

provide better image resolution, thus enabling clinicians to detect minor 

abnormalities which could not have been seen before. Some of the many 

clinical applications of MRI include the anatomical and physiological studies of 

embryo,
52

 heart,
53, 54

 kidney
55

 and brain.
56, 57

 With the use of CAs, MRI has also 

proven very efficient in detecting tumours.
58

 Moreover, MRI has been used in 

plant studies to examine various aspects such as water flow characteristics in the 

phloem and xylem,
59, 60

 freezing behaviour in plants
61

 and plant 

histochemistry.
62

  

MRI is also a distinctive tool to study the distribution of species and phase 

transitions in chemical systems. Some examples include the spatial localization 

of hydrogen in the H-Pd system,
63

 observation of chromatographic bands of 

gadolinium chelates
64

 and 3D imaging of 
1
H2, 

2
H2 and their isotopic mixtures.

65
 

Apart from these, there are many more applications ranging from food 

science,
66

 polymers
67

 to petrochemicals
68

 which are outside the scope of this 

chapter. 
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Abstract 

All Magnetic Resonance Imaging (MRI) techniques are based on the Bloch 

NMR flow equations. Over the years, researchers have explored the Bloch NMR 

equations to significantly improve healthcare for accurate diagnosis, prognosis 

and treatment of deceases. However, MRI scan is still one of the most expensive 

anywhere. Method to achieve the best image quality with the lowest cost is still 

a big challenge. In this chapter, the generalized time dependent non 

homogenous second order differential equation derived from the Bloch NMR 

flow equations is modeled into basic and well known equations such as Bessel 
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equation, Diffusion equation, Wave equation, Schrödinger’s equation, 

Legendre’s equation, Euler’s equation and Boubaker polynomials. Solutions to 

these equations are abundantly available in standard text books and several 

research studies on Mathematics, Physics, Chemistry and Engineering. 

Unexpected NMR/MRI methodological developments may be possible based on 

the analytical solutions of these equations and may further enhance the power 

of NMR. There will be spectacular applications in a variety of fields, ranging 

from cognitive neuroscience, biomedical engineering, imaging-science, 

molecular imaging to medicine, and providing unprecedented insights into 

chemical, biological and geophysical processes. This may initiate unforeseen 

technological and biomedical possibilities based on a much improved 

understanding of nature. 

Keywords 

Bloch NMR Flow Equation, Bessel Equation, Diffusion Equation,  

Wave Equation, Schrödinger’s Equation, Legendre’s Equation,  

Euler’s Equation and Boubaker Polynomials. 

2.1  Introduction 

Advances in computers, mathematics, and science, is giving way to 

nonsurgical tools in the diagnosis of certain diseases. Besides X-ray imaging, 

now over 100 years old, the technologies include computed tomography (CT 

scans), positron-emission tomography (PET scans), ultrasound imaging, or 

sonography and magnetic resonance imaging (MRI).  

Magnetic Resonance Imaging [1-34] uses a powerful magnetic field along 

with radio waves (not X-rays) and a computer to produce highly detailed “slice-

by-slice” pictures of virtually all internal structures of the body. The results 
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enable physicians to examine parts of the body in minute detail and identify 

disease in ways that are not possible with other techniques. For example, MRI is 

one of the few imaging tools that can see through bone, making it an excellent 

tool for examining the brain and other soft tissue. 

Patients must remain still during the imaging process. And because the scan 

takes place as the patient slides through a rather small tunnel in the machine, 

some people experience claustrophobia. In recent times, though, open MRI 

scanners have been developed for patients who are anxious or obese. Naturally, 

no metal objects such as pens, watches, jewelry, hairpins, and metal zippers as 

well as credit cards and other magnetically sensitive items are allowed into the 

examination room. 

If a contrast fluid is used, there is a slight risk of allergic reaction, but the risk 

is less than that associated with the iodine-based substances commonly used 

with X-rays and CT scans. Otherwise, MRI poses no known risk to the patient. 

However, because of the effect of the strong magnetic field, patients with 

certain surgical implants or metal fragments from injuries may be unable to 

have an MRI. So if an MRI is recommended, be sure to tell your doctor and 

your MRI technologist if you have any of these things. MRI does not use 

potentially harmful radiation, and it is particularly good at detecting tissue 

abnormalities, especially those that may be obscured by bone. 

At present, the main thrust of research seems to be to improve technology 

that is already available. For example, researchers are developing MRI scanners 

that operate with a much weaker magnetic field than that of present devices, 

thus considerably reducing costs. A new technology under development is 

called molecular imaging (MI). Designed to detect changes within the body at 

the molecular level, MI promises very early detection and treatment of disease. 

MRI technology has reduced the need for many painful, risky, and even 
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unneeded exploratory operations. And when imaging leads to early diagnosis 

and treatment of disease, the outcome may be much better. The equipment, 

however, is expensive—some machines costing well over a million dollars. 

Despite over 50 years of the use of MRI for various investigations, the choice 

of technique parameters still relies to a great extent on experience. Research 

efforts to optimize the choice of parameter settings which yield sufficient image 

quality at the lowest possible cost are still rare. True optimization requires 1) 

estimation of the image quality needed to make a correct diagnosis and 2) 

methods to investigate all possible means of achieving this image quality in 

order to be able to decide which of them gives the lowest cost. Since the Bloch 

NMR equations are fundamental to all NMR/MRI computations, simulations 

and experiments, it can be fruitful, rewarding and beneficial with exciting 

results if these problems could be approached purely mathematically by solving 

the fundamental Bloch NMR equations analytically using all known 

mathematical techniques available both classical and quantum formulations. As 

such it presents significant challenge for the mathematical scientists, physicists, 

engineers and computer scientists to apply any of the fundamental and well 

known equations derived from the Bloch NMR flow equation as presented in 

this chapter to reveal most of the current unknowns but can enhance present 

understandings in the field of NMR/MRI.  

Many of human diseases such as cancer, diabetes, arteriosclerosis and stroke, 

Alzheimer’s disease, AIDS, etc, have all been known to be diseased conditions 

which take place at quantum (molecular) level. If we can see exactly what goes 

on at that level, we may have thorough understanding of their specific causes 

(or how they are caused), trace and monitor their progression and get the best 

cure for them. It is hoped that due to the ability of magnetic resonance to probe 

right to the fundamental level, we may be able to image human cellular 
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functions and such imaging modalities would definitely help in the 

understanding of the human diseased conditions. Information gathered from the 

images can then be added to the present medical database to make it more 

comprehensive and thus permit the physician to make a more specific diagnosis, 

prognosis and possibly the appropriate therapy. The basic challenge in this 

direction is finding the right mathematical frameworks which appropriately 

describe the processes involved. 

2.2  The Bloch NMR Equations 

Magnetic resonance is a physical phenomenon whereby nuclei containing an 

odd number of particles, when in the presence of a magnetic field, absorb radio 

frequency waves at specific (resonance) frequencies. The magnitude of the 

radio frequency (RF) waves provides information about the molecules 

containing the nuclei. The nuclei have an intrinsic spin property, which 

generates a local magnetic field. The nuclei are also precessing around their 

axes with a velocity that is proportional to the strength of the external field (the 

Larmor equation). The nuclei are therefore often called spins. Magnetic 

resonance imaging (MRI) is a non-invasive technique used to obtain 

tomographic images of any desired plane of the body and by means of magnetic 

resonance velocity mapping; it is possible to quantify blood flow. In MRI, the 

spins or magnetic moments are exposed to a strong external magnetic field 

which will force the spins to line up in alignment with the field. In this state, the 

spins are at the lowest energy state and posses longitudinal magnetic properties. 

The magnetization at this point is the equilibrium magnetization M 0 . Applying 

a radio frequency (RF) signal in a direction perpendicular to the spins at their 

resonance (Larmor) frequency causes the spin to absorb energy and hence tips 

the net magnetization vector of all the spins toward the transverse plane. This 
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creates a net transverse magnetization vector. This vector will also precess 

about the external field and begin to relax towards alignment with the external 

field again (the lowest energy states). That is, the net magnetization moves back 

to align with the external field and hence we say that motion has occurred. This 

motion of the net magnetization is guided by a set of equations known as the 

Bloch equations which are the equations of motion for the net magnetization 

vector M of a sample of spins placed in a main magnetic field B0 (where the 

components of M are Mx, My and Mz). 

The behaviour of the transverse magnetization vector can be detected by the 

receiving unit in the scanner, the rf coil, and produce an rf signal. This rf signal 

is a fine wave at the Larmor frequency. The rate at which the net longitudinal 

magnetization vector builds up again to the equilibrium values is constant and is 

expressed by the T1 relaxation time. The rate at which the transverse 

magnetization vector decreases is also constant and expressed by the T2 

relaxation time. T1 and T2 are the major parameters influencing the amplitude of 

the magnetic resonance signal. They depend on the molecular environment of 

the tissue and allow the distinction of different types of tissues. 

The magnetic vector µ of a spinning, charged particle lies along the axis of 

rotation. The surrounding magnetic field symbolized by the vector H, exerts a 

torque that tends to bring µ and H into alignment. However, this torque also 

interacts with the angular momentum vector; the effect of this interaction is to 

cause the spin axis to describe a cone about the direction of the magnetic field. 

This phenomenon is called the Larmor precession, named after Sir Joseph 

Larmor, the Irish Physicist, who was the first to calculate the rate at which 

energy is radiated by an accelerated electron and the first to explain the splitting 

of spectrum lines by a magnetic field. 
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When the natural frequency of the precessing nuclear magnets corresponds to 

the frequency of a weak external radio wave striking the material, energy is 

absorbed from the radio wave. This selective absorption, called resonance, may 

be produced either by tuning the natural frequency of the nuclear magnets to 

that of a weak radio wave of fixed frequency or by tuning the frequency of the 

weak radio wave to that of nuclear magnets determined by the strong constant 

external magnetic field. This motion of the magnetization vector of uncoupled 

spins is easily expressed in terms of the Bloch NMR equations. 

Almost all MRI concepts, dynamics and experiments are governed by the 

Bloch NMR equations. These equations relate the macroscopic model of 

magnetization to the applied radiofrequency, gradient and static magnetic fields. 

The dynamics of the changes in bodies containing NMR - sensitive nuclei, its 

physical changes (for example, freely diffusing or bound within a cavity) are 

carefully captured by the Bloch equation: a phenomenological equation 

describing the physics of magnetic moments – such as the moment of the water 

proton as a precessional gyroscopic motion in the presence of exponential 

damping (T1 and T2), perturbing magnetic fields (the fixed Bo, and the time -

varying radiofrequency B1). 

The Bloch NMR equations are a set of coupled differential equations 

describing the behaviour of the macroscopic magnetization vector under any 

conditions. A form of the equations [35-41] is given as: 

 
2T

M

dt

dM xx   (2.1) 

 
2

1 )(
T

M
xBM

dt

dM y

z

y
   (2.2) 



 

Theory, Dynamics and Applications of Magnetic Resonance Imaging-I 
 

48  http://www.sciencepublishinggroup.com 

 
1

1 )(
T

MM
xBM

dt

dM zo
z

z 
   (2.3) 

The parameters are defined in the macroscopic frame of reference 
yx MM ,

(Transverse magnetization) and    (longitudinal magnetization) are 

magnetizations along     and   directions,    is the equilibrium magnetization 

(along the z direction),       is the Radiofrequency (RF) magnetic field which 

can be constant, depending on x and/or t.    is the longitudinal or spin-lattice 

relaxation time,    is the transverse or spin-spin relaxation time and   is the 

gyro magnetic ratio of fluid spins.  

