Journal of the Nigerian Association of Mathematical Physics Volume 39, (January, 2017), pp 409 – 418 © J. of NAMP

On the Use of Big M Method in Modeling Production Process: A Case Study of NARICT, Zaria

Kassim M., Yusuf A., Bolarin G. and Aiyesimi Y.M

Department of Mathematics, School of Physical Science, Federal University of Technology, Minna, Niger State, Nigeria.

Abstract

In the National Research Institute for chemical Technology (NARICT), optimal control of production and distribution has a fundamental role to play. One inevitable area where production planning has proven useful is in the allocation of scarce resources to meet certain production demand, also in the distribution of finished goods to different demand location at a minimum cost. In this study, the particular scenario presented concerns NARICT with potentials for production of multiple items under different facilities was considered. The items produced are distributed to number locations whose demands are known. Three integer programming models were analyzed to address the production planning problem, while the modified version of simplex method was used as the numerical tool for the computation of the optimal solution. The optimal solutions were verified using the Windows based Quantitative System for Business (WINQSB) package. The results obtained showed that not all items should be produced if a minimum cost is to be achieved (i.e. some item should have zero production units). we see that if demand is known at a starting point our decisions are not exposed to uncertainty, since the demand determines the actual distribution of quantities and consequently the minimum distribution cost. Adequate production planning is essential to ensure less operational cost and increased profits.

Keywords: Optimization, Production Planning, Linear Programming.

Optimization is a vital instrument for decision making process based on past experiencewhich can affect the present, while current future. Most decision making is part of the unending history of actions. Earlier choices affect the present, while current decision making is part of the unending history of actions. Earlier choices affect the present, while current decision making is part of the unending history of actions. decisions may influence the future and so on. One of the important tools of Optimization is "Linear Programming" (L.P.). A Linear Programming Problem (LPP) is specified by a linear, multi-variable function which is to be optimized is called the Minimized) subject to a set of stated restrictions, or linear constraints. The function which is to be optimized is called the Objection of Simpley Algorithm was developed in 1947 to solve Objective function. The Simplex method, also called Simple Technique or Simplex Algorithm was developed in 1947 to solve Problems of this type in [1] an American Mathematician. It is the basic workhouse for solving Linear programming problems will date. The solution of this type in [1] an American Mathematician. It is the basic workhouse for solving Linear programming problems and the solution of this type in [1] and American Mathematician. It is the basic workhouse for solving Linear programming problems and the solution of this type in [1] and American Mathematician. It is the basic workhouse for solving Linear programming problems are solving Linear programming problems. till date. Though there have been modifications to the method, especially to take advantage of computer implementations, the essential of the method was invented [2,3].

essential elements are still the same as they were when the method was invented [2,3]. Production and distribution company are often faced with decisions relating to the use of limited resources. These resources may include may include men, materials and money. In other sector, there are insufficient resources available to do as many things as many include men, materials and money. In other sector, there are insufficient resources would be allocated to obtain the management would wish. The problem is based on how to decide on which resources would be allocated to obtain the bestresult well and wish. The problem is based on how to decide on which resources would be allocated to obtain the bestresult well and the Linear Programming is heavily used in micro-economics and company bestresult, which may relate to profit or cost or both. Linear Programming is heavily used in micro-economics and company management management such as planning, production, transportation, technology and other issues. Although the modern management lissues are error of the production of the maximize profits or minimize cost with limited resources. Therefore, lasues are error changing, most companies would like to maximize profits or minimize cost with limited resources. Therefore, many issues are error changing, most companies would like to maximize profits or minimize cost with limited resources. Therefore, many issues are error changing, most companies would like to maximize profits or minimize cost with limited resources.

