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Developments in computational optimization
techniques of conjugate gradient coefficient, search
direction, Broyden-Fletcher-Goldfarb-Shanno,
symmetric-rank one and Davidon-Fletcher-Powell
quasi-Newton methods.

A. Adams™, U.Y. Abubakar*, U. Abubakar® and Y. Yakubu®

Abstract

In this papet, we propose a modified Conjugate Gradient Coefficient (f) for solving
unconstrained minimization problems as well as the Broyden-Fletcher-Goldfarb-Shanno,
Davidon-Fletcher-Powell (DFP) and Symmetric-Rank-One (SR1) updates. The modified. It is
proved that the resulting Conjugate Gradient Coefficient have global convergence under some
mild conditions as well as the search direction(d). Itis also proved that the search direction plays
a key role in the line search method and the step size approaches mainly guarantee global
convergence in general cases. The convergence rate of this method is also investigated. Some
numerical results show that the modified Conjugate Gradient Coefficient algorithm is effective in
practical computation.

Keywords: unconstrained optimization; quasi-newton method; hybridization; global
convergence; symmetric-rank-one (sr1); Davidon-Fletcher-Powell (DFP).

1 Introduction

Quasi-Newton methods are distinguished by their use of approximate Hessian matrices. These
approximate matrices are evaluated with respect to some iterative update formula as the algorithm
progresses. The update procedure only requires the gradient of the objective function at each
iteration. Thus, these methods provide a way of obtaining some curvature information without
evaluating the exact Hessian. This is particularly useful when Hessian is very demanding to
compute or cannot be computed at all for some reason. Because they are known to be generally
more applicable and quite efficient, quasi-Newton methods are still widely used tools of nonlinear
programming even after the development of automatic differentiation packages, Nocedal and
Wright (2006). There are numerous works on the use of quasi-Newton methods either in line-
search or trust-region applications.
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Consider the unconstrained minimization problem

i 1
min f(x), @)
where f: R™ — R is continuously differentiable function, the Conjugate Gradient (CG) methods
are the best methods for solving (1), especially when the dimension n is large. The iterates of
Conjugate Gradient (CG) methods for solving (1) are obtained as

X1 = X + akdk ; k= O, 1, 2, ......... (2)

where Xy is the current iterate point and ay > 0 is the step size. The step size is computed by
carrying out some line search, especially the exact line search as given below
f e + adi) = min f (e + agdy) 6)

The search direction dj, is defined as

—Jk ifk=0
d ={ _ \
KT l—gk + Brdy—1  if k=1 4)

where the Conjugate Gradient Coefficient, ffj, € R is a scalar. Some of the classical formulas for
Conjugate Gradient Coefficient (fy) are the Hestenes Stiefel (HS) in 1952, the Fletcher-Reeves
(FR) in 1964, the Polak-Ribiere-Polyak (PRP) in 1969, the Conjugate Descent (CD) method in
1987, the Liu-Storey (LS) in 1992, and the Dai-Yuan (DY) in 2000. The parameters of the fj are
given as follows;

HS _ 98 (Gk—gk-1) FR _ _9k9k PRP _ 9k (gk—Fk-1)
kT (Gr=gr-1)Tdr-1’ T llgr-ali?z? kT lgr—qll?

cD _  —9kdk BLS _ 9k (Gk—Gr-1) DY _ P
L df_ k-1’ kT —dp_1gk-1 kT (Gk=gr-1)Tdk—1

where ||. || is the Euclidean norm of vectors.

In the Conjugate Gradient (CG) methods, many researchers focus on its global convergence
properties and descent condition. For the Fletcher-Reeves (FR) method, Zoutendijk (1970) has
proved the global convergence properties under the exact line search in (3). Al-Baali (1985) also
shows the Fletcher-Reeves (FR) method fulfills global convergence properties under inexact line
search. The Conjugate Descent (CD) method generated a descent search direction in each iteration
for the parameter 0 < 1 under the strong Wolfe line search, but its global convergence properties
are not excellent. The Dai-Yuan (DY) method is a modification of the Fletcher-Reeves (FR)
method, under the strong Wolfe line search, the Dai-Yuan (DY) method fulfills the descent
condition, but this method has bad numerical results. Under strong Wolfe line search, Yuhong
(2002) proved that Polak-Ribiere-Polyak (PRP) method has the global convergence properties and
tulfills the descent condition. The (WYL) method is the modification of the Polak-Ribiere-Polyak
(PRP) method, this method satisfied both the descent condition and global convergence properties
under an exact line search and strong Wolfe line search. The Ibrahim and Rohanin (2020) method
is a modification of the Polak-Ribiere-Polyak (PRP) method using an exact line search.