The total magnetic field is given as:  

  xBBB o 1


  (2.4) 

where oB  is the static magnetic field. All these parameters, as may be related 

to MRI will be discussed in full detail in section. 

Since the MRI spin are always in motion, they must be treated with reference 

to their dynamics. The features of this dynamics are very much pronounced in 

fluids especially in biological systems. 

From the kinematic theory of moving fluids, given a property M of the fluid, 

then the rate at which this property changes with respect to a point moving 

along with the fluid will be the total derivative: 
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where
dt

dx ,
dt

dy ,
dt

dz , are the components of the fluid velocityv


. The change in the 

parameter, dM, occurring during the time dt, at the position of a moving fluid 

particle which moves from x, y, z to x+dx, y+dy, z+dz during this time, will be: 

( , , , ) ( , , , )dM M x dx y dy z dz t dt M x y z t       

M M M M
dM dt dx dy dz

t x y z

   
   

   
 

equation (2.5) is obtained if 0dt . We can also write this equation in the form: 

 x y z

dM M M M M
v v v

dt t x y z

   
   

   
 (2.6) 

and 

 Mv
t

M

dt
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







 (2.7) 

where the second expression is shorthand for the first, in accordance with the 

conventions for using the symbol  . The total derivative 
  

  
 is also a function of 

x, y, z, and t. A similar relation holds between partial and total derivative of any 

quantity, and we may write, symbolically,  

d
v

dt t


  


 

where v is the fluid velocity and 
zyx 












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The Bloch equations become: 
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( ) o zz z
z z

M MdM M
v M M B x

dt t T



     


 (2.10) 

Considering fluid flow along horizontal x – direction, partial derivatives 

along the y and z directions are ignored. Therefore: 

x

M
vMv x

x





 

Similarly, 
x

M
vMv

y

y



  and 

x

M
vMv z

z



  

Equations (2.8 - 2.10) then become: 

 
2

x x x xdM M M M
v

dt t x T

 
   

 
 (2.11) 

 1
2

( )
y y y y

z

dM M M M
v M B x

dt t x T


 
   

 
 (2.12) 

 1
1

( ) o zz z z
z

M MdM M M
v M B x

dt t x T


 
    

 
 (2.13) 

2.3  The General Bloch NMR Flow Equation  

The Bloch NMR flow equations can be written as: 

 
2T

M

x

M
v

t

M xxx 



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


 (2.14) 
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
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


  (2.15) 
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
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From equation (2.16), we have:  
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y 1

1 1
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 
    
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







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


  

 
  o
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1

M 1
M M B x

T 1
v
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 
   

   
  

  

 (2.17) 

Substituting for Mz in equation (2.15) gives: 

   

y y

yo
y 1 1

1 2

1 z

M M
v

t x

MM 1
M B x B x

T T1
v

x t T

 


 

 
     

   
  

    

 

   

y y y

1 1 2 1

o
y 1 1

1

M M M1 1 1
v v v v

x x t T t x t T T x t T

M
M B x B x

T

           
            

            

 
    

 

 (2.18a) 

For general pulsed NMR/MRI experiment B1(x) in equation (2.18a) will be 

replaced by B1(x,t). This is valid even ia a rotating frame. Equation (2.18a) can 

then be written in a more general form as [38]: 
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  

 
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1 2
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M M1 1 1
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B x, t M

T

   
   

    

    
        

    




 (2.18b) 

Equation (2.18b) is a general second order differential equation which can be 

applied to any fluid flow problem. At any given time t, we can obtain 

information about the system, provided that appropriate boundary conditions 

are applied. From equation (2.18b), we can obtain the diffusion equation, the 

wave equation, telephone and telegraph equations e.t.c, and solve them in terms 

of NMR parameters by the application of appropriate initial or boundary 

conditions. Hence, we could get very important information about the dynamics 

of the system. It should be noted however that the term  o 1F B x, t  is the forcing 

function  o o 1F M T . If the function is zero, we have a freely vibrating system; 

else, the system is undergoing a forced vibration.  

2.4  The Time - Independent Bloch NMR Flow Equation 

For a steady flow, all partial derivatives with respect to time can be set to 

zero (time independent). Hence equations (2.11-2.13) become: 
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From equation (2.21) we write:  

  
11

1
T

M

T

M
xBM

dx

dM
v zo

y
z    (2.22) 

collecting the like term in equation (2.22) gives: 

  
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1
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1
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M
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d
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yz 







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From equation (2.20, 2.21 and 2.23) we have, 

 
 y y 1 o2 2

y 1
1 2 1 1

dM M B x Md 1 d 1
v v v M B x

dx dx T T dx T T

   
        

   
   (2.24) 
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    
2

y y2 2 2 o
o g 1 y 12

1

d M dM M
v vT T B (x) M B x

dx Tdx
       (2.25) 

Equation (2.25) is a time independent Bloch NMR flow equation [39-46].  
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2.5  The Time - Dependent Bloch NMR Flow Equation 

For a flow that is independent of the space coordinate, x, that is, the 

magnetization does not change appreciably over a large x for a very long time, 

then all partial derivatives with respect to x could be set to zero (time dependent) 

[38]. From equation (2.3) we write:  

 

  oz z
y 1

1 1

MdM M
M B t

dt T T
     (2.26) 

 

  o
z y 1

1 1

Md 1
M M B t

dt T T

 
    

 
 (2.27) 

Substituting for zM  in equation (2.27) into equation (2.26) gives: 

 
 y y 1 o2 2

1 y
1 2 1 1

dM M B t Md 1 d 1
B t M

dt dt T T dt T T
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        

   
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1

d M dM M
T T B (t) M B t

dt Tdt
     

 

 
 

2
y y y 1 o2 2

y 1 y2
1 2 1 2 1

d M dM dM B t M1 1 1
M B t M

T dt T dt T T Tdt


     

   (2.28) 

Equations (2.18b, 2.25, 2.28) are fundamental equations that can 

appropriately guide the generation of MRI signal of any kind in any coordinate. 

This is possible because these equations can easily be transformed to known 

equations commonly used in Mathematics, Physics and Engineering to solve 

real life problems. Some of the equations will be derived in the next sections. 

2.6  Diffusion MRI Equation 

Starting from equation (2.18b), we can assume a solution of the form: 
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tx

y AetxM  ),(  (2.29) 

subject to the following theoretical conditions (the limiting case of non 

adiabatic small rf limit): 

 
21
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1

2 1
),(

TT
txB   (2.30) 

where µ and    are dependent on the NMR parameters and    is independent of 

x and t. 

Taking       and      . 

Equation (2.18b) becomes: 

 

 txBF
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If we write  

 oT

v
D

2

  (2.32) 

Then equation (2.31) becomes: 

 

 txBF
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M
o

yy
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
 (2.33) 

This can be written in generalized co-ordinate as [47-55]: 

  txBFMD
t

M
oy

y
,1

2 



 (2.34) 

If D represents the diffusion coefficient, then Equation (2.34) is the equation 

of diffusion of magnetization as the nuclear spins move. The function 
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 txBFo ,1  is the forcing function, which shows that the application of the rf B1 

field has an influence on the diffusion of magnetization within a voxel. It is 

interesting to note that the dimension of Equation (2.33) exactly matches that of 

diffusion coefficient. 

Equation (2.34) is only applicable when D in non – directional. That is, we 

have a constant diffusion coefficient (isotropic medium). In a later section 

equation (2.34) will be considered for restricted diffusion in various geometries. 

This model would work quite well for molecules that move very short 

distances over a very considerable amount of time. 

where 

o
o

1

M
F

T
 ; 

g
1 2

1
T

T T
  and 

0
1 2

1 1
T

T T
 

 

 is the gyromagnetic ratio, D is the  diffusion coefficient, v is the fluid velocity, 

T1 is the spin lattice relaxation time, T2 is the spin relaxation time, Mo is the 

equilibrium magnetization, B1(x, t) is the applied magnetic field and My is the 

transverse magnetization. Solutions to equation (2.1) have been discussed by a 

number of analytical methods [12, 21], and for the present purpose it is 

sufficient to design the NMR system in such a way that the transverse 

magnetization My, takes the form of a plane wave, 

2.7  Wave MRI Equation 

Based on equations (2.29), we can write equation (2.18b) in the form wave 

equation: 

  txBF
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 (2.35) 
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Equation (2.35) only holds when: 

 oo T
TT

T   2,
1

21

 (2.36) 

In three dimensions equation (2.35) becomes: 

  trBF
t
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22 
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  (2.37) 

In the spherical polar geometries, we can write equation (2.37) as: 
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 (2.38) 

When the rf B1 field is at its peak, it is expected that the angle between the 

initial position and the resulting one is π. If the transverse magnetization is 

radially symmetric, we can write:  

  trBF
t
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 (2.39) 

2.8  The Bessel Equation  

We study the flow properties of the modified time independent Bloch NMR 

flow equations which describes the dynamics of the hydrogen atom under the 

influence of rf magnetic field as follows [1-10]: 
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In equation (2.25), the spin velocity  is constant and distance x can be 

defined as: 

 


x
xTv o   and 



1
oT  (2.41) 

where oT  is the T1 an T2 relaxation rates of the spins which may be changing 

from pixel to pixel  within the distance x. If the MRI signal is sampled when the 

applied radiofrequency energy successfully displaces most of the spin unto the 

transverse plane (M0 ≈ 0), equation (2.40) then becomes: 

   0( 2222

2

2

2  y

y

o

y
Mxk

dx

dM
xT

dx

Md
x   (2.42) 

where  

 GxxB  )(1  (2.43a) 

ok GT   

and 

 
21

2
2

TT

To  (2.43b) 

Equation (2.42) is an equation transformable to Bessel function. When there 

is no gradient G, all the spins are rotating at the same frequency and therefore, 

in the rotating frame of reference at rotating at o, the spins appears stationary 

with no phase difference. In the presence of gradient G, the spins start presecing 

with slightly difference frequencies winding them into a helix and hence a phase 

difference is induced. As the gradient strength and/or duration , increases, the 

pith of a helix become becomes smaller resulting in a smaller wavelength and 

correspondingly a higher k value. 
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The equation for the total MRI signal from a slice in the x, y, pane is:  

     dxdyeyxfkkS
ykxki

yx
yx





)(

,,  (2.44a) 

where 

 oyy TGk   (2.44b) 

 oxx TGk   (2.44c) 

Equation (2.44) is the fundamental equation for MRI. It gives detail 

information on MRI signal within a voxel. f(x, y) is the distribution of the MRI 

signal over the slice d, at the time just after the excitation. Equations (2.44b, 

2.44c) are the k- values along the phase and frequency encoding axes 

respectively. The Fourier transform of equation (2.44) is: 

     yx

ykxki

yx kdkekkSyxf yx





)(

,,  (2.45) 

2.9  The NMR Schrodinger Wave Equation 

NMR is a quantum phenomenon and like all other quantum phenomena is 

best described by quantum mechanics. It will be enormously valuable if 

quantum mechanics as a tool for understanding the NMR microscopic nature is 

developed in parallel with the growth of NMR Physics. It is our goal to develop 

the Bloch NMR flow equations in terms of quantum mechanical wave functions 

which can predict analytically and precisely the probability of events or 

outcome. 