In this paper, we formulate production processes as integer linear programming and tested on the production models, and the models for the models formulated. The modified version of simplex method was adopted and tested on the production models, and the results obtained in the models of this paper is organized as follows; nodels formulated. The modified version of simplex method was adopted and tested on the production models, and the sults obtained showed that the method is highly reliable and efficient. The remainder of this paper is organized as follows;

Details of the simplex method and its modification are discussed in section 2. In section 3, 4 we present the model Details of the simplex method and its modification are discussed in section. The model formulations of the production process and effectively apply the modified version simplex method to solving them.

2.0 Materials and Method

Simplex Method and its Implementation

Step 1: Find the PIVOT element. The pivot element is that number which is at the intersection of working column (WC) and row (WR). The working column is the column with the most negative number in the last row (if no negative number exists, we multiply all the elements in that row by -1), excluding the last column. To identify the WR, consider the strictly positive elements in the WC and form ratios with the corresponding elements in the last column, excluding the element in the last row and last column. The row that provides the least ration is the WR.

Step 2: Remove the basic variable (BV) in the WR and replace it with non-basic variable in the WC.

Step 3: Convert the pivot element to one by dividing all the elements in the WR with the pivot element, excluding that element in the first column. Then, reduce all other elements in the WC to zero by use of row operations

Step 4: Repeat steps 1-3, until all the elements in the last row are greater than or equal to zero.

Step 5: The problem has no solution working if there is no strictly positive element in the WC or if artificial variable is part of the final set of basic variables.

Modified Version of the Simplex Method (The Big M method) 2.1

If a constraint of an Integer Linear programming is strictly equal (=), we write the program in standard form by adding artificial variable (AV) only. But if it is an inequality with greater than or equal restriction (≥), then make it standard by subtracting surplus variable (SV) and at the same time adding artificial variable. The coefficient of the surplus variable in the objective function is zero, while that of the artificial variable is M, which is assumed to be very high and it is considered as a penalty cost.

2.2 Implementation of the Big M Method

If the problem is written in standard form then the last row of the initial tableau is expressed in term of the big M, which is then broken into two rows; the first row contains terms independent of M and the second one involves the coefficients of M. Hence we apply simplex method as usual;

If an artificial variable leaves the set of basic variables, its entire column is deleted for further consideration. (i)

If the last row (for coefficient of M) contains all positive elements then consider second to the last row, for (ii) identifying the Working column. Iterations are terminated if all the elements in the last rows are zero or positive.

Formulation of Integer Linear Programming Problems 2.3

The IP optimizes a linear objective function subject to a set of linear equalities or inequalities. The general production planning maximization models is;

Model (P1)

Optimize
$$Z: c_1x_1 + c_2x_2 + ... + c_nx_n$$

Subject to:

$$b_{11}x_1 + b_{12}x_2 + ... + b_{1n}x_n \le R_1$$

$$b_{21}x_1 + b_{22}x_2 + ... + b_{2n}x_n \le R_2$$

$$....$$

$$b_{m1}x_1 + b_{m2}x_2 + ... + b_{mn}x_n \le R_m$$

$$x_j \ge 0$$

$$j = 1, 2, 3 ... n; \quad i = 1, 2, 3, ..., m$$

Where,

Z = Objective function that maximized selling profits.

 x_j = Choice variable (production item) for which the problem solved.

 c_j = Coefficient measuring the contribution of the j^{th} choice variable to the objective functions.

 R_i = Constraint or restrictions placed upon the problem.

 b_{ij} = Coefficient measuring the effect of the i^{th} constraint on the j^{th} choice variable.

3.0

Let x_{ij} denote the quantity to be distributed from location of a certain warehouse i to another demand point j; the

minimize
$$f = \sum_{i,j} c_{ij} x_{ij}$$

Subject to:
$$\sum_{j} x_{ij} = w_{i}, \quad i = 1,...,m$$

$$\sum_{i} x_{ij} = d_{j}, \quad i = 1,...,n$$

$$x_{ij} \ge 0$$

 c_{ij} = denote the distribution cost from warehouse (i) to distribution point (j)

 d_i = demand at distribution point j

 W_i = Capacity of each warehouse or (supply point).

