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Developments in computational optimization 
techniques of conjugate gradient coefficient, search 

direction, Broyden-Fletcher-Goldfarb-Shanno, 
symmetric-rank one and Davidon-Fletcher-Powell 

quasi-Newton methods. 
 
 

A. Adams*†, U.Y. Abubakar*‡, U. Abubakar* and Y. Yakubu* 
 

 

1   Introduction 
Quasi-Newton methods are distinguished by their use of approximate Hessian matrices. These 
approximate matrices are evaluated with respect to some iterative update formula as the algorithm 
progresses. The update procedure only requires the gradient of the objective function at each 
iteration. Thus, these methods provide a way of obtaining some curvature information without 
evaluating the exact Hessian. This is particularly useful when Hessian is very demanding to 
compute or cannot be computed at all for some reason. Because they are known to be generally 
more applicable and quite efficient, quasi-Newton methods are still widely used tools of nonlinear 
programming even after the development of automatic differentiation packages, Nocedal and 
Wright (2006). There are numerous works on the use of quasi-Newton methods either in line-
search or trust-region applications.  
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Abstract 

In this paper, we propose a modified Conjugate Gradient Coefficient (𝛽) for solving 
unconstrained minimization problems as well as the Broyden-Fletcher-Goldfarb-Shanno, 
Davidon-Fletcher-Powell (DFP) and Symmetric-Rank-One (SR1) updates. The modified. It is 
proved that the resulting Conjugate Gradient Coefficient have global convergence under some 

mild conditions as well as the search direction(𝑑).  It is also proved that the search direction plays 
a key role in the line search method and the step size approaches mainly guarantee global 
convergence in general cases. The convergence rate of this method is also investigated. Some 
numerical results show that the modified Conjugate Gradient Coefficient algorithm is effective in 
practical computation.   

 
Keywords: unconstrained optimization; quasi-newton method; hybridization; global 
convergence; symmetric-rank-one (sr1); Davidon-Fletcher-Powell (DFP). 
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      Consider the unconstrained minimization problem 
 

min
𝑥∈ℛ𝑛

𝑓(𝑥),                          (1) 

 

where 𝑓: ℛ𝑛 → ℛ is continuously differentiable function, the Conjugate Gradient (CG) methods 

are the best methods for solving (1), especially when the dimension 𝑛 is large. The iterates of 
Conjugate Gradient (CG) methods for solving (1) are obtained as  
 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 ;                 𝑘 = 0, 1, 2, … … …              (2)  
 

where 𝑥𝑘 is the current iterate point and 𝛼𝑘 > 0 is the step size. The step size is computed by 
carrying out some line search, especially the exact line search as given below 

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) = min
𝛼≥0

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘)                   (3) 

The search direction 𝑑𝑘 is defined as 
 

𝑑𝑘 = {
−𝑔𝑘                     𝑖𝑓 𝑘 = 0

−𝑔𝑘 + 𝛽𝑘𝑑𝑘−1     𝑖𝑓 𝑘 ≥ 1
                (4) 

 

where the Conjugate Gradient Coefficient, 𝛽𝑘 ∈ ℛ is a scalar. Some of the classical formulas for 

Conjugate Gradient Coefficient (𝛽𝑘) are the Hestenes Stiefel (HS) in 1952, the Fletcher-Reeves 
(FR) in 1964, the Polak-Ribiere-Polyak (PRP) in 1969, the Conjugate Descent (CD) method in 

1987, the Liu-Storey (LS) in 1992, and the Dai-Yuan (DY) in 2000. The parameters of the 𝛽𝑘 are 
given as follows; 

𝛽𝑘
𝐻𝑆 =

𝑔𝑘
𝑇(𝑔𝑘−𝑔𝑘−1)

(𝑔𝑘−𝑔𝑘−1)𝑇𝑑𝑘−1
 , 𝛽𝑘

𝐹𝑅 =
𝑔𝑘

𝑇𝑔𝑘

‖𝑔𝑘−1‖2 ,   𝛽𝑘
𝑃𝑅𝑃 =

𝑔𝑘
𝑇(𝑔𝑘−𝑔𝑘−1)

‖𝑔𝑘−1‖2  

𝛽𝑘
𝐶𝐷 =

−𝑔𝑘
𝑇𝑔𝑘

𝑑𝑘−1
𝑇 𝑔𝑘−1

 ,       𝛽𝑘
𝐿𝑆 =

𝑔𝑘
𝑇(𝑔𝑘−𝑔𝑘−1)

−𝑑𝑘−1𝑔𝑘−1
 , 𝛽𝑘

𝐷𝑌 =
𝑔𝑘

𝑇𝑔𝑘

(𝑔𝑘−𝑔𝑘−1)𝑇𝑑𝑘−1
 

where ‖. ‖ is the Euclidean norm of vectors. 
 