In equation (2.25) It is convenient to use as dependent variable the departure 

of the stream function from its classical form and write:  
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x

y exM  )(  (2.46) 

where   
  

    
,   is the instantaneous velocity of the fluid and (x) is a special 

function of the transverse magnetization My, which depends on the dynamical 

state of the fluid particle. When My is maximum and Mo is minimum (say Mo = 0). 

For a maximum value of My (when Mo= 0) we can write equation (2.40) as: 

 0
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2
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2

2

2

 
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v
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d
 (2.47a) 

subject to the following  conditions: 

(i)                                                    0xe                                                  (2.47b) 

(ii) Resonance condition exists at Larmor frequency  

o
f  =   B -  = 0   

(iii)  Rg TTxB )(2

1

2  

where 
g R 2

1 2 o 1 2o

1 1 1 1 1
T , T and

T T T T T4T
   

.

 

 denotes the gyromagnetic ratio of fluid spins; /2 is the rf excitation 

frequency; fo/ is the off- resonance field in the rotating frame of reference. T1 

and T2 are the spin-lattice and spin-spin relaxation times respectively, the 

reciprocals of T1 and T2 are defined as relaxation rates. rf B1 is treated as 

constant and of  the order of 1G. The exponential function in equation (2.47b) 

can be defined as follows, 
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!
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 (2.48) 
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Equation (2.48) is extremely useful in obtaining approximations to 

complicated formulas, valid when x is small. In particular, when: 

 ovTx 4  (2.49) 

Equation (2.47c) becomes: 

1)( xF  

Equation (2.27a) becomes the Schrödinger wave equation in 1-D given by 

[40]: 

 0))((
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xEE
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 (2.50) 

where 
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xEE
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
 (2.51) 

E and Ep(x) are the total energy and potential energy of the fluid particle 

respectively. Equation (2.48) can easily be solved if    is constant, with a 

solution of the form      . But if    varies with x, one may find solution in the 

form: 

    iw x
x e   (2.52) 

To simplify this problem,  

 Let    
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2
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Substituting equation (2.52) into (2.51) gives equation for the x-dependent 

phase. 

Hence, w(x) satisfies: 

    0
2

2

2

2









 xk

dx

dw

dx

wd
i  (2.54) 

Note that equations (2.54) and (2.51) are equivalent. 

For a free particle, 
   

   
  . Hence we can neglect the second derivative term 

   

   
 in equation (2.54) and this will lead to our first approximation   in  . 
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 (2.55) 

Equation (2.55) is the approximation to the wave function. 

Setting up a successive approximation; from equation (2.54), we can write: 
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22
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


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
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 (2.56) 

By substituting the n
th
 approximation on the R.H.S, we obtain the (n+1)

th
 

approximation by quadrature. 
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''2
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Thus, for n=0, we obtain: 

 

   

   

x
2 ''

1 0 1

x
2 '

1 1

w k x iw x dx C

w k x ik x dx C

     

     





 (2.58) 

It is expected that w1 be close to w0, for this approximation to approximate 

the wave function. 

Hence 

     |||| 2' xkxk   (2.59) 

If condition (2.59) holds, one may expand the integrand in equation (58) and 

obtain: 

 

   
 

 

     

'

1 1

x

1 1

k xi
w x k x dx C

2 k x

i
w x k x dx log k x C

2

 
    

  

   





 (2.60) 

The constant of integration only affects the normalization of     . It can be 

neglected until the desired approximation is made. 

Hence the approximation in equation (2.54-2.60), called WKB approximation, 

leads to the approximate wave function. 

  
 

 
x

i k x dx
1

x e
k x



 


 (2.61) 
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Taking      as the effective wave number, we can define our wavelength as 

     
  

    
. 

Therefore condition (2.59) can be re-written as:  

    xp
dx

dp
x   (2.62) 

Consider a turning point and assuming that except in its immediate 

neighbourhood, WKB approximation is applicable. Changing the dependent and 

independent variables, we write: 

      xxkxu   (2.63) 

And 

  
x

y k x dx 
 (2.64) 

By manipulating, we obtain: 

 

22 2

2 2 2

d u 1 dk 1 d k
1 u 0

dy 2kdy 4k dy

  
     
   

 (2.65) 

Substituting the particular value of k(x) given by equation (2.63), the integral 

of equation (2.64) can be evaluated, and choosing the lower limit of the 

integration as 0, we obtained, 

22 2 2
0 00

2 2
0 0

4 Ex 4 Ex ze2 4 Ex ze x ze
y E In

4 4E ze

              
      

   (2.66) 
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where y  is the measure of the distance from the classical turning point. Hence 

y  is small near the turning point assuming the two limits of integration are 

close to each other. At points very far to the left or right from the turning point, 

WKB is applicable. 

Expressing y  in terms of k, and finding its derivative, equation (2.65) 

becomes: 

 

2

2 2

d u 5
1 u 0

dy 36y

 
    
 

 (2.67) 

Let us attempt the solution of equation (2.67) in the form: 

     dttfeyyu yt  


 (2.68) 

Substituting (2.68) into (2.67) gives, 

    2 2 2 yt5
1 2 yt y t y e f t dt 0

36

 
          
   (2.69) 

Choosing   such that the terms which are constant in y  vanish, it is 

required that: 

   0
36

5
1   (2.70a) 

 
36

5
,

6

1
  (2.70b) 

The remaining expression in equation (2.69) is: 

 

   2 ytd
f t 2 t 1 t e dt 0

dt

 
     

   (2.71) 

Integrating by part, 
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    2 ytd
f t 2 t 1 t e dt 0

dt

 
     

   (2.72) 

          2 yt 2 ytd d
2 tf t 1 t f t e dt 1 t f t e 0

dt dt

                 (2.73) 

To successfully construct a solution of the proposed form in equation (2.68), 

the integrand in the first integral should be made to vanish and the path of 

integration is chosen so that the second integral disappears. 

We therefore require: 

     2d
2 tf t 1 t f t

dt
   
 

 

    
1

2f t f 0 1 t


   

Using equation (2.70), we can write the general form of (2.67) as:  

 
 

0
1

1
22

2








 
 u

ydy

ud 
 (2.74) 

It should be noted that if u  is a solution, 1u  is also a solution of equation 

(2.74).  

In deriving the WKB connection formulas,  

  
 

dt
t

e
yyu

i

i

yt














 121
 (2.75) 

and  

  
 

dt
t

e
yyu

i

i

yt
















 121
 (2.76) 
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Recall that  is not an integer, this implies that it   are branch points of the 

function          . 

The asymptotic expansion of   
  and   

  are needed in the WKB expansion 

for large imaginary values of y. Hence, we substitute in   
 : 

 
y

z
it   (2.77) 

and obtain: 

   


















0

1

2

2
1 2 dze

y

z
i

y

z
eyyu ziy





   (2.78) 

For    large enough, a reasonable approximation to the asymptotic expansion 

of u  is obtained by expanding the parenthesis in powers of 
 

 
, then integrate 

term by term, 

    










  212





 




iiy

eiyu  (2.79) 

Since    
 

 
  is negative imaginary, the form of this solution is in agreement 

with the WKB approximation in the region of negative kinetic energy. 

When the variable   is negative real, a different integration path is taken; we 

will choose a different limit of integration. 

  
 

dt
t

e
yyu

i

i

yt














121
 (2.80) 

and  
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     









2
cos2


 

 yeiyu i
. (2.81) 

This solution also agrees with the WKB approximation in the region of 

positive kinetic energy. Unless   is half-integral,       and         are two 

linearly independent solution. 

From equations (2.75), (2.76) and (2.80), we can define: 

      yuyuyu     (2.82) 

and 

      yuyuyu 



   111  (2.83) 

Near the turning point 0y , the integral in equation (2.80) gives: 

  
 

  201

2

1

2

1

yyiyu 





















 






 (2.84) 

This proves that the wave function in equations (2.46, 2.47, 2.50): 

 
6

1

y

u

k

u


 (2.85) 

Perfectly behave well near the turning point. 

2.10  Time - Dependent NMR Schrodinger Equaion 

At the molecular level the diffusion coefficient of a fluid particle is defined as:  
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im

D
2


  (2.86) 

Substituting equation (2.86) into equation (2.33) gives the time-dependent 

NMR Schrodinger equation: 

  txB
T

Fi

x

M

mt

M
i

o

oyy
,

2
12

22




 








 (2.87) 

We can represent the transverse magnetization My as the propagation of a 

plane harmonic wave in the x-direction in the form of equation (2.29) and write: 

 
)(),( tkxi

y AetxM   (2.88) 

where A is a constant, µ = ik and  = -i. Equation (2.88) represents a typical 

propagating matter wave where k, measures the wave vector and , the angular 

frequency of the wave. Splitting the transverse magnetization into its space and 

time parts in the form, 

 )()(),( tTxXtxM y   (2.89) 

we can write 

 ikxeAxX 1)(   (2.90) 

 tieAtT  2)(  (2.91) 

A wave in the x-t space propagates by joint oscillations represented by 

equations (2.90-2.91) each of them is capable of exciting the other. By 

differentiating equation (2.90) twice and making use of: 
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 )(
2

22

xE
m

k
E p


 (2.92) 

we arrive at the Schrodinger’s time-independent wave equation, expressed as in 

equation (2.50): 

 )()]([
)(

2 2

22

xXxEE
dx

xXd

m
p


 (2.93) 

where E and Ep(x) denote the total and potential energies of the particle 

respectively. Similarly, differentiating equation (2.91) once with respect to t and 

making use of the relation: 

E  

we arrive at, 

 )(
)(

tET
dt

tdT
i    (2.94) 

On combining equations (2.93) and (2.94) one arrives at the Schrodinger’s 

time-dependent equation. 

 ),(),(ˆ txM
t

itxMH yy



   (2.95) 

where the Ĥ  operator stand for: 

 )(
2

ˆ
2

22

xE
xm

H p






 (2.96) 

Equation (2.96) is well-known as the Hamiltonian of the particle. It should be 

mentioned that equation (2.95) is the true equation representing the motion of 

microscopic particles through a given space. This is applicable even during a 

quantum measurement. As long as matter exhibits wave-particle dualism, 
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equations (2.93) and (2.94) are both valid and their solutions are readily 

obtainable by solving them. The most general wave function may then be 

obtained by forming a suitable product of X(x) and T(t).  

2.11  NMR Legendre Equation and Boubaker Polynomial 

When My is maximum and Mo is minimum (say Mo = 0), we can write 

equation (2.25) as: 

 
 

0
2

0
2

2

 y
yy

M
v

xS

dx

dM

v

T

dx

Md
 (2.97) 

Where 0
1 2

1 1
T

T T
  ,    2 2

1
1 2

1
S x B x

T T
   . 

If we then write that: 

 
l

x

lv

T
cot

10   (2.98) 

 
 

 1
1

22
 nn

lv

xS
 (2.99) 

The small rf limiting condition:  

 2 2
1

1 2

1
B x

T T
   

gives 

 

 1

11

2
21

2

22
21






nn
vTT

l

l

nn

vTT
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where l is a parameter in length or any other unit of distance. It is worthy of 

note that equation (2.97) is obtainable from the expression: 

 
 

 xB
T

M
M

v

xS

dx

dM

v

T

dx

Md
y

yy
1

1

0

2

0

2

2

  (2.100) 

Under two conditions 

1. When the rf       field applied, has a maximum value, so that    is 

maximum; and     
.
 

2. When the rf       field is just removed (so that         ). 

However, condition 1 seems to favour most part of this particular write-up. 