Model of Production Planning with Lost Demand and Inventory

We consider a case where a factory is planning for the production of three items, this item requires three available resources and then we formulate a model for the factory so as to maximize profit as in Model P3, i.e.

3.2 Model P3

Max Z:
$$r_1(d_1 - u_1) + r_2(d_2 - u_2) + r_3(d_3 - u_3) - cp_1(p_1) - cp_2(p_2) - cp_3(p_3) - cq_1(q_1) - cq_2(q_2) - cq_3(q_3) - cu_1(u_1) + cu_2(u_2) + cu_3(u_3)$$
Subject to:

subject to:

$$\begin{aligned} a_{11}p_1 + a_{12}p_2 + a_{13}p_3 &\leq b_1 \\ a_{21}p_1 + a_{22}p_2 + a_{23}p_3 &\leq b_2 \\ a_{31}p_1 + a_{32}p_2 + a_{33}p_3 &\leq b_3 \\ p_1 - q_1 + u_1 &= d_1 \\ p_2 - q_2 + u_2 &= d_2 \\ p_3 - q_3 + u_3 &= d_3 \end{aligned}$$

Where,

 $r_i = \text{profit for item i}$

 $cp_i = \cos t$ of producing item i

 cq_i = unit inventory holding cost of item i

 a_{ik} = type of resources k required to produce item i

 b_k = amount of resource k available.

 $d_i = \text{amount of demand for item i.}$

 $p_i =$ amount of output of item i.

 $q_i = \text{inventory of item i.}$

 $u_i =$ amount of unmet demand of item i.

Where, the values for the variables r_i , cp_i , cq_i , a_{ik} , d_i and b_i for (i = 1, 2, 3) are known.

Thus, the model developed above will be used and from the available data; parameters would be substituted to get the

4.0 **Illustrative Problems**

Cost Minimization and Optimal Control of Inputs 4.1

National Research Institute for Chemical Technology (NARICT), Zaria produces four types of goods namely, belts, sandals, boots and bags, the manufacture of these items is constrained by a budget of N100, 000. To engage in the production of these four items NARICT uses three resources; raw materials, labour and over-time. NARICT needs 5,000kg of raw materials, 180 personnel and 250hrs over-time to produce 1000 units each of the four items. The resource requirements for each item and the cost are given by Table 1.

Profit Maximization and Optimal Control for Three Inputs

NARICT is planning for production of three items namely; industrial boots, belts, and bags. The manufacture of each item requires three resources. These raw materials are number of workers, overtime and varying stock. The amount of the three raw materials required is illustrated in Table 3.the amount of available resources and the demand for each item are represented in Table 4 and 5.

The cost of production, the unit stock holding cost, and the profit for each item in each time state is illustrated in Table 6

Solution of the Problems

Data Presentation

We present a summary of data required for the problem in 4.1 and using model P1 we formulate an appropriate integer linear programming and further solve it using modified version of the simplex method (Big M Method).

Table 1: Data of the Cost Minimization and Optimal control of inputs

Raw Material (Kg)	Labour	Over Time (hrs)	Cost (N)
500	15	40	5000
1200	22	18	6000
1800	18	20	4500
1000	30	20	5000
	500	500 15 1200 22 1800 18	1200 22 18 1800 18 20

The problem involves determining the optimal production combination of these four items that will generate a minimum cost.