In the Conjugate Gradient (CG) methods, many researchers focus on its global convergence 
properties and descent condition. For the Fletcher-Reeves (FR) method, Zoutendijk (1970) has 
proved the global convergence properties under the exact line search in (3). Al-Baali (1985) also 
shows the Fletcher-Reeves (FR) method fulfills global convergence properties under inexact line 
search. The Conjugate Descent (CD) method generated a descent search direction in each iteration 

for the parameter 𝜎 < 1 under the strong Wolfe line search, but its global convergence properties 
are not excellent. The Dai-Yuan (DY) method is a modification of the Fletcher-Reeves (FR) 
method, under the strong Wolfe line search, the Dai-Yuan (DY) method fulfills the descent 
condition, but this method has bad numerical results. Under strong Wolfe line search, Yuhong 
(2002) proved that Polak-Ribiere-Polyak (PRP) method has the global convergence properties and 
fulfills the descent condition. The (WYL) method is the modification of the Polak-Ribiere-Polyak 
(PRP) method, this method satisfied both the descent condition and global convergence properties 
under an exact line search and strong Wolfe line search. The Ibrahim and Rohanin (2020) method 
is a modification of the Polak-Ribiere-Polyak (PRP) method using an exact line search. 
 

In this paper, the performance of the propose coefficient 𝛽𝑘 with the hybridization of Symmetric-
Rank One (SR1) and Davidon-Fletcher-Powell (DFP) updates is compared with some classical 
conjugate gradient methods. The organization of our paper takes the following format. In section 
2, a new CG coefficient, hybridization of SR1 and DFP with the general algorithm are presented. 
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In section 3, the global convergence of 𝛽𝑘 is presented. Section 4 covers the numerical experiments 
and discussions of Tables. Finally, Section 5 deals with conclusion. 
 

2  New CG coefficient, hybridization of SR1-DFP and algorithm  
In this section, we propose new 𝛽𝑘 defined by: 
 

 𝛽𝑘
𝐴𝑀𝐶𝐺𝐶 = {

𝛽𝑘
𝑃𝑅𝑃       𝑖𝑓 |1 −

𝑔𝑘+1
𝑇 𝑔𝑘

‖𝑔𝑘‖2 | ≥ 𝜇,

𝛽𝑘
𝑁𝑒𝑤   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                 

           (5) 

Where 
 

 𝛽𝑘
𝑁𝑒𝑤 =

𝜇𝑔𝑘+1
𝑇 (𝑔𝑘+1−𝜆𝑔𝑘)

‖𝑔𝑘‖2  

 

 𝛽𝐾
𝐴𝑀𝐶𝐺𝐶 =

𝜇‖𝑔𝑘+1‖2−𝜇𝜆
‖𝑔𝑘+1‖

‖𝑔𝑘‖
|𝑔𝑘+1

𝑇 𝑔𝑘|

‖𝑑𝑘‖2            (6) 

 

𝜇 ≥
𝜆−𝜎

1−𝜎
> 0, 𝜎 < 𝜆 ≤ 1. Obviously, if 𝜇 = 1 and 𝜆 = 1, then 𝛽𝑘

𝑁𝑒𝑤 = 𝛽𝑘
𝑃𝑅𝑃. If 𝜇 = 0, then the 

method reduces to the steepest descent method. From 𝛽𝑘
𝐴𝑀𝐶𝐺𝐶 , AMCGC represent Adams 

Modified Conjugate Gradient Coefficient as defined in (5). 
 
The hybrid conjugate gradient algorithm proposed in Touati-Ahmed and Storey (1990) [16] was a 
break through which since then, some research work focus on employing hybridization principles 
to have better algorithms that can handle large scale unconstrained optimization problems such as 
in [3, 14]. 
 
We formulate a new hybridization of SR1 and DFP for solving problem (1) by considering the 
summation of SR1and DFP quasi-Newton methods as follows: 
 

𝐵𝑘+1 = 𝐵𝑘 + 𝛼𝑢𝑢𝑇 + 𝐵∗ + 𝜃𝑣𝑣𝑇 + 𝜑𝜔𝜔𝑇           (7) 

where 𝛼, 𝜃, 𝜑 ≠ 0;   𝑢, 𝑣, 𝜔 ≠ 0 

choose 𝛼, 𝜃, 𝜑, 𝑢, 𝑣 and 𝜔 such that 𝐵𝑘+1 satisfies Quasi-Newton condition 
 

   𝐵𝑘+1𝛾𝑘 = 𝛿𝑘            (8) 

   (𝐵𝑘 + 𝑢𝑢𝑇)𝛾𝑘 = 𝛿𝑘                      (9) 
also 

   (𝐵𝑘
∗ + 𝜃𝑣𝑣𝑇 + 𝜑𝜔𝜔𝑇)𝛾𝑘 = 𝛿𝑘                  (10) 

from equation (9), we have 

   𝐵𝑘𝛾𝑘 + 𝛼𝑢𝑢𝑇𝛾𝑘 = 𝛿𝑘 

   𝛼𝑢𝑇𝛾𝑘𝑢 = 𝛿𝑘 − 𝐵𝑘𝛾𝑘         (11) 

setting 𝑢 = 𝛿𝑘 − 𝐵𝑘𝛾𝑘                         (12) 