In this papet, the performance of the propose coefficient B, with the hybridization of Symmetric-
Rank One (SR1) and Davidon-Fletcher-Powell (DFP) updates is compared with some classical
conjugate gradient methods. The organization of our paper takes the following format. In section
2, a new CG coefficient, hybridization of SR1 and DFP with the general algorithm are presented.
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In section 3, the global convergence of Sy, is presented. Section 4 covers the numerical experiments
and discussions of Tables. Finally, Section 5 deals with conclusion.

2 New CG coefficient, hybridization of SR1-DFP and algorithm

In this section, we propose new [, defined by:

PRP gk+1gk
>
ﬁIéMCGC ={"k if | lgrll? H )
BNew otherwise.
Where
New _ ﬂgl€+1(9k+1_/1.gk)
k llgill?
2_ )L”gk“” T
gamcee _ ulgrer 1l =pA% 25| G2 9K ©
K lldkli2

,u>—> 0,0 < A < 1.Obviously,ifu = 1and A = 1, then B¢ = BERP. 1f u = 0, then the

method reduces to the steepest descent method. From ﬁAMCGC, AMCGC represent Adams
Modified Conjugate Gradient Coefficient as defined in (5).

The hybrid conjugate gradient algorithm proposed in Touati-Ahmed and Storey (1990) [16] was a
break through which since then, some research work focus on employing hybridization principles

to have better algorithms that can handle large scale unconstrained optimization problems such as
in [3, 14].

We formulate a new hybridization of SR1 and DFP for solving problem (1) by considering the
summation of SR1and DFP quasi-Newton methods as follows:

Byi1 = By + auu” + B* + 0vvT + pww’ @)
wherea, 6, ¢ #0; u, v,w #0
choose @, 8, @, u, v and w such that By, 1 satisfies Quasi-Newton condition

By+1Vi = Ok ©))

(Br + uu)yy = 6y ©)
also

(B + 0vvT + pww?)y, = 8; (10)

from equation (9), we have
Bryi + auuTy, = &,

au’yu = 8 — By (11)
setting U = Oy — Byyy (12)
cauly, =1= a 26 — Bpyi) vk (13)
from equation (10)
Biyi + 0vvTy, + powwTy, = & (14)
OvvTy, + ooy, = 8 — Bryk (15)
where

v Ty, = pwTy, = 1, we have
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vV =w =6 — By (16)
also,

vy, =1

07! = vy, = (6k — Brvi) v (17)

o™t ="y = 8k — Bryvi) vk (18)

substitute equations (12), (16), (17) and (18) into (7), we have

1
——————— X (6 — Bryi) (O — Bryi)T + B + —— X §,,6F

X =By (—Byyi) (19)

Byy1 =By +

 vEBk
where By, = By,
B,ff{"’ = [2B(6x — Bka)TVk&zVIZB; + (6 — Bryi) (6 — Bkyk)TSEVEB;
+ 5k51€(5k - Bka)TVIZBZ - B;VkBZYIZ@k - Bka)T&Z]
+ [(8k = Brvi)"viOr Vi Bl (20)

Algorithm 2.1
Step 1: x,€R™ and a positive definite matrix B, = I,.
Choose = 0,& > 0 and set k == 0.
Step 2: Terminate if || g(xp+1) |l < €.
If || gx |l < €, the algorithm stops. Otherwise, go to step 3.
Step 3: Calculate the search direction by
—Hygr; k=0

e = {—Hkgk + BAMCGCq, 1 k> 1.
where Hy is the Hybridization Method (AHM) updating matrix
with g€(0, 1] is chosen to ensure conjugacy.
Step 4: Calculate the step size ay by

1
fOo + axdy) < f () + nar(giedr — S axnLilldell?)
where p€(0,1),71[0, +0), pe(0, 1) are given constant scalars.
_ 51?—13%—1

where Lk = W ;fork > 1.
k-1

Step 5: Compute the difference:

Sk = Xg+1 — Xk and Y = Gi+1 — Gk

Step 6: Update By by BAEM = BPIP + BEET to obtain BrM.
Step 7: Set k :== k + 1 and go to step 1.

3 Global convergence analysis

In this section, we study the global convergence of ﬁféMCGC and start with sufficient descent
condition. The sufficient descent condition is defined by

grdy < —cllgell> ¥V k=0, ¢>0. 1)

The following theorem shows that AMCGC with the modified exact line search possess the
sufficient descent condition.