Equation (2.97) can then be written as:  

 

 

  01
1

sin

cos
1

01
1

cot
1

22

2

22

2





y
yy

y
yy

Mnn
ldx

dM

l

x
l

x

ldx

Md

Mnn
ldx

dM

l

x

ldx

Md

 (2.101) 

Multiplying equation (2.101) all through by    
 

 
, it follows that: 

   01sin
1

cos
1

sin
22

2

 y

yy
Mnn

l

x

ldx

dM

l

x

ldx

Md

l

x
  (2.102) 

It would be noted that: 

 











dx

dM

l

x

dx

d

dx

dM

l

x

ldx

Md

l

x yyy
sincos

1
sin

2

2

 (2.103) 

Hence, equation (2.101) becomes: 
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   01sin
1

sin
2















y

y
Mnn

l

x

ldx

dM

l

x

dx

d
 (2.104) 

If we define: 

 
l

x
cos  (2.105) 

and 





 d

dM

l

x

ldx

d

d

dM

dx

dM yyy
sin

1
  

d

dM

l

x

ldx

dM

l

x yy 2sin
1

sin   

but 

 11cossin 222  
l

x

l

x
 (2.106) 

Therefore, equation (2.106) becomes: 

 
  01sin

11
2

2












 

y

y
Mnn

l

x

ld

dM

ldx

d




 

Since
d d d

dx d dx


 


, it follows that:  
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 

 
 
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  01sin

1
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1
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2
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2












 















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



 


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







 
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y
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y
y
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x
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x
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l

x
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x
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dM
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d

Mnn
l

x

ldx

d

d

dM
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d


















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 (2.107) 
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Now, since l is a constant, equation (2.107) can be written as:  

     01sin
1

sin
1

1
22

2 








 y

y
Mnn

l

x

ll

x

ld

dM

d

d





 (2.108) 

Dividing all through by 
 

  
   

 

 
, it follows that: 

     011 2 








 y

y
Mnn

d

dM

d

d





 (2.109) 

     0121
2

2

2  y

yy
Mnn

d

dM

d

Md





  (2.110) 

This is the Legendre differential equation and has a solution of the form: 

     nny QCPCM 21   (2.111) 

where       are the Legendre polynomials of the first kind (which are regular at 

finite points) while       are the Legendre Polynomials [56-57] of the second 

kind (which are singular at ±1).    and    are constants. 

It is worthy of note that       and       are two linearly independent 

solutions to the equation (2.110). We can write that:  

  ynny MPM    

 













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

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n p
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p n p n p
  



 


 
  (2.112a) 
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  
    pn

m

p
n

p
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pnpnp
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M 2

0 )!2()!(!2

!221 







   (2.112b) 

 
2

1

2




n
or

n
m  

whichever m is an integer. We have noted earlier that this expression implies  

  
4

112 


n
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
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   

This solution can be written as:  
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 

   
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     

 (2.113) 

However, for the purpose of the Boubaker Polynomial problem [44, 59], we 

shall write that: 
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n n 2 n 4

2n !
M

2 n!n!

n n 1 n n 1 n 1 n 2 n 3
...

1! 2 2n 1 2! 2 2n 1 2n 2 2n 3

 

 

      
      

         

(The expression of equation (2.113) is based on some sort of definition which 

is a choice made in order that        ). 
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 
 

 

   

    

     

yn n

n n 2 n 4
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M

2 n!n!

n n 1 n n 1 n 1 n 2 n 3
...

2 2n 1 1! 2 2n 1 2n 2 2n 3 2!

 

 

      
      

       

 (2.114) 

For  

 
 2 !

1
2 ! !n

n

n n
  (2.115a) 

Then, 1,0n . 

This condition will cause all other co-efficient of   to be equal to zero, so that: 

   n

ynM    (for 1,0n ) (2.115b) 

However in addition to condition (2.115a), if we can establish that: 

 

 

 

   

   

     

     

n n 1
n 4

2 2n 1

n n 1 n 1 n 2
n 8

2 2n 1 2n 2 2n 3

n n 1 n 1 n 2 n 2 n 3
n 12

2 2n 1 2n 2 2n 3 2n 4 2n 5

 
  

  
    

  
    

     
 
      

 (2.116) 

It follows that: 

   
  

   

n n 2 n 4
yn

n 6

n 8 n 3
M 1 n 4

2!

n 12 n 4 n 5
...

3!

 



 
       

  
    

Since the sum:  

      
...

!3

5412

!2

38 64 



  nn nnnnn

  
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is given by 

 
   

  2 1 1

2 14
2

2 1

4
1

!

n
n

p
p n p

p j p

n p
n j

p


  




  

  
  

  
   

we obtain: 

 

   

 
   

  n

n n 2
yn

2n 1 1

2p 14
p n 2p

p 2 j p 1

M 1 n 4

n 4p
n j 1

p!



  




  

     

  
    

  
 

 (2.117) 

If the assumption would hold for the Legendre polynomials of the second 

kind, the procedure can be extended to the transverse magnetization in the form: 

     nyn QM   (2.118) 

2.12  Sturm - Liouville Problem 

The Legendre polynomials have the orthogonality property expressed as 

follows: 

     mnnm
n

dxxPxP 
12

2
1

1





 (2.119) 

The reason for this orthogonality property is that Legendre differential 

equation can be viewed as a Sturm-Liouville problem: 

      xyxy
dx

d
x

dx

d










 21  (2.120) 

where   yy x M  and  n n 1   . 
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We shall make an assumption of the form: 

 
l

x

lv

T
cot

10   (2.121) 

( l  is a parameter to be determined). Hence, the time-independent equation:  

 
0

2

0

2

2

 y

yy
M

v

xS

dx
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dx
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22
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M
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dx
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 (2.122) 
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 (2.123) 

If  
 
2

2 sin1
v

xS

l

x
lnn  : 

 
 1

1
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22
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l
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It follows that: 
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  y

y
Mnn

dx

dM

l

x

dx

d
l 1sin2 














 

Since 
2l is not dependent on  , we have: 

   y

y
Mnn

dx

dM

l

x
l

dx

d
1sin2 














 (2.124) 

This is not exactly the same as equation (2.120), but equation (2.124) can be 

compared to the form that we stated earlier, that is, 

       0








yxrxq
dx

dy
xp

dx

d
  

Where  

  yMxy 
, 

 
l

x
lxp sin2  

and 

     
 

  
2

2 2 2
1 g2 2

S xx l x
q x r x n n 1 l sin sin B x T

l lv v
           

However, earlier on, equation (2.109) is given as: 

 

   

   

y2
y

y2
y

dMd
1 n n 1 M 0

d d

dMd
1 n n 1 M 0

d d

  
     

   

  
      

   

 (2.125) 

Hence, for   -dependence, we can establish Sturm-Liouvile problem in the 

form of equation (2.125). 
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2.13  The Diffusion - Advection Equation 

The diffusion - advection equation is a differential equation describing the 

process of diffusion and advection. For the investigation of the diffusion 

process of magnetization in a fluid moving at a uniform velocity which is 

constant in time, we have to take the process of advection into consideration. 

The equation which describes such a process is known as the Advection 

equation. The advection equation is the partial differential equation that governs 

the motion of a conserved scalar as it is advected by a known velocity field. It is 

derived using the scalar's conservation law, together with Gauss's theorem, and 

taking the infinitesimal limit. 

The diffusion - advection equation (a differential equation describing the 

process of diffusion and advection) is obtained by adding the advection operator 

to the main diffusion equation. In the Cartesian coordinates, the advection 

operator [58] is: 

z
v

y
v

x
vv zyx

















 

where the velocity vector v has components   ,    and    in the x, y and z 

directions respectively. 

Therefore, from Equation (2.18b),  

  

 

2 2
y y y y2

o o2

2
y 2 2

g 1 y2

o 1

M M M M
v 2v vT T

x t x tx

M
T B x, t M

t

F B x, t

   
  

   


   



 

 

we can write:  
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    0,2
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





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M
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M
  (2.126) 

It then follows that: 
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 (2.127) 
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


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







 (2.128) 

If we multiply Equation (2.128) all through by 
 

  
, it follows therefore that: 

  txB
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 (2.129) 

where 

 
oT

v
D

2

  (2.130) 

hence, 

  txB
T

F

x

M
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t

M

x

M
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o

oyyy
,12

2















 (2.131) 

Provided that D is the diffusion coefficient, and since v is the fluid velocity, 

equation (2.131) is the diffusion – advection equation for the NMR transverse 

magnetization. It is very interesting to note that equation (2.131) exactly match 

the advection equation without any special transformation whatsoever. 

2.14  The Euler NMR Equation 

Based on equations (2.18b) and (2.29), we can define for constant fluid 

velocity v, and     
  field: 
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2
1

2; BTvTT ogo   (2.132) 

or 

 goo TTvBT  ;2
1

2
 (2.133) 

When the maximum NMR signal is received at maximum rf B1 field and Mo 

= 0, equation (2.18b) becomes: 

 02
2

22

2

2

2 














t

M

tx

M
v

x

M
v

yyy  (2.134) 

This equation can also be derived for the following rf limits. 

For     
    , equation (2.18b) becomes: 

 02
2

22

2

2

2 














t

M

tx

M
v

x

M
v

yyy  (2.135) 

provided that: 

 goo TTvT    (2.136) 

  v  (2.137) 

 go TT 2  (2.138) 

Equation (2.135) is called the Euler’s equation. 
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2.15  Analytical Solutions to the Generalized Bloch NMR 

Flow Equation 

It may be very important to solve equation (2.18b) analytically for various 

applications as highlighted in the editorial introduction. 

Equation (2.18b) can be written as: 

 
 

2 2 2
y y y y2

o2 2

y 2 2
o 1 g y

o 1
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  
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 (2.139) 

where  
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21
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0

0
T

M
F   

Because of the difficulty involved in solving a differential equation which 

does not have its coefficient to be constant, we shall consider the case where: 

),(2

1

2 txBTg   

Equation (2.139) becomes:  
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 (2.140) 

Assuming a solution of the form: 
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(  is a term which has the same dimension as x). It then follows that: 
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Equation (2.140) then becomes: 
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 (2.142) 
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          
           

          

 







2

2n
0 g 0 n

n 1

22
2n n

0 g 0 n2
n 1

o 1

dUn n n n x
2v ) (T T v v )U sin

dt

d U dUn n n n x
(T 2v ) (T T v v )U cos

dtdt

F B (x, t)









        
       

        

        
        

        

 





 (2.144) 

Multiplying equation: (2.144) all through by cos
p x


, it follows that:  
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 

 

22
2n n

0 g 0 n2
n 1

22
2n n

0 g o n2
n 1

0 1

d U dUn n n
T 2v ) T T v v U

dtdt

n x p x
sin cos

d U dUvn n n
T 2 ) T T v v )U

dtdt

n x p x p x
cos cos F B (x, t)cos









       
        

       

 


 

       
        

      

  
 

  





  (2.145) 

Integrating both sides from 0 to   with respect to x, we have:  

 

 

22
2n n

0 g 0 n20
n 1

22
2n n

0 g o n20
n 1

0 1
0

d U dUn n n
T 2v ) T T v v U

dtdt

n x p x
sin cos dx

d U dUvn n n
T 2 ) T T v v )U

dtdt

n x p x
cos cos dx

p x
F B (x, t)cos dx











       
        

       

 


 

       
        

      

 

 


 









 (2.146) 

However, for the integral on the LHS of equation (2.146) to be valid, p = n, 

so that: 
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 

 