∴ 𝛼𝑢𝑇𝛾𝑘 = 1 ⟹  𝛼−1(𝛿 − 𝐵𝑘𝛾𝑘)𝑇𝛾𝑘                       (13) 
from equation (10) 

  𝐵𝑘
∗𝛾𝑘 + 𝜃𝑣𝑣𝑇𝛾𝑘 + 𝜑𝜔𝜔𝑇𝛾𝑘 = 𝛿𝑘                   (14) 

  𝜃𝑣𝑣𝑇𝛾𝑘 + 𝜑𝜔𝜔𝑇𝛾𝑘 = 𝛿𝑘 − 𝐵𝑘
∗𝛾𝑘                   (15) 

where 

 𝜃𝑣𝑇𝛾𝑘 = 𝜑𝜔𝑇𝛾𝑘 = 1, we have 
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  𝑣 = 𝜔 = 𝛿𝑘 − 𝐵𝑘
∗𝛾𝑘                     (16) 

also, 

  𝜃𝑣𝑇𝛾𝑘 = 1 

  𝜃−1 = 𝑣𝑇𝛾𝑘 = (𝛿𝑘 − 𝐵𝑘
∗𝛾𝑘)𝑇𝛾𝑘                  (17) 

  𝜑−1 = 𝜔𝑇𝛾𝑘 = (𝛿𝑘 − 𝐵𝑘
∗𝛾𝑘)𝑇𝛾𝑘                      (18) 

 
substitute equations (12), (16), (17) and (18) into (7), we have 
 

𝐵𝑘+1 = 𝐵𝑘 +
1

(𝛿𝑘 − 𝐵𝑘𝛾𝑘)𝑇
× (𝛿𝑘 − 𝐵𝑘𝛾𝑘)(𝛿𝑘 − 𝐵𝑘𝛾𝑘)𝑇 + 𝐵𝑘

𝑇 +
1

𝛿𝑘
𝑇𝛾𝑘

× 𝛿𝑘𝛿𝑘
𝑇 

 −
1

𝛾𝑘
𝑇𝐵𝑘

∗𝛾𝑘
× −𝐵𝑘

∗𝛾𝑘(−𝐵𝑘𝛾𝑘
𝑇)                   (19) 

where 𝐵𝑘 = 𝐵𝑘
∗ 

𝐵𝑘+1
𝐴𝐻𝑀 = [2𝐵𝑘(𝛿𝑘 − 𝐵𝑘𝛾𝑘)𝑇𝛾𝑘𝛿𝑘

𝑇𝛾𝑘
𝑇𝐵𝑘

∗ + (𝛿𝑘 − 𝐵𝑘𝛾𝑘)(𝛿𝑘 − 𝐵𝑘𝛾𝑘)𝑇𝛿𝑘
𝑇𝛾𝑘

𝑇𝐵𝑘
∗

+ 𝛿𝑘𝛿𝑘
𝑇(𝛿𝑘 − 𝐵𝑘𝛾𝑘)𝑇𝛾𝑘

𝑇𝐵𝑘
∗ − 𝐵𝑘

∗𝛾𝑘𝐵𝑘
∗𝛾𝑘

𝑇(𝛿𝑘 − 𝐵𝑘𝛾𝑘)𝑇𝛿𝑘
𝑇] 

   ÷ [(𝛿𝑘 − 𝐵𝑘𝛾𝑘)𝑇𝛾𝑘𝛿𝑘
𝑇𝛾𝑘

𝑇𝐵𝑘
∗]                   (20) 

 
Algorithm 2.1  

Step 1: 𝑥𝑜𝜖ℛ𝑛 and a positive definite matrix 𝐵𝑜 = 𝐼𝑛.  
Choose 𝜇 ≥ 0, 𝜀 > 0 and set 𝑘 ≔ 0. 
Step 2: Terminate if ‖𝑔(𝑥𝑘+1)‖ < 𝜀. 
If ‖𝑔𝑘‖ ≤ 𝜀, the algorithm stops. Otherwise, go to step 3. 
Step 3: Calculate the search direction by 

 𝑑𝑘 = {
−𝐻𝑘𝑔𝑘 ;      𝑘 = 0

−𝐻𝑘𝑔𝑘 + 𝛽𝑘
𝐴𝑀𝐶𝐺𝐶𝑑𝑘−1 ;     𝑘 ≥ 1.

 

where 𝐻𝑘 is the Hybridization Method (AHM) updating matrix  

with 𝜎𝜖(0, 1] is chosen to ensure conjugacy. 

Step 4:  Calculate the step size 𝛼𝑘 by  

 𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝜇𝛼𝑘(𝑔𝑘
𝑇𝑑𝑘 −

1

2
𝛼𝑘𝜂𝐿𝑘‖𝑑𝑘‖2) 

where 𝜇𝜖(0, 1), 𝜂[0, +∞), 𝜌𝜖(0, 1) are given constant scalars. 

where 𝐿𝑘 =
𝑆𝑘−1

𝑇 𝑦𝑘−1

‖𝑆𝑘−1‖2  ; for 𝑘 > 1. 