Theorem 1: Suppose the initial value of xj, and the search direction dyas contain in (2) and (4),
while the modified exact line seatch is used to determine the step size (@) then, the condition
below holds for all kK = 0. The theorem helps us to determine the number of iterations.
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grd, < —cllgell> Vv k=0, ¢>0.

Proof:
The proof is by mathematical induction, if k = 0 then we have
godo = —cllgoll® 22)

Hence the condition (21) holds true.

Next, we need to show that it holds for k = 1, condition (21), we have

gid, = —cllg,lI? 23)
Also, to show that it holds for k > 1, we multiply equation (4) by gF,; then,
Fi+1dis1 = Fher (Grrr + Bitin “Cdi) ” ' (24)
) ) g ll” = AR 19T 191
k+19k+1 = —Gk+19k+1 T EME Gi+19k
g+l
1l gia -5 g7 gl
Tradiers = —llgeeal® + o Ghradi

For exact line search, we know that gr.,dy = 0, thus

Iir1dis1 = =l gr41ll? (25)
Hence the sufficient condition holds true for k + 1.

First, we must prove that our method (BAM¢¢¢

the global convergence.
||£/k,+1 I

) are always not less than zero in order to establish

||9k+1"

amcee M lP=20E gl gkl rlgial? =27 gk gk y

el ||dk||2 = ||ak||2 (26)
2_ ”9k+1”

AMCGC _ #lgreal™ 95419 < Hlgrsall? @7

e+l ||azk||2 = T al?

The following are needed to establish the global convergence of our formula;

Assumption 1

The level set M = {x € R™; f(x) < f(x¢)} is bounded, where xq is the starting point.

In some neighborhood N of M, the function is continuously differentiable and its gradient is
Lipchitz continuous. That is, there exist a constant L > 0 such that

IVf(x) =VFWIl < Lllx = yll, forallx,y € N. (28)
Under this assumption, we have the following Lemma, which was proved by Zoutendijk (1970).
Lemma 1

Suppose Assumption 1 holds and {xy} is generated by (2) and the search direction {d;} satisfies
(21) and the step size {@y } satisfies (3), then

B G (29)
k2171 d, )12 ‘

From Lemma 1, we have the following theorem.

Theorem 2
Suppose that Assumption 1 holds true. Let {x}} and {d}} be generated by equations (2) and (21)

with BEAMCECC and the sufficient descent condition holds true. Then either

Bt B < oo or Jimllgell = 0 30)
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Proof: We proceed by contradiction to prove Theorem 2. Suppose Theorem 2 is not
true, then 3 a constant ¢ > 0 such that

lgell = ¢ v k=0 (1)
Rewriting (4) as
Ars1 + Gk+1 = Br+1dk 32)
And squaring both sides of the equation above then
ldi+1ll? = Brr1) 2N dill* = 295 41dk+1 — Nl Gresall*. (33)
Dividing both sides of equation (33) by (gF41dk+1)? then,
ldk+111? _ Br+)?lldell® 2 _lggall®
(9£+1dk+1)2 (9£+1dk+1)2 w11 (9£+1dk+1)2
2
ldieall®— Brse)?lldell®> [ 1 N | gre+all 1
(917;+1dk+1)2 (9£+1dk+1)2 G+l 917;+1dk+1 Ing+1I|2
ldk+111? (Br+1)?Ildll? 1
< . 34
@) (@hasdins) | M9kl o9
Applying equation (20) to (34) above we get
lldg4111? 1 (35)
(T, dis1)” ~ Ngreaall®
Hence
lldll* k 1
< )1
(ggdk)z < Xi=o llg:ll?
D
MkTk) ~ -
ldellz — k° (36)

From equations (36) and (31), it follows that

2
Zoo (glzdk) —
k=0 q;||2

This contradicts the Zoutendijk condition in Lemma 1.