22
2n n

0 g 0 n20
n 1

22
2n n

0 g o n20
n 1

2

0 1
0

d U dUn n n
T 2v ) T T v v U

dtdt

n x n x
sin cos dx

d U dUvn n n
T 2 ) T T v v )U

dtdt

n x
cos dx

n x
F B (x, t)cos dx











       
        

       

 


 

       
        

      






 









  (2.147) 

 

22
2n n

0 g 0 n2

0

22
2n n

0 g 0 n2

2

o

o 1
0

d U dUn n n
T 2v T T v v U

p dtdt

n x n x
sin cos dx

d U dUn n n
T 2v T T v v U

dtdt

n x
cos dx

n x
F B (x, t) cos dx







      
              

 

 

      
                






 









 (2.148) 

but  

 

0

0
o

n x n x
sin cos dx

1 2n x 1 n x
sin dx cos2

2 2 2n

cos2n 1 0
4n






 

 

   
   

   


   





  

and  
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2

0

0
o

n x
cos dx

1 2n x 1 2n x
1 cos dx x sin

2 2 2n

1
sin2n 0

2 2n 2










     
      

     

  
     



  

Equation (2.148) becomes: 

22
2n n

0 g o n2

0 1
0

22
2n n

o o o n2

o
1

o

d U dUn n n
T 2v T T v v U

2 2 dt 2dt

n x
F B (x, t) cos dx

d U dUn n n
T 2v T T v v U

dtdt

2F n x
B (x, t) cos dx





         
        

       


 



      
               


 

 





  (2.149) 

We can write: 

 
2

2 on n
n 12 o

2Fd U dU n x
2 U B (x, t) cos dx

dtdt

 
     

   (2.150) 

where 0

n
2 T 2v


  


, 

2

2 2
g o

n n
T T v v

  
     

   .

 

The homogeneous equation of equation (2.150) is given as: 

 
2

2

2
2 0n n

n

d U dU
U

dtdt
     (2.151) 

Assuming a solution of the form: 

  t
n AetU   
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tndU
Ae

dt

  

tn Ae
dt

Ud  2

2

2

  

Equation (2.151) becomes: 

 2 22 0  t t tAe y Ae Ae    
 

2 22 0     

It follows that: 

2
1

22

2

44
2













 



  

2
1

2
22

22













 



  

if we let 
2

2
2,222 

   

   or    

Therefore, 

 

   t t
n 1 2

t t t t
1 2

t t t
1 2

t
n n n

U (t) A e A e

A e e A e e

e A e A e

U (t) (a cosh t bsinh t)e

 

   

  



 

 

  
 

   

 (2.152) 

where 
21 AAa  , 

21 AAb  , tte t  sinhcosh , tte t  sinhcosh . 
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It is worthy of note that the form of our solution is as a result of the fact that: 

  .042 22
   

Equation (2.152) is the complementary function of equation (2.150). 

We shall find the integral solution to the equation (2.150): 

 












0

1
02

2

cos),(
2

2
2

dx
xn

txB
F

U
dt

dU

dt

Ud
n

nn  (2.153) 

If we take the Radio frequency field to be a sinusoidal wave travelling 

towards the right (in the positive x-direction), then we can either have:  

Case (i) 

  







 t

x
AtkxAtxB 






2
coscos),(1  

Case (ii) 

  







 t

x
AtkxAtxB 






2
sinsin),(1  

(where A is the amplitude of the rf wave).  

When the rf field is just removed, we have: 

02 2

2

2

 n
nn U

dt

dU

dt

Ud
  

and the solution would essentially be equation (2.152): 

)(tUn =   t
nn etbta  sinhcosh  

It would be recalled: 



Chapter 2  Fundamental Mathematical Formulation for the Theory, Dynamics 

and Applications of Magnetic Resonance Imaging 
 

http://www.sciencepublishinggroup.com  91 












11

cos)(sin)(),(

n

n

n

ny

xn
tU

xn
tUtxM








 

Applying the initial condition: 

;0),( txM y  












11

0cos)0(sin)0()0,(

n

n

n

ny

xn
U

xn
UxM








 

since 


xn
sin 0 and 0cos 



xn
 

  00 nU  

  00sinh0cosh 0  eba  

00sinh0cosh ba  

0a  

(since 00cosh  ) 

Therefore,  

 
   

  tbetU

etbtU

n
t

n

t
nn









sinh

sinh





 (2.154) 

then  

 
t t

y n n

n 1 n 1

n x n x
M (x, t) be sinh tsin be sinh tcos

 
 

 

 
   

 
   (2.155) 

(where b is an arbitrary constant). 
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It is important to note that this method of solution to the problem requires 

that   be a sort of boundary condition parameter such that   tells us either: 

(a) how far the radio frequency wave can travel in the x-direction, or  

(b) how far we can allow the radio frequency wave to travel in the x-direction. 

The value of   can then be determined by the theory of NMR Physics or in an 

NMR experiment. 

Secondly, this method of solution will work best if      (where   is the 

wavelength of the radio frequency wave and m is a number whose value must 

be determined). 

We shall evaluate the integral in equation (2.153) in order to determine the 

particular solution and hence the general solution of Un(t) when          . 

The integral cannot be solved unless m is known. However, if we assume that 

m=1, so that we will have a representation of what the actual solution (for 

which the value of m is fixed) looks like: 

Case (i) 

),(1 txB 







 t

x
A 



2
cos  

Equation (2.153) becomes: 

 
2

2 on n
n2 0

2Fd U dU 2 x n x
2 U A cos t cos dx.

dtdt

   
      

     (2.156) 

In the integral, 

 
0

o

2AF 2 x n x
cos t cos dx

   
 

     (2.157) 
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we let:  

 

1
o

0
0

0

2 x n x
cos t cos dx

2 x n x 2 2 x n x
cos t sin sin wt sin dx

n n

2 2 x n x
cos 2 t sin n 0 sin t sin dx

n n








  
   

  

             
          

            

     
     

     







 

but Sin 0n : 

1
0

0
0

0
0

2 2 x n x
I sin t sin dx

n

2 2 x n x 2 x 2 x n x
Sin t . cos cos t . cos dx

n n n

2 2 x n x 2 2 x n x
sin t cos cos t cos dx

n n n









  
  

  

               
            

              

           
          

          





   

   

 

1 1

1 12 2 2

1 12 2 2

2 2
I sin 2 t sin t cos0 I

n n n n

2 2 4
I sin 2 t cosn sin t I

n n n

2 2 4
I sin 2 t cosn sin t I

n n n

  
 
  

  
      

  

 
    

 

 
     

 

  

but since   tt  sinsin   and,  

tttt  sinsin2coscos2sin)2sin(  , 

we have: 

 
 1 2

2
I cos n sin t sin t

n 4


      

 
 

 
 1 2

2
I cosn 1 sin t

n 4


  

 
 

The integral (equation (2.17)) becomes: 
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 
 0

2

4AF
cosn 1 sin t

n 4
 

 
 

and we write equation (2.156) as: 

 
 

 
2

2 0n n

2 2

4AFd U dU
2 Un cosn 1 sin t

dtdt n 4
      

 
 (2.158) 

If we assume a solution, 

 nU t Pcos t Qsin t     (Particular solution) 

ndU
Psin t Qcos t

dt
      

2
2 2n

2

d U
Pcos t Qsin t

dt
      

Equation (2.158) becomes: 

 

 
   

 
 

 

2 2 2 2

2 20

2

2 2 0

2

Pcos t Qsin t 2 Psin t 2 Qcos t Pcos t Qsin t

4AF
cosn 1 sin t P 2 Q cos t

n 4

4AF
Q 2 P sin t cosn 1 sin t

n 4

               

        
  

        
   

 

 

2 2

2 2

( )P 2 Q 0

2 Q
P

    


 

 

 

 
 

 1cos
4

4
2

2

022 


 


 n
n

AF
PP  



Chapter 2  Fundamental Mathematical Formulation for the Theory, Dynamics 

and Applications of Magnetic Resonance Imaging 
 

http://www.sciencepublishinggroup.com  95 

 
   

 

 
 

 

2 2
2 2 0

2 2 2

2 2 2 2

0

2 2 2

4AF4 Q
Q cosn 1

n 4

Q 4 Q 4AF
cosn 1

( ) n 4

 
    

   

    
 

   

 

 

 
 

 

2 2

0

22 2 2 2 2

4AF cosn 1
Q

n 4 4

 


      

 

 
 

 
 

 
 

   

2 2

o

22 2 2 2 2 2 2

o

22 2 2 2 2

4AF cosn 12
P

n 4 4

4AF cosn 1 2

n 4 4

  


        

 
 

      

 

Therefore, 

 

 
 

   

 

 
 

 

n

0

22 2 2 2 2

2 2

0

22 2 2 2 2

4AF cosn 1 2
U t cos t

n 4 4

4AF cosn 1
sin t

n 4 4

 
  

   
       

 

 
   

  
       

 

 (2.159) 

Hence the general solution for       is: 
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   
 

 

 

 

 

 

 

0t
n n n 2

0

2 22 2 2 2

2 2

2
2 2 2 2

4AF cos n 1
U t acosh t bsinh t e

n 4

4AF cosn 12
cos t

n 44

sin t

4

 
    

 

 
 

  
      

 

 
  

 
     
 

 (2.160) 

Using the initial condition,          , it follows that: 

 










11

0cos0sin)0()0,(

n

n

n

ny

xn
U

xn
UxM








 

where        . That is, 

 
 

   

 

 
 

 

 

   

00

22 2 2 2 2

2 2

0

22 2 2 2 2

0

22 2 2 2 2

4AF cosn 1 2
acosh0 bsinh0 e cos0

n 4 4

4AF cosn 1
sin0 0 a 0,

n 4 4

4AF cosn 1 2
0

n 4 4

 
  

   
       

 

 
   

   
       

 

 
  

 
       

 

 (2.161) 

then, 

 
 

 
 

 

2 2

0t
n n 22 2 2 2 2

4AF cosn 1
U t be sinh t sin t

n 4 4


 

   
      

 

Therefore, 
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t
y n

n 1

2 2

0 2 2 2 2 2
n 1

t
n

n 1

2 2

0 2 2 2 2 2
n 1

t
y n

n 1

n x
M (x, t) be sinh t sin

(cos n 1) ( ) n x
4AF sin t sin

(n 4) ( ) 4

n x
be sinh t cos

(cos n 1) ( ) n x
4AF sin t cos

(n 4) ( ) 4

M (x, t) be sinh t si

























 



   
 

      


 



   
 

      

 









 t
n

n 1

2 2

o 2 2 2 2 2
n 1

2 2

0 2 2 2 2 2
n 1

n x n x
n be sinh t cos

(cos n 1) ( ) n x
4AF sin t sin

(n 4) ( ) 4

(cos n 1) ( ) n x
4AF sin t cos

(n 4) ( ) 4














 
 

 

   
 

      

   
 

      







 (2.162) 

Case (ii) 









 t

x
AtxB 






2
sin),(1 , 

Equation (2.153) becomes: 

 
2

2 on n
n2 0

2AFd U dU 2 x n x
2 U sin t cos dx

dtdt

   
      

     (2.163) 

and 

 
o

0

2AF 2 x n x
sin t cos dx

   
 

     (2.164) 

let 
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2
0

2
0

0

2

0

2 x n x
I sin t cos dx

2 x n x 2 2 x n x
I sin t sin cos t sin dx

n n

2 2 x n x
cos t sin dx

n

2 2 x n x 2 2 x
I cos t . cos sin t co

n n n








  
  