Step 5: Compute the difference:  

𝑆𝑘 = 𝑥𝑘+1 − 𝑥𝑘 and 𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘. 

Step 6: Update 𝐵𝑘 by 𝐵𝑘+1
𝐴𝐻𝑀 = 𝐵𝑘+1

𝐷𝐹𝑃 + 𝐵𝑘+1
𝑆𝑅1 to obtain 𝐵𝑘+1

𝐴𝐻𝑀. 
Step 7: Set 𝑘 ≔ 𝑘 + 1 and go to step 1. 
 

3   Global convergence analysis 
In this section, we study the global convergence of 𝛽𝑘

𝐴𝑀𝐶𝐺𝐶 and start with sufficient descent 
condition. The sufficient descent condition is defined by 

𝑔𝑘
𝑇𝑑𝑘 ≤ −𝑐‖𝑔𝑘‖2    ∀   𝑘 ≥ 0, 𝑐 > 0 .                    (21) 

The following theorem shows that AMCGC with the modified exact line search possess the 
sufficient descent condition. 
 

Theorem 1: Suppose the initial value of 𝑥𝑘 and the search direction 𝑑𝑘as contain in (2) and (4), 

while the modified exact line search is used to determine the step size (𝛼𝑘) then, the condition 

below holds for all 𝑘 ≥ 0. The theorem helps us to determine the number of iterations. 
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𝑔𝑘
𝑇𝑑𝑘 ≤ −𝑐‖𝑔𝑘‖2    ∀   𝑘 ≥ 0, 𝑐 > 0 . 

 
Proof: 

The proof is by mathematical induction, if 𝑘 = 0 then we have  

𝑔0
𝑇𝑑0 = −𝑐‖𝑔0‖2                       (22) 

Hence the condition (21) holds true.  
 

Next, we need to show that it holds for 𝑘 = 1, condition (21), we have 

𝑔1
𝑇𝑑1 = −𝑐‖𝑔1‖2                        (23) 

Also, to show that it holds for 𝑘 ≥ 1, we multiply equation (4) by 𝑔𝑘+1
𝑇  then, 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = 𝑔𝑘+1

𝑇 (−𝑔𝑘+1 + 𝛽𝑘+1
𝐴𝑀𝐶𝐺𝐶𝑑𝑘)                    (24) 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = −𝑔𝑘+1

𝑇 𝑔𝑘+1 +
𝜇‖𝑔𝑘+1‖2 − 𝜆

‖𝑔𝑘+1‖
‖𝑔𝑘‖

|𝑔𝑘+1
𝑇 𝑔𝑘|

‖𝑑𝑘‖2
𝑔𝑘+1

𝑇 𝑑𝑘 

 𝑔𝑘+1
𝑇 𝑑𝑘+1 = −‖𝑔𝑘+1‖2 +

𝜇‖𝑔𝑘+1‖2−𝜆
‖𝑔𝑘+1‖

‖𝑔𝑘‖
|𝑔𝑘+1

𝑇 𝑔𝑘|

‖𝑑𝑘‖2 𝑔𝑘+1
𝑇 𝑑𝑘 

 

For exact line search, we know that  𝑔𝑘+1
𝑇 𝑑𝑘 = 0, thus 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = −‖𝑔𝑘+1‖2                      (25) 

Hence the sufficient condition holds true for 𝑘 + 1. 

First, we must prove that our method (𝛽𝑘
𝐴𝑀𝐶𝐺𝐶) are always not less than zero in order to establish 

the global convergence. 

𝛽𝑘+1
𝐴𝑀𝐶𝐺𝐶 =

𝜇‖𝑔𝑘+1‖2−𝜆
‖𝑔𝑘+1‖

‖𝑔𝑘‖
|𝑔𝑘+1

𝑇 𝑔𝑘|

‖𝑑𝑘‖2 ≥
𝜇‖𝑔𝑘+1‖2−𝜆

‖𝑔𝑘+1‖

‖𝑔𝑘‖
‖𝑔𝑘+1

𝑇 ‖‖𝑔𝑘‖

‖𝑑𝑘‖2                  (26) 

𝛽𝑘+1
𝐴𝑀𝐶𝐺𝐶 =

𝜇‖𝑔𝑘+1‖2−𝜆
‖𝑔𝑘+1‖

‖𝑔𝑘‖
|𝑔𝑘+1

𝑇 𝑔𝑘|

‖𝑑𝑘‖2 ≤
𝜇‖𝑔𝑘+1‖2

‖𝑑𝑘‖2                    (27) 

 
The following are needed to establish the global convergence of our formula; 
Assumption 1 

The level set 𝑀 = {𝑥 ∈ ℛ𝑛; 𝑓(𝑥) ≤ 𝑓(𝑥0)} is bounded, where 𝑥0 is the starting point. 