Theorem 3.3

Suppose that assumption 1 holds, consider any Conjugate Gradient (CG) methods of the form (3)
and (4), step size () is obtained by the exact line search and By is obtained using (6), then either
(g8)"

lldxll?

lli_{?o”gk” =0 or Xk=o
Proof:
From (31) and (25)

2
I gk+ll?
i1 I> = <ﬁ ldill* = 2gi41dis1 — lGresll?

lgr+all*
||dk+1||2 = ”Zﬁ - 2gl€+1dk+1 - ”gk+1”2- 37)

We have already proved that sufficient descent condition holds using mathematical induction.
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Therefore, we know that
Fies1@rr1 < —cllgpeall® (38)

Hence from (37),

I gisall*
ldi+ell? = Tz + 2¢llgr+ll? = Il gr+ll?

l *
disall® = ez = lgraall* (1 = 20). (39)

Multiplying both sides of (39) with —::ik“::z

then,

2 lgr+1ll? _ lgr+1ll® [||9k+1||4 _ 2 _ ]
1% 6y 1 = it gz~ N9k lI7 = 26)

||dk+1||2||9k+1||2 lgr+all* [( _ 1) + 19k 17 ||gk+1||
ldg+112 " lldg4all? lldgll?
ldk+1 12 grs111? < lgrsell*
ldr4112 T 41112

(40)

T 2
. g d
Based on theorem 2, we know that lim (Gieradisr) k+; ) 0
k—oo  lldi4all

T 2
. o . . . . da
This will imply that if theorem (3) is not true, then we have ]llm —(gﬁ:’; "|J|r21) =
-0 lldiss

From (40) we obtain
||.9k+1||2

< = 41

TR (41)

Hence, theorem 3 holds true for sufficiently large k.

The proof of Theorems 1, 2 and 3 showed that the formulas converge analytically. Next is to
validate numerically that the method also converge using Rosenbrock test function. This, we will
have in the next section.
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4 Numerical results

In this section, experimentation of our proposed method was carried out against some classical
methods in the literature, to weigh the significance of our algorithm with B = BFMCEC. To effect
this, Rosenbrock standard test function was considered. The dimension of the function is varied
to compare the computational strength against Fletcher-Reeves (FR), Dai-Yuan (DY), (PRP),
(FRPRP) which is the hybridization of (FR) and (PRP) and Ibrahim-Rohanin (IR) methods. The
modified exact line search condition was used in the computation.

In carrying out the simulation, the number of iterations (NI), the number of function
evaluations (NF), CPU time (CT) and the dimension of the standard test problems is 500, 1000,
5000, 10000 and 100000 variables were put into consideration to determine the numerical strength
of the proposed algorithms AMCGC with BFGS, DFP and SR1. The choice of values of {1} and

. .. A-o . .
{A} must satisfy the conditions u > T 0 and 0 < A < 1. After numerous experimentation

with the randomly selected values for the parameters, the values g = 0.7 and A = 1.0 were taken
into consideration to be the best values for the parameters which make our algorithms robust to
obtain the results presented.

gkl < &, where € = 1075 is considered as the stopping criterion. The implementation of the
algorithm was done using MATLAB R2021 on a window 10 machines with the following
specification; processor: Intel Core i7-17050Hcpu@?2.0GHz2.59GHz, with RAM of 16GB DDR4
and 1TB SSD storage. Also, comes with a GPU card: 4GB of GDDR5, GDDR6 memory clocked
at 8GHz are supplied, altogether it has 128-Bit memory interface that creates a bandwidth of
112.1GB/s. In Tables 1, 2, 3, 4 and 5, we reported the numerical results with different dimension
(Dim).
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Table 1: Numerical Results of AMCGCS®Y, IR, FR, DY, PRP and FRPRP Methods for

Rosenbrock Test Function

Problem Dim. AMCGCSRY IR FR DY PRP
NI NF CT NI NF CcT NI NF CcT NI NF CcT NI NF CcT
Rosenbrock 500 55 57 1.22 56 57 1.73 78 79 1.61 59 60 1.38 56 57 1.21
1000 53 55 137 55 56 1.79 77 78 1.72 58 59 1.50 55 56 132
5000 49 52 245 52 53 3.11 74 75 353 55 56 2.98 52 53 233
10000 40 41 3.35 40 41 3.48 63 64 5.09 44 45 4.16 40 41 3.03
100000 12 13 9.15 12 13 10.92 13 14 12.11 13 14 12.81 12 13 11.43
Table 2: Numerical Results of AMCGCPFP,IR,FR,DY,PRP and FRPRP Mecthods for
Rosenbrock Test Function
Problem Dim. AMCGCPFP IR FR DY PRP FRPRP
NI NF CcT NI NF CcT NI NF CcT NI NF CcT NI NF CcT NI NF CcT
Rosenbrock 500 55 57 167 56 57 173 78 79 161 59 60 138 56 57 121 55 56 126
1000 54 55 175 55 56 179 77 78 172 58 59 150 55 56 132 54 55 144
5000 51 52 343 52 53 311 74 75 353 55 56 298 52 53 233 52 53 207
10000 39 40 3.45 40 41 3.48 63 64 5.09 44 45 4.16 40 41 3.03 40 41 3.39