Now, we formulate the mathematical programming and optimization problem as follows;

Now, we formulate the mathematical programming and optimization programming and optimization
$$Subject\ to$$
: $500x_1 + 1200x_2 + 1800x_3 + 1300x_4 \ge 5000$

$$15x_1 + 22x_2 + 18x_3 + 30x_4 \ge 180$$

$$40x_1 + 18x_2 + 20x_3 + 20x_4 \ge 250$$

$$5000x_1 + 6000x_2 + 4500x_3 + 5000x_4 \le 100000$$

$$x_1, x_2, x_3, x_4 \ge 0$$

We apply the Modified version of Simplex method (Big M Method) to the problem above and thus have a reformulation as

follows; min *imize*:
$$5000x_1 + 6000x_2 + 4500x_3 + 5000x_4 + (0)y_1 + (0)y_2 + (0)y_3 + MA_1 + (0)x_1 + (0)x_2 + (0)x_3 + (0)x_4 + (0)x_4 + (0)x_5 + (0)x$$

$$MA_{2} + MA_{3}$$
Subject to: $5000x_{1} + 6000x_{2} + 4500x_{3} + 5000x_{4} + S_{1} = 100000$

$$500x_{1} + 1200x_{2} + 1800x_{3} + 1300x_{4} - y_{1} + A_{1} = 5000$$

$$15x_{1} + 22x_{2} + 18x_{3} + 30x_{4} - y_{2} + A_{2} = 180$$

$$40x_{1} + 18x_{2} + 20x_{3} + 20x_{4} - y_{3} + A_{3} = 250$$

$$x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, S_{1}, A_{1}, A_{2}, A_{3} \ge 0$$

$$(4)$$

Where.

 y_1, y_2, y_3 are surplus variables

 S_1 is a slack variable

 A_1, A_2, A_3 are artificial variables.

	Variables	Entering Basic Variable	Leaving Basic Variable	RHS Value	Min.	Ohi
Iteration 1	A	x_3	A ₁	5000	Ratio	Obj. Function Value
	A_2			180	2.7	5430
	A_3			250	100	
	S_1					
iteration 2		r		100000		
lelation	<i>X</i> ₃	$ x_1$	A_3	25	175	2920
	A_2	The same of the sa	Carlo Sent Data of Son	130	ment le	The second
	A_3			<u>1750</u> 9		Anomy Sin
	S_1			87500		
teration 3	x_3	X_4	x_3	<u>75</u> 62	<u>25</u> 14	<u>2280</u> 31
	A_2	long holfmannian -	o 5 we formulate or	<u>2280</u> 31		31
	x_1			<u>75</u> 31		14 (N C)
	S_1			66330.6	10000	20000
Iteration 4	X_4	y_3	<i>x</i> ₄	<u>25</u> 14	150	<u>645</u> 14
	A_2			645 14		14
	x_1	300		75 14		
	S_1			64285.7		
teration 5	y_3	y_1	A_2	150	1000	30
	A_2	THE RESERVE AND ADDRESS OF THE PARTY OF THE		30		
	x_1			10		Control of the Contro
	S_1			50000		
Iteration 6	<i>y</i> ₃	<i>X</i> ₄	<i>y</i> ₃	230	3.83	0
	y_1			1000	12000	interpolate La
	x_1			12		A STATE OF THE STA
	S_1			40000		25,0000 1000
Iteration 7	x ₄ *			23* 6		40833.3
	y_1			2150		
	x_1^*					Janes B
	S_1			$\frac{13^*}{3}$ 59166.7		eldenna med

Double Si			59166.7
Data for Profit Maximization and Table 3: Required resources of profit Profit Maximization and Profit Profit Maximization and Profit Profit Maximization and Profit Profit Maximization and Profit Max	Optimal Control of the roduction	ree inputs	
Total ra	Production or	itput requi	rement
Total required Resources a_{ik} No of Labour	Industrial Boots	Belts	Bags
Overtime	10	7	5
Varying stock	2	3	2
Thig stock	10	20	30

(5)

Table 4: Amount of available Resource

the second section of the sect	Production Output Requirement
Total required resources $[b_k]$	
No of Labour	60
Overtime	250
Varying Stock	60

Table 5: Amount of Demand Resources

Production requirement	Demand
No of Labour	500
Overtime	600
Varying Stock	500

Table 6: Cost of Production, Cost of Unmet demand, Unit Stock Holding Costs and Profit