In some neighborhood 𝑁 of 𝑀, the function is continuously differentiable and its gradient is 

Lipchitz continuous. That is, there exist a constant 𝐿 > 0 such that 

‖∇𝑓(𝑥) − ∇𝑓(𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖,   for all 𝑥, 𝑦 ∈ 𝑁.                     (28) 
Under this assumption, we have the following Lemma, which was proved by Zoutendijk (1970).    
Lemma 1 

Suppose Assumption 1 holds and {𝑥𝑘}  is generated by (2) and the search direction {𝑑𝑘}  satisfies 

(21) and the step size {𝛼𝑘} satisfies (3), then 

∑
(𝑔𝑘

𝑇𝑑𝑘)
2

‖𝑑𝑘‖2 < +∞𝑘≥1 .                       (29) 

 
From Lemma 1, we have the following theorem. 
 
Theorem 2 

Suppose that Assumption 1 holds true. Let {𝑥𝑘} and {𝑑𝑘} be generated by equations (2) and (21) 

with 𝛽𝑘
𝐴𝑀𝐶𝐺𝐶 and the sufficient descent condition holds true. Then either 

 ∑
(𝑔𝑘

𝑇𝑑𝑘)
2

‖𝑑𝑘‖2
< +∞𝑘≥1   or  lim

𝑘→∞
‖𝑔𝑘‖ = 0                       (30) 
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Proof: We proceed by contradiction to prove Theorem 2. Suppose Theorem 2 is not  

true, then ∃ a constant 𝑐 > 0 such that   

‖𝑔𝑘‖ ≥ 𝑐   ∀  𝑘 ≥ 0                       (31) 
Rewriting (4) as 

𝑑𝑘+1 + 𝑔𝑘+1 = 𝛽𝑘+1𝑑𝑘                      (32) 
And squaring both sides of the equation above then 

‖𝑑𝑘+1‖2 = (𝛽𝑘+1)2‖𝑑𝑘‖2 − 2𝑔𝑘+1
𝑇 𝑑𝑘+1 − ‖𝑔𝑘+1‖2.                  (33) 

 

Dividing both sides of equation (33) by (𝑔𝑘+1
𝑇 𝑑𝑘+1)2 then, 

‖𝑑𝑘+1‖2

(𝑔𝑘+1
𝑇 𝑑𝑘+1)

2 =
(𝛽𝑘+1)2‖𝑑𝑘‖2

(𝑔𝑘+1
𝑇 𝑑𝑘+1)

2 −
2

𝑔𝑘+1
𝑇 𝑑𝑘+1

−
‖𝑔𝑘+1‖2

(𝑔𝑘+1
𝑇 𝑑𝑘+1)

2     

‖𝑑𝑘+1‖2

(𝑔𝑘+1
𝑇 𝑑𝑘+1)2

=
(𝛽𝑘+1)2‖𝑑𝑘‖2

(𝑔𝑘+1
𝑇 𝑑𝑘+1)2

− [
1

‖𝑔𝑘+1‖
+

‖𝑔𝑘+1‖

𝑔𝑘+1
𝑇 𝑑𝑘+1

]

2

+
1

‖𝑔𝑘+1‖2
 

  
‖𝑑𝑘+1‖2

(𝑔𝑘+1
𝑇 𝑑𝑘+1)

2 ≤
(𝛽𝑘+1)2‖𝑑𝑘‖2

(𝑔𝑘+1
𝑇 𝑑𝑘+1)

2 +
1

‖𝑔𝑘+1‖2.                    (34) 

 
Applying equation (26) to (34) above we get 
 

 
‖𝑑𝑘+1‖2

(𝑔𝑘+1
𝑇 𝑑𝑘+1)

2 ≤
1

‖𝑔𝑘+1‖2.                     (35) 

 
Hence  

 
‖𝑑𝑘‖2

(𝑔𝑘
𝑇𝑑𝑘)

2 ≤ ∑
1

‖𝑔𝑖‖2
𝑘
𝑖=0  

 
(𝑔𝑘

𝑇𝑑𝑘)
2

‖𝑑𝑘‖2 ≥
𝑐2

𝑘
.                            (36) 

 
From equations (36) and (31), it follows that 
 

 ∑
(𝑔𝑘

𝑇𝑑𝑘)
2

‖𝑑𝑘‖2
∞
𝑘=0 = ∞. 

 
This contradicts the Zoutendijk condition in Lemma 1. 
 
Theorem 3.3 
Suppose that assumption 1 holds, consider any Conjugate Gradient (CG) methods of the form (3) 

and (4), step size (𝛼𝑘) is obtained by the exact line search and 𝛽𝑘 is obtained  using (6), then either  

lim
𝑘→∞

‖𝑔𝑘‖ = 0  or  ∑
(𝑔𝑘

𝑇)
4

‖𝑑𝑘‖2
∞
𝑘=0 < ∞. 