100000 12 13 10.32 12 13 10.92 13 14 12.11 13 14 12.81 12 13 11.43 12 13 11.66

Table 3: Numerical Results of AMCGCBFGS IR,FR,DY,PRP and FRPRP Methods for
Rosenbrock Test Function

Problem Dim. AMCGCEBFES IR FR DY PRP FRPRP
NI NF CT NI NF CT NI NF CT NI NF CT NI NF CT NI NF CT
Rosenbrc¢ 500 54 56 1.24 56 57 1.73 78 79 1.61 59 60 1.38 56 57 1.21 55 56 1.26
1000 53 54 13555 56 1.79 77 78 1.72 58 59 150 55 56 1.32 54 55 1.44
5000 50 51 24352 53 311 74 75 3.53 55 56 298 52 53 233 52 53 207
10000 40 41 3.37 40 41 3.48 63 64 5.09 44 45 416 40 41 3.03 40 41 3.39
10000 12 13 9.02 12 13 10.9: 13 14 12.1113 14 12.81 12 13 11.4: 12 13 11.6¢
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Table 4: Numerical Results of AMCGCBF¢S AMCGCS®', AMCGCPFP FRPRP and IR Methods

for Rosenbrock Test Function.

Problem  Dim. AMCGCSR1 AMCGCPFP AMCGCBFES IR FRPRP

Rosenbroci NI NF CT NI NF CT NI NF CT NI NF CT NI NF (T
500 55 57 122 55 57 167 54 56 124 56 57 173 55 56 1.26
1000 53 55 137 54 55 175 53 54 135 55 56 179 54 55 144
5000 49 52 245 51 52 343 50 51 243 52 53 311 52 53 207
10000 40 41 3.35 39 40 345 40 41 337 40 41 348 40 41 3.39
100000 12 13 9.15 12 13 1032 12 13 9.02 12 13 1092 12 13 11.66

4.1 Discussion

In Table 1, it is shown that the developed algorithm of AMCGC and the modified exact line search
with the SR1 method is promising, because it requires less number of iterations (NI), less number
function evaluation (NF) as well as less CPU time (CT) as compare to the existing methods. It is
observed that, the (NI) and (NF) increasing down the table with increment in dimension so as the
CPU time as well. In Table 2, we also use the CPU time, NI and NF to compare the performance of
the AMCGC and the modified exact line search combined with the DFP method. The Table 2 above
shown that AMCGCPFP is fastest, then FRPRP, then IR, then PRP, then DY, and FR. These only
differ in their choice of the search direction and Conjugate Gradient Coefficient (CGC), then the
numerical results show that the proposed method is promising.

In Table 3, it is shown that the results obtained from the modified exact line search and the Conjugate
gradient Coefficient (CGC) with the cautious BFGS method indicates that AMCGCBFCS is fastest
relative to the less number of iterations (NI) and number of function evaluation (NF), while the CPU
time (CT) increased down the table, but relatively low as compare to IR, FR, DY, PRP and FRPRP
methods. In Table 4, we also use CPU time (CT), number of iterations (NI) and number of function
evaluation (NF) to compare the performance of the AMCGCBF® AMCGCSR?
AMCGCPF?P FRPRP and IR algorithms, from the numerical results shown above, AMCGC BFGS jg
fastest as compare to others for the Rosenbrock standard test function on average with less CPU time
(CT), less number of iterations (NI) and less number of function evaluation (NF) as compare to others.

Finally, the effectiveness of our proposed Algorithm AMCGC was shown in Table 4 to be more
effective against its counterparts.

5 Conclusion
In this paper, we proposed a new CG coefficient SEMCEC with the HSR1IDFP methods for the
solution of unconstrained optimization problem. The choice of values of u and A which must satisfy

.. A-c . . .
the conditions u = T 0 and 0 < A1 < 1. After numerous experimentation with the randomly

selected values for the parameters, the values 4 = 0.7 and 4 = 1.0 were taken into consideration to

be the best values for the parameters which make our algorithms robust to obtain the results

presented. This new CG coefficient BEMCEC possesses the descent property with exact line search

condition. We established the global convergence of the method using Zoutendijk condition given in
[10]. The experimentation of the formulas on standard test function showed that our proposed
Algorithm AMCGC is efficient and robust.
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