Production Requirement				
	p_i	cu_i	q_i	r_i
Industrial Boots	30000	4000	1000	60000
Belts	20000	3000	2000	40000
Bags	30000	6000	3000	60000

Now, applying Model P3 and from the data on the Table 3 to 5 we formulate our maximization problem as follows;

Now, applying Model P3 and from the data of the Table 3 to 5
$$Max \ Z : 60000(d_1 - u_1) + 40000(d_2 - u_2) + 60000(d_3 - u_3) - 30000 \ p_1 - 200000 \ p_2 - 30000 \ p_3 - 1000 \ q_1 - 20000 \ q_2 - 30000 \ q_3 - 4000 \ u_1 - 3000 \ u_2 - 6000 \ u_3$$

subject to:

$$10 p_1 + 7 p_2 + 5 p_3 \le b_1$$

$$2 p_1 + 3 p_2 + 2 p_3 \le b_2$$

$$10 p_1 + 20 p_2 + 30 p_3 \le b_3$$

$$p_1 - q_1 + u_1 = d_1$$

$$p_2 - q_2 + u_2 = d_2$$

$$p_3 - q_3 + u_3 = d_3$$

Where,

 p_1 = Amount of output of industrial boots.

 p_2 = Amount of output of belts.

 p_3 = Amount of output of bags

 q_1 = Amount of stock of industrial boots

 q_2 = Amount of stock of belts.

 q_3 = Amount of stock of bags

 d_1 = Demand for industrial boots.

 d_2 = Demand for belts.

 d_3 = Demand for bags.

 b_1 = Amount of labour available

 b_2 = amount of Overtime available

 b_3 = Amount of varying stock

(6)

$$\begin{array}{l} \max z : 84000000 - 30000 \, p_1 - 20000 \, p_2 - 30000 \, p_3 - 1000 \, q_1 - \\ 2000 \, q_2 - 3000 \, q_3 - 64000 \, u_1 - 43000 \, u_2 - 66000 \, u_3 \\ s.t & 10 \, p_1 + 7 \, p_2 + 5 \, p_3 \leq 60 \\ 2 \, p_1 + 3 \, p_2 + 2 \, p_3 \leq 250 \\ e., & 10 \, p_1 + 20 \, p_2 + 30 \, p_3 \leq 60 \\ p_1 - q_1 + u_1 = 500 \\ p_2 - q + u_2 = 600 \\ p_3 - q_3 + u_3 = 500 \\ p_1, p_2, p_3, q_1, q_2, q_3, u_1, u_2, u_3 \geq 0 \\ \end{array}$$

Now, using the modified version of simplex method, we reformulate the program as;

Now, using the modified version of simplest means, where
$$z = 84000000 - 30000 p_1 - 20000 p_2 - 30000 p_3 - 1000 q_1 - 20000 p_3 - 2$$

$$2000q_2 - 3000q_3 - 64000u_1 - 43000u_2 - 66000u_3 + 0(s_1) + 0(s_2) + 0(s_3) + MA_1 + MA_2 + MA_3$$

$$10p_{1} + 7p_{2} + 5p_{3} + s_{1} = 60$$

$$2p_{1} + 3p_{2} + 2p_{3} + s_{2} = 250$$

$$10p_{1} + 20p_{2} + 30p_{3} + s_{3} = 60$$

$$p_{1} - q_{1} + u_{1} + A_{1} = 500$$

$$p_{2} - q + u_{2} + A_{2} = 600$$

$$p_3 - q_3 + u_3 + A_3 = 500$$

$$p_1, p_2, p_3, q_1, q_2, q_3, u_1, u_2, u_3, s_1, s_2, s_3, A_1, A_2, A_3 \ge 0$$

Where.

 S_1, S_2, S_3 are slack variables added to the constraints with \leq sign.

 A_1, A_2, A_3 are artificial variables added to the constraint with the equality sign.