  

           
       

          

  
   

  

          
         

         







0

0
0

2

0

2

n x
s dx

2 2 x n x 2 2 x n x
cos t cos sin t cos dx

n n n

2 2 x n x 2
cos t cos I

n n n

2 2
cos(2 t)cos n cos( t) I

n n n n








  
 

  

           
        

          

       
     

      

  
     

  





 

but tt  cos)cos(   and )2cos( t  = tcos , it follows that: 

2 22 2 2

2 2 4
I cos t cosn cos t I

n n n

 
    

 
 

Re – arranging the above equation gives: 

 
 2 2

2
I cos n 1 cos t

n 4


  

 
 

Equation (2.164) thus becomes: 

 
 o

2

4AF
cos n 1 cos t

n 4
 

 
 

Then equation (2.153) can be written as: 

 
 

 
2

2 on n
n2 2

4AFd U dU
2 U cos n 1 cos t

dtdt n 4
      

 
 (2.165) 
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If we assume a solution of the form: 

nU (t) pcos t qsin t     

ndU (t)
psin t qcos t

dt
      

2
2 2n

2

d U (t)
pcos t qsin t

dt
      

Equation (2.165) becomes: 

 
   

 
   

2 2

2 2

2 20

2

2 2

2 20

2

pcos t qsin t 2 psin t 2 qcos t

pcos t qsin t

4F
cosn 1 cos t P 2 q cos t

n 4

q2 p sin t

4F
cosn 1 cos t P 2 q

n 4

0

         

    

        
  

     
 

      
 



 

 

 
 

 

2 2

o2 2

2

2
q p

4AF cosn 1
p 2 q

n 4




 


    

 

 

 
 

 

2 2 2 2
0

2 2 2

4AF cosn 1( )p 4 p

n 4

    


   
 

 

 
 2 2

0

2 2 2 2 22

4AF cosn 1
p

( ) 4n 4

 


     
 

 

 
0

2 2 2 2 22

4AF cosn 1 2
q

( ) 4n 4

 


     
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 

 
 

 
 

   

2 2

0
n 22 2 2 2 2

0

22 2 2 2 2

4AF cosn 1
U (t) cos t

n 4 4

4AF cosn 1 2
sin t

n 4 4

 
 

      

 
 

      

 (2.166) 

Equation (2.166) is the particular solution. The general solution for       is 

given as: 

 

   

 

 
 

 
 

   

t
n n n

2 2

0

22 2 2 2 2

0

22 2 2 2 2

U t acosh t bsinh t e

4AF cosn 1
cos t

n 4 4

4AF cosn 1 2
sin t

n 4 4

   

 
 

      

 
 

      

 (2.167) 

Again, the initial condition,           requires that: 

 

 
 

 
 

 
 

   

n

2 2

00

22 2 2 2 2

0

22 2 2 2 2

U 0 0

4AF cosn 1
acosh0 bsinh0 e cos0

n 4 4

4AF cosn 1 2
sin0 0

n 4 4



 
 

      

 
 

      

 

This implies: 

 ,0a
 

 
0

2

4AF cosn 1

n 4



 
 

 2 2

2 2 2 2 2( ) 4

 

    
 = 0 (2.168) 

 

   
0t

n n 22 2 2 2 2

4AF cosn 1 2
U (t) be sinh t sin t

n 4 4

  
   

      
  (2.169) 
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then, 

 

 

 
 

   

t
y n 0 2

n 1 n 1

t
n2

2 2 2 2
n 1

0 22 2 2 2 2
n 1

t t
y n

n 1 n 1

cosn 1n x
M (x, t) be sinh t sin 4AF

n 4

2 n x n x
sin tsin be sinh t cos

4

cosn 1 2 n x
4AF sin t cos

n 4 4

n x
M (x, t) be sinh t sin be Sin

 


 










 
 

 


  

  

  
 

     

  
 

      


  



 





 

 

   
 

   

n

0 22 2 2 2 2
n 1

0 22 2 2 2 2
n 1

n x
h t cos

cosn 1 2 n x
4AF sin tsin

n 4 4

cosn 1 2 n x
4AF sin t cos

n 4 4














  
 

      

  
 

      





(2.170) 

In equation (2.170) the following parameters are defined: 

(i) 0
0

T2vn vn
2 T

2

 
    

 
 

 
2

2 20
0

T vn n
T v

4

  
     

  
 

(ii) 
2

2 20
g

T vn n
T v

  
     

  
 

(iii) 

2 22
2 2 2 2 20

g

22
20

g

22
2o

g

T n n
v T v

4

T n
T 2v

4

T n
T 2v

4

    
           

    

 
    

 

 
     

 
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(iv) o
o

T vn 2 vn
2 2 T

2

   
       

  
 

2 2
2 2 2 2 2 2 2

o o o

2 vn vn n
4 T T 4 T 4 v

      
             

     
 

2.16  Solutions to the NMR Travellling Wave Equation 

Based on equation (2.35), the NMR wave equation can be written in the form: 

       

    
    

    
      (t) (2.171) 

or 

      

       - 
    

    
 +      (t) 

       

          (t) - 
    

    
 (2.172) 

In generalizing equation (2.172), we write: 

 v
2                  

    

    
 (2.173) 

In the polar coordinate, equation (2.173) becomes: 

 v
2 
( 
    

   
 

 

 
 
   

  
   

 

  
 
    

    )             
    

    
 (2.174) 

Case (1) 

For a steady state condition, 
    

    
  , and equation (2.174) becomes: 

v
2 
( 
    

   
 

 

 
 
   

  
   

 

  
 
    

    ) =      (t) 

(a) The homogeneous equation gives: 

v
2 
( 
    

   
 

 

 
 
   

  
   

 

  
 
    

    ) = 0   [M0=0 or          ] 
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And the solution follows exactly as in the case of the diffusion equation, that 

is: 

   (r,    = 
  

 
 +     

    (   Cosm  + Bm sin m ) (2.175) 

(b) The inhomogeneous equation is:  

v
2 
( 
    

   
 

 

 
 
   

  
   

 

  
 
    

    ) =      (t) 

We need to give a definition to the function    (t) before solving it. 

Case (ii) 

If 
   

  
     and    =0 or         , (2.4) becomes: 

 v
2 
( 
    

   
 

 

 
 
   

  
   

 

  
 
    

    )     
    

    
 (2.176) 

We can then write that: 

 
    

   
 

 

 
 
   

  
   

 

  
 
    

       
 

   
    

   
 (2.177) 

By the method of separation of variables we have: 

    R(r)          

   

  
    

  

  
,  

    

   
      

   

    
,  

   

  
    

  

  
,  

    

       
   

    

   

  
    

  

  
,  

    

    
    

   

   
 

Equation (2.177) becomes: 

  
   

   
   

  

 
 
  

  
   

  

  
 
   

       
  

   

   

      
 

Multiplying all through by 
 

   
,  
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Both the RHS and LHS must be equal to a constant:     

 

 

   

   
  

 

  
 
  

  
   

 

   

   

     
    

 

  
  
 

 

   

   
       

 

 

   

   
  

 

  
 
  

  
   

 

   

   

     
       

 
  

 

   

   
   

 

 

  

  
   

 

 

   

             (2.178) 

 
   

   
         (2.179) 

If we assume that: 

T       

Then equation (2.179) becomes: 

         

         

T(t)      
        

                                       (2.180) 

Equation (2.178) can be written as: 

  

 

   

   
   

 

 

  

  
           

 

 

   

   
 

This equation must also be equal to a constant   , 

  

 

   

   
   

 

 

  

  
           

 

 

   

   
       

Where  
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              (2.181) 

and  

  
 

 

   

          (2.182) 

From (2.181), we obtain:  

  
   

   
    

  

  
           ) R    

A solution of which is given as: 

 R(r)                      (2.183) 

From (2.182), we write that: 

 
   

          (2.184) 

If we assume that: 

         

it follows from (2.184) that: 

      
 
 

         

Therefore,          
         

     . 

From which we have that: 

                Qsin   (2.185) 

P        , Q          ) 

Therefore, 

         
         

     } {                                    (2.186) 
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We can then make use of the appropriate boundary condition as required. 

Case (iii) 

If  
   

  
     and,        and     t)   , 

v
2 
( 
    

   
 

 

 
 
   

  
   

 

  
 
    

    )         

    
        (t)       (2.187) 

If we write that:  

                          

   

  
   

  

  
, 
    

   
   

   

   
      

   

  
   

  

  
, 
    

      
   

   , 
   

  
   

  

  
     (t), 

     

   
   

   

    
        (t) 

Hence equation (2.187) becomes: 

     
   

   
  

 

 
 
  

  
  

 

  
 
    

       
    

   
      (t) (2.188) 

If we simplify the problem by assuming: 

             

Then equation (2.188) becomes:  

     
   

   
  

 

 
 
  

  
    

 

  
 
    

       
    

   
  (2.189) 

 
   

   
  

 

 
 
  

  
    

 

  
 
    

       
 

 

   

   
    (2.190) 

The solution to this equation is: 

X(r,          
         

                                      

        

Therefore, the general solution in this case is: 
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 {                                            (2.191) 

Case (iv) 

If     is radially symmetric, it does not depend on   and if              

we have: 

v
2 
( 
    

   
 

 

 
 
   

  
)   

    

   
 

 
   

  
  

 

 

   

  
     

 

    
     

   
  (2.192) 

By the method of separation by variables, we have: 

             

    

   
   T

   

   
    

   

  
   

  

  
,  

     

   
   

   

   
 

Equation (2.192) becomes: 

T
   

   
   

 

 
 
  

  
    

 

  
   

   
 

Multiplying all through by 
 

  
, 

 
 

 

   

   
   

 

  

  

  
    

 

  
  
 

 

   

   
 (2.193) 

It follows that: 

 

 

   

   
    

 

  

  

  
     

 

  
  
 

 
 
   

   
       

Where we have: 
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           (2.194) 

and  

 
 

  
 . 

 

 

   

   
       

 
   

   
         (2.195) 

The solution of equation (2.194) is given as:  

R(r)                     

To solve equation (2.195), we write: 

T(t)      

Then equation (2.195) becomes: 

         

         

Hence, 

T(t)     
         

     

Therefore, 

              
         

                              (2.196) 

We can then apply the boundary conditions as appropriate. 