Proof: 
From (31) and (25) 

‖𝑑𝑘+1‖2 = (
‖𝑔𝑘+1‖2

‖𝑑𝑘‖2
)

2

‖𝑑𝑘‖2 − 2𝑔𝑘+1
𝑇 𝑑𝑘+1 − ‖𝑔𝑘+1‖2 

 ‖𝑑𝑘+1‖2 =
‖𝑔𝑘+1‖4

‖𝑑𝑘‖2 − 2𝑔𝑘+1
𝑇 𝑑𝑘+1 − ‖𝑔𝑘+1‖2.                 (37) 

 
We have already proved that sufficient descent condition holds using mathematical induction.  
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Therefore, we know that 

𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ −𝑐‖𝑔𝑘+1‖2                       (38) 

 
Hence from (37), 

‖𝑑𝑘+1‖2 =
‖𝑔𝑘+1‖4

‖𝑑𝑘‖2
+ 2𝑐‖𝑔𝑘+1‖2 − ‖𝑔𝑘+1‖2 

 ‖𝑑𝑘+1‖2 =
‖𝑔𝑘+1‖4

‖𝑑𝑘‖2 − ‖𝑔𝑘+1‖2(1 − 2𝑐).                    (39) 

Multiplying both sides of (39) with 
‖𝑔𝑘+1‖2

‖𝑑𝑘+1‖2 

then, 

 ‖𝑑𝑘+1‖2 ‖𝑔𝑘+1‖2

‖𝑑𝑘+1‖2 =
‖𝑔𝑘+1‖2

‖𝑑𝑘+1‖2 [
‖𝑔𝑘+1‖4

‖𝑑𝑘‖2 − ‖𝑔𝑘+1‖2(1 − 2𝑐)] 

 
‖𝑑𝑘+1‖2‖𝑔𝑘+1‖2

‖𝑑𝑘+1‖2
=

‖𝑔𝑘+1‖4

‖𝑑𝑘+1‖2
[(2𝑐 − 1) +

‖𝑔𝑘+1‖2

‖𝑑𝑘‖2
] 

 
‖𝑑𝑘+1‖2‖𝑔𝑘+1‖2

‖𝑑𝑘+1‖2
≤

‖𝑔𝑘+1‖4

‖𝑑𝑘+1‖2
                     (40) 

Based on theorem 2, we know that lim
𝑘→∞

(𝑔𝑘+1
𝑇 𝑑𝑘+1)

2

‖𝑑𝑘+1‖2 < 0.  

This will imply that if theorem (3) is not true, then we have  lim
𝑘→∞

(𝑔𝑘+1
𝑇 𝑑𝑘+1)

2

‖𝑑𝑘+1‖2 = ∞. 

From (40) we obtain 

∞ ≤
‖𝑔𝑘+1‖2

‖𝑑𝑘+1‖2.                        (41) 

 

Hence, theorem 3 holds true for sufficiently large 𝑘. 
 
The proof of Theorems 1, 2 and 3 showed that the formulas converge analytically. Next is to 
validate numerically that the method also converge using Rosenbrock test function. This, we will 
have in the next section. 
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4   Numerical results 
In this section, experimentation of our proposed method was carried out against some classical 

methods in the literature, to weigh the significance of our algorithm with 𝛽𝑘 = 𝛽𝐾
𝐴𝑀𝐶𝐺𝐶 . To effect 

this, Rosenbrock standard test function was considered. The dimension of the function is varied 
to compare the computational strength against Fletcher-Reeves (FR), Dai-Yuan (DY), (PRP), 
(FRPRP) which is the hybridization of (FR) and (PRP) and Ibrahim-Rohanin (IR) methods. The 
modified exact line search condition was used in the computation.   
 
      In carrying out the simulation, the number of iterations (NI), the number of function 
evaluations (NF), CPU time (CT) and the dimension of the standard test problems is 500, 1000, 
5000, 10000 and 100000 variables were put into consideration to determine the numerical strength 

of the proposed algorithms AMCGC with BFGS, DFP and SR1. The choice of values of {𝜇} and 

{𝜆} must satisfy the conditions 𝜇 ≥
𝜆−𝜎

1−𝜎
> 0 and 𝜎 < 𝜆 ≤ 1. After numerous experimentation 

with the randomly selected values for the parameters, the values 𝜇 = 0.7 and 𝜆 = 1.0 were taken 
into consideration to be the best values for the parameters which make our algorithms robust to 
obtain the results presented.  
 

‖𝑔𝑘‖ ≤ 𝜀, where 𝜀 = 10−5 is considered as the stopping criterion. The implementation of the 
algorithm was done using MATLAB R2021 on a window 10 machines with the following 
specification; processor: Intel Core i7-17050Hcpu@2.6GHz2.59GHz, with RAM of 16GB DDR4 
and 1TB SSD storage. Also, comes with a GPU card: 4GB of GDDR5, GDDR6 memory clocked 
at 8GHz are supplied, altogether it has 128-Bit memory interface that creates a bandwidth of 
112.1GB/s. In Tables 1, 2, 3, 4 and 5, we reported the numerical results with different dimension 
(Dim). 

mailto:i7-17050Hcpu@2.6GHz2.59GHz
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Table 1: Numerical Results of 𝑨𝑴𝑪𝑮𝑪𝑺𝑹𝟏, 𝑰𝑹, 𝑭𝑹, 𝑫𝒀, 𝑷𝑹𝑷 𝒂𝒏𝒅 𝑭𝑹𝑷𝑹𝑷  Methods for  
Rosenbrock Test Function 