Table 7: Summary of results of Profit maximization and ontimal control of three inputs

	Basic variables	Entering basic	Leaving basic	RHS Value	Min. Ratio	Obj. Funtion Value
Iteration 1	S_1	Variable x_2	S_3	60		0
	$\frac{S_1}{S_2}$	A2	3	250		
	$\frac{S_2}{S_3}$			60	100	
				500		
	$\frac{A_1}{A_1}$			600		
	A_2			500		
Itamatian 2	A_3			39	597	-60000
Iteration 2	S_1	X_8	A_2	241		
	S_2		3000	3		
	x_2					
	A_1			500		
	A_2			597	025 8	En all Carlo
	A_3			500		25731000
Iteration 3	x_1	x_1	S_1	39	6	23731000
	S_2			241		3 - 3 - 3 - 3
	x_2			3	0	
	A_1		0.5	500		
	x_8			597		
	A_3			500	247	-25980000
Iteration ·		x ₃	x_2	6	347	-23980000
	S_2			238		
	x_2			0		
	A_1			294		
	x_8			600		
	A_3			500	294	-25980000
Iteratio		x ₇	A ₁	6		
	S_2			238		
	x_3			294		
	A_1			600		
	x_8			500		
	A_3			300		

On the	Use	of	Big	M	Method
--------	-----	----	-----	---	--------

Kassim, Yusuf, Bolarin and Aiyesimi

J of NAMP

				stim, Yusi	if, Bo	lavin .
Iteration 6	x_1			Tusi	_	aren and A
	S_2	200	ubosini -	6	500	-44796000
				238		2040 L
	x_3	mbaiya	in St.	0		
	x_7			294	10000	
(0.00 190	x_8		Wild State			
	A_3		,	600		
teration 7				500		
(Clation)	x_1		Topic Tarica	6		-77796000
	S_2		Solventon	238	25	77790000
	x_3		serie ecierzes	0		
	x_7		day office	294		
	x_8		Thorn the s	600		
			Maderies Sylven	500		
	x_9	The state of	ND BEILDING	300		
1.4 D:-	THE REAL PROPERTY.					

Discussion of Results

From the results obtained in problem 4.1 any short of supply of raw materials the optimal production will be significantly affected. Therefore a raw material combined in a proportion that gives optimal profit is essential.

Similarly from the second problem 4.2 there is a holding cost for goods, the optimal production and profits is dependent on

From the optimal solution of the problem 4.1 given by $\left\{\frac{23}{6},0,0,\frac{13}{3}\right\}$, we observe that this is not of an integer form, therefore

We approximate to the nearest integer values. The solution becomes $\{4,0,0,4\}$, this is because the program is of the integer

To ensure that the production, expenses and profits remains at optimum, the following should be considered;

4 x 1000 units of belts and bags should be produced.

No units of sandals and boots should be produced.

No units of sandals and boots should be produced.

Wailable 1. Of other items must be made (i.e. boots and sandals), the most sensitive inputs which are raw materials and sandals are raw materials and sandals. available budget must be increased. The amount of output of industrial boots should be kept at 6000 units to maximize the profits of the factory while other items should be kept constant at zero.

Conclusion

This paper has succeeded in using the concept of integer linear programming to model various production and distribution problems and the concept of integer linear programming to model various production and distribution to be problems and the concept of integer linear programming to model various production and distribution to be problems. problems which arises in everyday living. We also demonstrated how the modified version of simplex method approach (Big method). M method) could be used as a very reliable and effective tool for obtaining the optimal solution to diverse integer linear programming problems.

References

Dantzig, G. B. (1947). Linear programming and Extension. Priceton University Press.

- Chinneck, J.W. Practical Optimization, A Gentle introduction; 2000. www.sce.carleton.ca/faculty/chinneck/po.html [2]
- Gupta, P.K.and Hira, D.S. Operations Research; Rajendra Ravindra Printers Ltd., New [3]
- Sivarethinamohan, R. operations Research; Tata McGraw Hill publishing Co.Ltd., New Delhi, [4]