2.17  MRI Bessel Equation 

We study the flow properties of the modified time independent Bloch NMR 

flow equations which describes the dynamics of the hydrogen atom under the 

influence of rf magnetic field as follows: 
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1
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02

2

2 )(
)(

T

xBM
MxS

dx

dM
vT

dx

Md
v y

yy 
  (2.197) 

where  

2 2
1 g g

1 2

1
S(x) B (x) T , T

T T
    , 

0
1 2

1 1
T

T T
   

However, if the fluid velocity is dependent on x as follows: 

 


x
v    (2.198) 

where   is the time required for the spins to cover the distance x. Since v is no 

longer constant, we may write: 

 
1

10

02

2

2 )(
)(

T

xBM
MxS

dx

dM
v

dx

dv
T

dx

Md
v y

yy 









  (2.199) 

 

2
y y2 0 1

0 y2
1

d M dM M B (x)1
v T v S(x)M

dx Tdx

 
    

 
 (2.200) 

If we design the radiofrequency field such that: 

 
r

1

G
B (x) i x , , r 1

 
     


 (2.201) 

where   is the gradient magnetic  field,   is the gyromagnetic ratio and   is the 

length of time for which the gradient pulse is applied and the time  is defined 

as: 
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1 2

1 2

T T

T T
 


  (2.202) 

If the NMR signal is sampled when the applied radiofrequency energy 

successfully displaces most of the spin unto the transverse plane (M0 ≈ 0), 

equation (2.197) then becomes: 

 
2 2

y y2 2
0 y2

1 2

d M dM G 1
v 2T v x M 0

dx T Tdx

   
         

 (2.203) 

 

22
y y2 2 21 2 1 2 1 2

y2
1 2 1 2 1 2 1 2

d M dMT T T T T T1
x 2x ( G ) x M 0

T T T T dx T T T Tdx

     
           
       

 (2.204) 

If we also set,  

k G    

and 

 
   20

2

21

212

T

T

TT

TT g



  (2.205) 

we may therefore write: 

  
2

y y2 2 2 2
y2

d M dM
x 2x k x M 0

dxdx
      (2.206) 

Equation (2.206) is an equation transformable to Bessel function [60]. Since 

we require that the transverse magnetization be finite as x tends to infinity, the 

solution is given as: 

 y 1 nM (x) C xJ (kx)  (2.207) 

where:  
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2

1 2
n  (2.208) 

Phase of the Spin 

In equation (2.205), if we set:  

kx  (2.209) 

y y y

2 2 22 2
y y y y2

2 2 2 2

dM dM dMd
k

dx d dx d

d M d M dM d Md d
k

dx ddx d dx d


 

 

  
   

  

 

Equation (2.206) becomes: 

 
2

y y2 2 2 2 2
y2

d M dM
k x 2kx k x M 0

dd
   


 

  
2

y y2 2 2
y2

d M dM
2 M 0

dd
      


 (2.210) 

We shall make another transformation as follows: 

 


U
M y    (2.211) 
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2

2
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221
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



  (2.212) 

Hence, equation (2.211) becomes:  

 
2

2 2 2

2 2 3 2

1 d U 2 dU 2U 1 dU U U
2 0

d dd

   
                      
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 
2
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2

d U dU 2U dU 2U U
2 2 0

d dd

   
                   

 

  
2

2 2

2

d U U
0

d
    


 (2.213) 

 

2 2

2 2

d U
1 U 0

d

 
      

  (2.214) 

Based on the Short Gradient Pulse (SGP) approximation [66], the parameter 

  represents the phase of the spin such that the effect of a gradient pulse of 

duration τ on a spin at position x is given by, neglecting the effect of the static 

field, 

 )()( xxGx    (2.215) 

Hence, if we consider the phase change of a spin which was at position    

during the first gradient pulse and at position    during the second, then the 

change in phase in moving from    to    is given by  

 )()( 0101 xxGxx    (2.216) 

Therefore, we see that: 

 
2

0

2

2

))(( Tx

Tg




   (2.217) 

2.18  Equation of Motion for Pulsed NMR 

In a typical MRI procedure where G is the pulsed gradient applied for the 

length of time , equation (2.40) becomes: 
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 (2.218) 

where 

GxxB  )(1  

and  



x
xTv o   

For 90
o
 pulse Mo is minimum (say Mo = 0), we can write equation (2.218) as: 
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dx T Tdx
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dx
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Md
x


  (2.219b) 

where 

 
oT

1
 (2.220) 

Equation (2.219) is a general form of an equation transformable into Bessel 

equation of order   with parameter k. In equation (2.219), the flip angel is 

defined as: 

 (sec)))(sec()( 11  GGradrad   (2.221) 
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Fig. 2.1  The NMR Pulse sequence. 

Equation (2.219) presents new ways of generating the NMR signal using the 

Bessel functions. As shown in figure 1, the experiment is started with a 
 

 
 pulse, 

following which the magnetic vector My precesses in the plane perpendicular to 

the direction of static magnetic field    and free induction decay (FID) occurs. 

The maximum amplitude of the FID is measured to obtain a voltage-amplitude. 

After a delay which is typically of the order of 10ms, a π rf pulse is introduced. 

Following another interval , the magnetic spins recluster and a spin echo 

voltage signal is observed. The voltage amplitude of the spin echo is taken as 

proportional to My, equation (2.219) is then solved. To solve equation (2.219b), 

the value of G must be known, as well as the gyromagnetic ratio   of the 

specific nuclei under study. The voltage amplitude of the spin echo My is easily 

computed by solving the Bessel equation of order   and parameter  as shown 

in equation (2.219b) where:  
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 gT   (2.222a) 

and 

  G  (2.222b) 

2.19  Application to Molecular Imaging 

In this section, new magnetic resonance methodology to solve the Bloch 

NMR flow equation based on Hermite, Bessel and simple quantum mechanical 

functions for detailed studies of processes taking place at the molecular level in 

living tissues have been developed. We show how these quantum mechanical 

functions may be very crucial in the assessment of Cancer cells, Multiple 

sclerosis (MS) and Brain edema using magnetic resonance imaging.  

We apply a fundamental transformation procedure on equation (2.40) given 

by:  

 
x

yM (x) (x)e   (2.223a) 

provided that: 

 
02

1

vT
 , (2.223b) 

Equation (2.40) becomes: 

   0)(
1)( 222

22

2

 xxGTT
vdx

xd
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
; (2.224a) 

where  
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1

T
TR   (2.224b) 

and G is the strength of the gradient field. With further assumptions: 

 GxixB  )(1
; x

v

G
i


  ; (2.225) 

we obtain:  
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If we make another transformation as follows: 

 
v
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y( ) M ( )e


 


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v

i G 2

 
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
, (2.227) 

we have: 

 

2
y y

y2

d M dM
2 2nM 0

dd
   


 (2.228) 

and given that: 

 
g RT T (2n 1) Gv

1

    


  
, (2.229) 

the final solution becomes: 

n
n 2 2

y n n

G G d G
M (x) H i x ( 1) exp x exp x

v v vdx

      
               

  (2.230a) 

where  
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
 (2.230b) 

From equations (2.222, 2.230), the term 
1


 represents the phase change of 

the spin at the position x, provided that the relaxation times T1 and T2 are 

properly chosen to represent the gradient pulse duration in the pulsed-field 

gradient (PFG) NMR as shown in figures 2.2-2.3. 

 

Fig. 2.2  Plots of the transverse magnetization My against the absolute (positive) values 

of α using the relaxations time – values of kidney at 1.5T [3], G = 10mT/m, γ = 42.5781 

x 10
6
/T/s for (a) v = 3.0m/s (b) v = 0.3m/s (c) v = 0.003m/s (d) v = 0.000003m/s. 
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Fig. 2.3  Plots of the transverse magnetization My against the absolute (positive) values 

of α; G = 10mT/m, γ = 42.5781 x 10
6
/T/s, v = 0.000003m/s using the relaxations time – 

values, at 1.5T [3], of (a) skeletal muscle (b) heart muscle (c)liver (d) kidney (e) spleen 

(f) fatty tissue (g) gray brain matter (h) white brain matter. 
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It is observed from figures (2.1) and (2.2) that as the fluid velocity reduces as 

often encountered in cellular processes, the imaging equation as given in 

equation (2.224) shows contrast in terms of MR signals. Figure (2.2) shows that 

the behaviour of the MR signals is completely different for different tissues. It 

is quite interesting to note that the magnitude of the signals becomes so large at 

the molecular level. This can make it possible to follow processes at molecular 

level in real time with brighter images. 

2.20  The Hermite Polynomials 

Based on equations (2.224-2.225), equation (2.40) becomes: 

   0)(
)( 22
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2
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 (2.231) 
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where G is the strength of the gradient field, The solutions of equation (2.40) 

are shown in table 1;  
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Table 1. Solution of the Bloch NMR flow equation in terms of Hermite Polynomials. 
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where:  12  n
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Fig. 2.4  Plots of fluid velocity against parameter n when G = 10mTm
-1

, γ = 42.5781 x 

10
6
T

-1
s

-1
 using the relaxations time – values, at 1.5T [3], of (a) skeletal muscle (b) heart 

muscle (c)liver (d) kidney (e) spleen (f) fatty tissue (g) gray brain matter (h) white brain 

matter. 
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Fig. 2.5  Plots of transverse magnetization against v and x; G = 10mTm
-1

, γ = 42.5781 

x 10
6
T

-1
s

-1
 using the relaxations time – values of kidney at 1.5T [2] for (a) n = 0 (b) n = 

1(c) n = 2 (d) n = 3. 

Based on equation (2.232) and figure (2.3), the highest velocity is recorded 

when n = 0 and the velocity decreases when n increases. For each value of n, 

the NMR signal at the molecular level is obtained as  Based on equation (2.232) 

and figure (2.4), the highest velocity is recorded when n = 0 and the velocity 

decreases when n increases. For each value of n, the NMR signal at the 

molecular level is obtained as shown in table 1 and equation (2.218). If Ax
2
 is 

defined as the cross sectional area of blood vessels, the method can be very 

useful in estimating blood flow in capillaries or veins at the molecular level, 

especially in the assessment of angiogenesis and cancer proliferation. It is 

worthy of note that as the values of n increases (moderate decrease in the fluid 

velocity), the signal behaves like that of electron spin resonance (Figs 2.5c and 
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2.5d). This may be very important in the imaging of the complex molecular 

changes often observed in cancer cells. 

2.21  Application to Multiple Sclerosis 

Multiple sclerosis (MS) is an inflammatory disease in which the fatty myelin 

sheaths around the axons of the brain and spinal cord are damaged, leading to 

demyelination and scarring as well as a broad spectrum of signs and symptoms. 

MS affects the ability of nerve cells in the brain and spinal cord to communicate 

with each other effectively. Nerve cells communicate by sending electrical 

signals called action potentials down long fibers called axons, which are 

contained within an insulating substance called myelin. In MS, the body's own 

immune system attacks and damages the myelin. When myelin is lost, the axons 

can no longer effectively conduct signals [67]. Although much is known about 

the mechanisms involved in the disease process, the cause remains unknown.  

MRI has been considered to be the most informative noninvasive method to 

diagnose and monitor disease progression in patients with multiple sclerosis 

(MS) [68]. However, conventional T2-weighted MR images do not sufficiently 

correlate with histo-pathological substrates and clinical disability [68]. 

Conventional T2-weighted images are unable to distinguish underlying histo-

pathological substrates, such as inflammation, edema, demyelination, gliosis, 

and axonal loss, because all of these lesions have identical high signal on T2-

weighted images. We study equation (2.206) when the transverse magnetization 

is finite as x tends to infinity. The solution is given as:  

 )kx(JxC)x(M ny 1  (2.233a) 

where:  
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2

1 2
n  (2.233b) 

Since the abnormalities observed in MS mostly involve the white matter (T1 

= 0.78s, T2 = 0.09s), gray matter (T1 = 0.92s, T2 = 0.10s) and CSF (T1 = 4.50s, 

T2 = 2.30s), we shall make use of their relaxation properties at 1.5T to compare 

their transverse magnetization for different ranges of x as shown in figure 2.5. 

  

(a1) (a2) 

  

(a3) (a4) 
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(b1) (b2) 

  

(b3) (b4) 

  

(c1) (c2) 
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(c3) (c4) 

Fig. 2.6  Plots of transverse magnetization against x for C1 = 10, G = 0.033T/m and τ = 

0.02s; using the relaxation times of (ai) CSF in milli range (a2) CSF in micro range (a3) 

CSF in nano range (a4) CSF in pico range (bi) Gray matter in milli range (b2) Gray 

matter in micro range (b3) Gray matter in nano range (b4) Gray matter in pico range 

(ci) White matter in milli range (c2) White matter in micro range (c3) White matter in 

nano range (c4) Whiet matter in pico range. 