Problem 𝑫𝒊𝒎. 𝑨𝑴𝑪𝑮𝑪𝑺𝑹𝟏 𝑰𝑹 𝑭𝑹 𝑫𝒀 𝑷𝑹𝑷 

  𝑵𝑰 𝑵𝑭 𝑪𝑻 𝑵𝑰     𝑵𝑭 𝑪𝑻 𝑵𝑰 𝑵𝑭 𝑪𝑻 𝑵𝑰 𝑵𝑭 𝑪𝑻 𝑵𝑰 𝑵𝑭 𝑪𝑻 

𝑅𝑜𝑠𝑒𝑛𝑏𝑟𝑜𝑐𝑘 500 55 57 1.22 56 57 1.73 78 79 1.61 59 60 1.38 56 57 1.21 

 1000 53 55 1.37 55 56 1.79 77 78 1.72 58 59 1.50 55 56 1.32 

 5000 49 52 2.45 52 53 3.11 74 75 3.53 55 56 2.98 52 53 2.33 

 10000 40 41 3.35 40 41 3.48 63 64 5.09 44 45 4.16 40 41 3.03 

 100000 12 13 9.15 12 13 10.92 13 14 12.11 13 14 12.81 12 13 11.43 

  

Table 2: Numerical Results of 𝑨𝑴𝑪𝑮𝑪𝑫𝑭𝑷, 𝑰𝑹, 𝑭𝑹, 𝑫𝒀, 𝑷𝑹𝑷 𝒂𝒏𝒅 𝑭𝑹𝑷𝑹𝑷  Methods for  
Rosenbrock Test Function 
 

𝑷𝒓𝒐𝒃𝒍𝒆𝒎 𝑫𝒊𝒎. 𝑨𝑴𝑪𝑮𝑪𝑫𝑭𝑷 𝑰𝑹 𝑭𝑹 𝑫𝒀 𝑷𝑹𝑷 𝑭𝑹𝑷𝑹𝑷 

  𝑵𝑰 𝑵𝑭 𝑪𝑻 𝑵𝑰     𝑵𝑭 𝑪𝑻 𝑵𝑰 𝑵𝑭 𝑪𝑻 𝑵𝑰 𝑵𝑭 𝑪𝑻 𝑵𝑰 𝑵𝑭 𝑪𝑻 𝑵𝑰 𝑵𝑭 𝑪𝑻 

𝑅𝑜𝑠𝑒𝑛𝑏𝑟𝑜𝑐𝑘 500 55 57 1.67 56 57 1.73 78 79 1.61 59 60 1.38 56 57 1.21 55 56 1.26 

 1000 54 55 1.75 55 56 1.79 77 78 1.72 58 59 1.50 55 56 1.32 54 55 1.44 

 5000 51 52 3.43 52 53 3.11 74 75 3.53 55 56 2.98 52 53 2.33 52 53 2.07 

 10000 39 40 3.45 40 41 3.48 63 64 5.09 44 45 4.16 40 41 3.03 40 41 3.39 

 100000 12 13 10.32 12 13 10.92 13 14 12.11 13 14 12.81 12 13 11.43 12 13 11.66 

 
  

Table 3: Numerical Results of 𝑨𝑴𝑪𝑮𝑪𝑩𝑭𝑮𝑺, 𝑰𝑹, 𝑭𝑹, 𝑫𝒀, 𝑷𝑹𝑷 𝒂𝒏𝒅 𝑭𝑹𝑷𝑹𝑷  Methods for  
Rosenbrock Test Function 
 

𝑷𝒓𝒐𝒃𝒍𝒆𝒎 𝑫𝒊𝒎. 𝑨𝑴𝑪𝑮𝑪𝑩𝑭𝑮𝑺 𝑰𝑹 𝑭𝑹 𝑫𝒀 𝑷𝑹𝑷 𝑭𝑹𝑷𝑹𝑷 
  𝑵𝑰 𝑵𝑭 𝑪𝑻 𝑵𝑰     𝑵𝑭 𝑪𝑻 𝑵𝑰 𝑵𝑭 𝑪𝑻 𝑵𝑰 𝑵𝑭 𝑪𝑻 𝑵𝑰 𝑵𝑭 𝑪𝑻 𝑵𝑰 𝑵𝑭 𝑪𝑻 

𝑅𝑜𝑠𝑒𝑛𝑏𝑟𝑜𝑐𝑘 500 54 56 1.24 56 57 1.73 78 79 1.61 59 60 1.38 56 57 1.21 55 56 1.26 
 1000 53 54 1.35 55 56 1.79 77 78 1.72 58 59 1.50 55 56 1.32 54 55 1.44 
 5000 50 51 2.43 52 53 3.11 74 75 3.53 55 56 2.98 52 53 2.33 52 53 2.07 
 10000 40 41 3.37 40 41 3.48 63 64 5.09 44 45 4.16 40 41 3.03 40 41 3.39 
 100000 12 13 9.02 12 13 10.92 13 14 12.11 13 14 12.81 12 13 11.43 12 13 11.66 
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Table 4: Numerical Results of   𝑨𝑴𝑪𝑮𝑪𝑩𝑭𝑮𝑺 ,𝑨𝑴𝑪𝑮𝑪𝑺𝑹𝟏, 𝑨𝑴𝑪𝑮𝑪𝑫𝑭𝑷 𝑭𝑹𝑷𝑹𝑷 and 𝑰𝑹 Methods 
for  Rosenbrock Test Function. 