The results obtained in Fig. 2.6 confirm what has been observed in T2 – 

weighted MR experiments. Changes in relaxation times that are direct 

indication of histo-pathological substrates do not contribute significantly to the 

magnitude of the MR signal. That is, dynamics of these important substrates 

cannot easily be seen on MR scans. However, from figure 2.6, we have 

observed that the transverse magnetization is actually responding very slowly to 

small changes in T0. The magnitude of My is changing very slowly from one 

tissue to another. Secondly, we see that whenever x is in the microscopic range, 

the behavior of My changes uniquely and since most tissue processes are found 

in this geometrical range, inflammation, edema formation, demyelination, 

gliosis and axonal may easily be imaged. However, to realize this, the MR 

algorithm must be designed such that C1 takes on very high values in order to 

improve signal magnitudes. Finally, we suggest that higher static field strength 

may be required for good MR assessment of multiple sclerosis, although the 
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influence of such high fields and the associated gradient fields on normal tissue 

functions must first be taken into consideration. 

2.22  Bloch - Torrey Equation for NMR Studies of 

Molecular Diffusion 

Since the diffusion coefficient varies very slowly with the radial distance r, it 

is interesting to note that B1(x,t) in equation (2.33) can be defined appropriately 

based on the problems to be solved. For example if we define B1(x,t) as: 

    1 yB r, t f (r)M r, t   (2.234) 

Parameter f(r) in equations (2.234) can be appropriately defined to solve 

specific biological and medical problems. Generally, equation (2.33) becomes: 

 
y y2

0 y2

M MD
r F f (r)M

t r rr

  
  

   
 (2.235) 

The Bloch –Torey equation for the magnetization density My(r,t) arising from 

spins diffusing with diffusion coefficient D and an arbitrary time-dependent 

linear gradient field is obtained from equation (2.33) if we define B1(x,t) as: 

    1 yB r, t igf (t)M r, t    (2.236) 

where g denotes the product of Fo and the gradient strength, the  gradient field 

has the temporal shape function f(t) in the direction x,  where r is is the position 

vector of the spin. For one dimensional motion, equations (2.33) becomes: 

  
2

y y

y2

M M
D igf (t)M x, t

t x

 
 

 
 (2.237) 

Equation (2.237) is the Bloch-Torrey equation which has been solved for the 

NMR study of molecular diffusion [69, 70]. 
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2.23  Adiabatic Model of Bloch NMR Flow Equation 

In this section, we consider equation (2.25) under adiabatic condition when 

the rf B1 field is a constant. The adiabatic condition is defined as: 

 
2 2

1
1 2

1
B (x)

T T

 
   

 
 (2.238) 

Based on equation (2.238), equation (2.25) can be written as: 

 oy
yy

MM
dx

dM

TT
vT

dx

Md
Tv  













 2

21

2
12

2
2

1
2 11

 (2.239) 

where 

 101 2
1  xxvT   for real value of  v (2.240) 

 
)(

4

21
2

1

21

TTT

TxT
v




  when                       (2.241) 

 11 BT    (2.242) 

For human blood flow of T1 = 1.0s, the parameter   is a real constant which 

completely defines constant values of rf B1 field for the NMR system [71, 72].  

 1B   (2.243) 

The application of equation (2.239-2.242) has been demonstrated [71]. 

2.24  Application of Time Dependent Bloch NMR Equation 

and Pennes Bioheat Equation to Theranostics 

Theranostics is the combination of therapeutics and diagnostics. It has been 

regarded as a key part of personalized medicine and requires considerable 
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advances in predictive medicine; novel theranostic agents are developed and 

carefully designed for in vivo quantitative assessment of the amount of drug 

reaching a pathological region and the visualization of molecular changes due to 

the therapeutic effects of the delivered drug. This study intends to 

mathematically model a closely knitted theranostic method in which a specially 

selected radiofrequency field is used to heat up a tissue and at the same time 

cause the spins of the tissue to emit MR signals.  

The key to this application is the specific absorption rate (SAR) which drives 

both rf power heating within a tissue and is related directly to the B1 field which 

is needed to cause spin resonance. If we consider bioheat flow in one direction 

[73, 42] with uniform tissue properties, we have: 

 )(
2

2

bbb TTcwSAR
x

T
k

t

T
c 









  (2.244) 

where ρ is tissue density, c is the specific heat of tissue, T is the tissue 

temperature, t is the time, wb is the blood perfusion rate, cb is the specific heat of 

blood, Tb is the supplying arterial blood temperature, k is the thermal 

conductivity of tissue, and x is the distance from the skin surface. SAR is the 

applied rf power per unit volume. If the tissue temperature changes very slowly 

with x, we have: 

 b b b

T
c SAR w c (T T )

t


   


 (2.245) 

The solution to equation (245) is given as follows: 

 
b b

b
b b

w cSAR
T(t) T Aexp t

w c c

 
    

 
 (2.246) 
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If the tissue temperature before the application of the rf field does not defer 

significantly from the arterial temperature, the initial the condition for this 

problem is given as: 

 bT(t 0) T   (2.247) 

We finally have: 

 b b
b

b b

w cSAR
T(t) T 1 exp t

w c c

  
     

  
 (2.248) 

SAR and Oscillating Magnetic Field: The rf power for the voxel volume Vvox 

is Prf = (SAR) Vvox
 
. The energy of the oscillating radio wave is given as Erf = 

ћγB1, whose rate of change is: 

 

rf
rf

dE
P

dt
  and  

0

t

rf vox

t

E SAR V dt   (2.249) 

 

vox
1 0

V
B (t) (SAR)(t t )    (2.250) 

SAR and Time dependent NMR Equation: We can relate time dependent 

MRI signal to SAR using the time independent NMR equation [42] given by 

equation (2.251) and (2.252): 

    
2

y y 2 2 o
o g 1 y 12

1

d M dM M
T T B (t) M B t

dt Tdt
       (2.251) 

 where g

1 2

1
T

TT
  and 0

1 2

1 1
T

T T
   (2.252) 

If we sample the signal when the transverse component of the magnetization 

has the largest amplitude, we write M0 ≈ 0. Provided that the condition    

    
     holds, equation (2.251) becomes [42]: 
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2

y y 2 2
o 1 y2

d M dM
T B (t)M 0

dtdt
     (2.257) 

From equations (2.251) and (2.252), we obtain: 

 
22

y y 2 2vox
o 0 y2

d M dM V
T (SAR) (t t ) M 0

dtdt

 
    

 
 (2.258) 

If the rf B1 field is applied at time t0 = 0, we have: 

 
n n 2 2vox vox 0

y 1 n 2 n

V V 1 T t
M (t) ( ) (t) C J t C Y t ; n

2 2 2

     
       

    
 (2.259) 

This solution is valid for           . It is always required that the 

transverse magnetization be finite as time tends to infinity, hence, we write: 

 

0 0

0

1 T t 1 T t

2vox2 2
y 1 1 T t

2

V
M (t) C ( ) (t) J t

2

 



 
   

 
 

(2.260) 

The results obtained in equations (2.248, 2.260) have been simulated with 

relaxation parameters of human liver at 1.5T [74] and the corresponding thermal 

properties [72, 73]: T1 = 0.610s, T2 = 0.057s, wb = 2.86kg/m
3
s, cb = 3960J/kg.K, 

ρ = 1060kg/m
3
, c = 3600J/kg.K. Plots (a) and (b) (SAR = 4W/m

3
) give the 

distribution of the tissue temperature and transverse magnetization on a log 

scale while plot (c) (SAR = 40000W/m
3
) gives the density plot of the transverse 

magnetization as a function of time and tissue temperature.  
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Fig. 2.7  show (a) Temperature profile (b) Transverse magnetization profile (c ) density 

image. This shows that provided the conditions which led to equation (2.248) are met, 

real time theranostic imaging can easily be done with equations (2.248, 2.260). 

The temperature distribution and the rf power needed to generate rf B1(t) field 

within the medically acceptable SAR limit during MRI scanning procedure have 

been investigated by solving the Pennes Bioheat equation  in terms of MRI 

parameters. The relationship between temperature, SAR and rf B1(t) at any 

given time (under the assumed conditions)  is clearly shown in equations (2.248, 

2.260) and Fig.2.7. a, b, c. With this, accurate estimate of the amount of rf field 

needed for a particular power deposition for safe imaging of different tissues 

can be done. What is most interesting about the results in this study is that time, 

SAR and voxel volume can easily be used to manipulate the range of 
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temperature needed for therapy without unnecessarily increasing the tissue 

temperature. These changes directly influence the NMR signal as clearly 

illustrated in Fig, 2.7c and shows that we can do tissue imaging and temperature 

mapping at the same time. 

2.25  Summary 

The major contributions of this book can be seen at a glance by the 

development of the following differential equations derived from the Bloch 

NMR flow equations. These differential equations can be referred to as the 

Awojoyogbe-Bloch NMR flow equations. 
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The ideal approach to exhaust most of the quantitative and qualitative 

information for studying biological systems at the macroscopic and microscopic 

levels by magnetic resonance imaging technique with particular reference to the 

theory, dynamics and applications of MRI would be to find generalized (time 

dependent and time independent) analytical solutions to these equations. The 

advantages of such solutions are related to the fact that the magnetizations and 

signals obtainable from them are synthesis of many parameters that are of 

clinical importance for most magnetic resonance imaging analyses. 

Solutions to these equations will result to new developments in MRI physics. 

Quantitative and computational analyses, mathematical modeling and analytical 

solutions of these equations can lead to breath taking innovations and novel 

applications of MRI for improved health care. High quality and novel 

contributions related to biological, biomedical, clinical, geophysical and any 

other exciting applications are welcomed in the next volume of this book. All 

proposals can be addressed to the editor at abamidele@futminna.edu.ng or 

awojoyogbe@yahoo.com. 

mailto:abamidele@futminna.edu.ng
mailto:awojoyogbe@yahoo.com
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2.26  Conclusion 

In this chapter, we have modeled the Bloch NMR flow equations into Bessel 

equation, Diffusion equation, Wave equation, Schrödinger’s equation, 

Legendre’s equation, Euler’s equation and Boubaker polynomials. While the 

detailed analytical solutions of the time dependent NMR flow equation and the 

NMR wave equation are presented, solutions to other several equations that may 

be derived from equation (2.18) are available in standard textbooks on physics, 

mathematics and engineering mathematics. With appropriate initial and 

boundary conditions, solutions to these equations can be applied to solve most 

problems that may enhance the theory, dynamics and applications of MRI. This 

may open a large window of opportunities for researchers in all  research fields 

to contribute to this high intellectually adventurous field thereby improving the 

image quality with better treatment of deceases at the most affordable cost. It is 

hoped that due to the ability of magnetic resonance imaging to probe right to the 

fundamental level, scientists may be able to image human cellular functions and 

such imaging modalities would definitely help in the understanding of the 

human diseased conditions. Information gathered from the images can then be 

added to the present medical database to make it more comprehensive and thus 

permit the physician to make a more specific diagnosis, prognosis and possibly 

the appropriate therapy. The basic challenge in this direction is finding the right 

mathematical frameworks which appropriately describe the processes involved. 
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