𝑷𝒓𝒐𝒃𝒍𝒆𝒎 𝑫𝒊𝒎. 𝑨𝑴𝑪𝑮𝑪𝑺𝑹𝟏 𝑨𝑴𝑪𝑮𝑪𝑫𝑭𝑷 𝑨𝑴𝑪𝑮𝑪𝑩𝑭𝑮𝑺            𝑰𝑹         𝑭𝑹𝑷𝑹𝑷  

𝑹𝒐𝒔𝒆𝒏𝒃𝒓𝒐𝒄𝒌  𝑵𝑰 𝑵𝑭 𝑪𝑻 𝑵𝑰     𝑵𝑭 𝑪𝑻 𝑵𝑰 𝑵𝑭 𝑪𝑻 𝑵𝑰 𝑵𝑭 𝑪𝑻 𝑵𝑰 𝑵𝑭 𝑪𝑻    

 500 55 57 1.22 55 57 1.67 54 56 1.24 56 57 1.73 55 56 1.26 
 1000 53 55 1.37 54 55 1.75 53 54 1.35 55 56 1.79 54 55 1.44 
 5000 49 52 2.45 51 52 3.43 50 51 2.43 52 53 3.11 52 53 2.07 
 10000 40 41 3.35 39 40 3.45 40 41 3.37 40 41 3.48 40 41 3.39 
 100000 12 13 9.15 12 13 10.32 12 13 9.02 12 13 10.92 12 13 11.66 

  
 

4.1   Discussion 
In Table 1, it is shown that the developed algorithm of AMCGC and the modified exact line search 
with the SR1 method is promising, because it requires less number of iterations (NI), less number 
function evaluation (NF) as well as less CPU time (CT) as compare to the existing methods. It is 
observed that, the (NI) and (NF) increasing down the table with increment in dimension so as the 
CPU time as well. In Table 2, we also use the CPU time, NI and NF to compare the performance of 
the AMCGC and the modified exact line search combined with the DFP method. The Table 2 above 

shown that 𝐴𝑀𝐶𝐺𝐶𝐷𝐹𝑃 is fastest, then FRPRP, then IR, then PRP, then DY, and FR. These only 
differ in their choice of the search direction and Conjugate Gradient Coefficient (CGC), then the 
numerical results show that the proposed method is promising. 
 
In Table 3, it is shown that the results obtained from the modified exact line search and the Conjugate 

gradient Coefficient (CGC) with the cautious BFGS method indicates that 𝐴𝑀𝐶𝐺𝐶𝐵𝐹𝐺𝑆 is fastest 
relative to the less number of iterations (NI) and number of function evaluation (NF), while the CPU 
time (CT) increased down the table, but relatively low as compare to IR, FR, DY, PRP and FRPRP 
methods. In Table 4, we also use CPU time (CT), number of iterations (NI) and number of function 

evaluation (NF) to compare the performance of the 𝐴𝑀𝐶𝐺𝐶𝐵𝐹𝐺𝑆 ,𝐴𝑀𝐶𝐺𝐶𝑆𝑅1 

 𝐴𝑀𝐶𝐺𝐶𝐷𝐹𝑃 𝐹𝑅𝑃𝑅𝑃 and 𝐼𝑅 algorithms, from the numerical results shown above, 𝐴𝑀𝐶𝐺𝐶𝐵𝐹𝐺𝑆  is 
fastest as compare to others for the Rosenbrock standard test function on average with less CPU time 
(CT), less number of iterations (NI) and less number of function evaluation (NF) as compare to others. 
 
Finally, the effectiveness of our proposed Algorithm AMCGC was shown in Table 4 to be more 
effective against its counterparts. 
 

5   Conclusion 
In this paper, we proposed a new CG coefficient 𝛽𝑘

𝐴𝑀𝐶𝐺𝐶 with the 𝐻𝑆𝑅1𝐷𝐹𝑃 methods for the 

solution of unconstrained optimization problem. The choice of values of 𝜇 and 𝜆 which must satisfy 

the conditions  𝜇 ≥
𝜆−𝜎

1−𝜎
> 0 and 𝜎 < 𝜆 ≤ 1. After numerous experimentation with the randomly 

selected values for the parameters, the values 𝜇 = 0.7 and 𝜆 = 1.0 were taken into consideration to 
be the best values for the parameters which make our algorithms robust to obtain the results 

presented. This new CG coefficient 𝛽𝑘
𝐴𝑀𝐶𝐺𝐶 possesses the descent property with exact line search 

condition. We established the global convergence of the method using Zoutendijk condition given in 
[10]. The experimentation of the formulas on standard test function showed that our proposed 
Algorithm AMCGC is efficient and robust. 
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