NIGERIAN JOURNAL OF ANIMAL PRODUCTION

N6

Published by
THE NIGERIAN SOCIETY FOR ANIMAL PRODUCTION

VOLUME 44

2017 NUMBER 1

Effects of aqueous moringa oleifera leaf extracts on gut morphology and pH of

Owolabi, S. J., Alabi, O. J., Malik, A. D., Jiya, E. Z., and T. Z. Adama Department of Animal Production, School of Agriculture and Agricultural Technology. Federal University of Technology, P. M. B 65, Minna

Niger State, Nigeria.

shola.alabi@futminna.edu.ng; Phone number: 09030083008

This study was conducted to determine the effect of varying aqueous Moringa oledera leaf extracts (AMOLE) on the gut morphology and pH of Hubbard broiler chickens. A total of 240 Hubbard broiler chickens were randomly allocated into six treatments with four replicates in a completely randomized design. The treatments were positive control (AMOLE), negative control (AMOLE), AMOLE (60mL of the extracts per litre), AMOLE, (90mL of the extracts per litre), AMOLE 120 (120mL of the extracts per litre) and AMOLE 130 (150mL of the extracts per litre). Data on gut morphology weight and length and their pH were measured and analysed by one way analysis of variance. The results showed that dressed, crop. targe intestine, kidney and lung weights of birds were influenced (P<0.05) by the treatments. Birds in the control treatments (94.67 %, 94.93 %) had the higher (P<0.05) dressing percentage. Birds on the AMOLE, had the higher (P<0.05) crop and large intestine weights (4.47) and 0.23%, respectively). The birds on the AMOLE, treatment had the largest kidney weight of 0.33 %. Absolute crop and caecum length were influenced byaqueous Moringa oleifera leaf extracts while the relative caecum length was the only relative organ length that was influenced by aqueous Moringa oleifera leaf extracts treatment. The pH of the internal organs showed that the gizzards, duodenum, jejunum, ileum, caecum, kidney and lung were influenced (P<0.05) by the treatments. Birds on positive control treatment had higher pl values in most of the parameters measured. Birds on the AMOLE, had the lowest (P-0.05) duodenum, jejunum and lung pH. This study revealed AMOLE had influence on the gui morphology and pH of broiler chickens. Therefore, it can be concluded that the substitution of antibiotics as a growth promoter with aqueous Moringa oleifera leaf extracts up to 120 ml improved the gut morphology and pH of the intestinal segments in broiler chickens. Thus, is recommended that farmers, poultry producers and nutritionists to administer between 60 and 120 mL/litre of AMOLE in the drinking water of broiler chickens to nourish them for good gut morphology and optimum pH of their internal organs.

Keywords: Aqueous, morphology, hubbard. Moringa oleifera

Introduction

Research on meat production globally indicates poultry as the fastest growing livestock sector especially in developing countries (Chang, 2007). Poultry was strategic to address animal protein shortage in human feeding because of its incomparable competence in transforming nutrient to high quality animal protein (Oluyemi and Roberts, 2000 and Isika, et al., 2006).

Following the in-feed antibiotic growth

promoters (AGP) ban within the European Union in 2006, consumer perceptions have shifted to the quality and safety of animal products making feed manufacturing exponentially complex in terms of accountability and traceability of feeds and their component ingredients (Leeson, 2008). Prior to the ban, gut integrity of poultry was mainly dependent on AGPs to control intestinal pathogens (Wallace et al., 2010). However, because of the rising concerns on the extensive loss in poultry due to gastro-intestinal complaints and implementation of the laws to use of harmful synthetic drug or antibiotics in products for human consumption an alternative disease control resources to enhance gut health and to reduce the use of AGPs is in high demand (Mirzaei-Aghsaghali, 2012). Interest and some useful research on various natural growth promoters (NGPs) such as phytobiotics (essential oils, powders, extracts and phytochemicals), probiotics, prebiotics, synbiotics, organic acid, clay minerals, egg yolk antibodies, exogenous enzymes, recombinant enzymes, nucleotides, polyunsaturated fatty acids and miscellaneous compounds has increased the impetus for revisiting to look for new, useful additives that can enhance gut health and productivity of birds; one of such NGPs is the miracle tree called Moringa oleifera. Moringa oleifera (Moringaceae) is a highly valued plant, distributed in many countries of the tropics and subtropics. It is one such plant with an impressive range of medicinal uses, including growth promotion, antimicrobial and antioxidant effects (Makkar and Becker 1997; Moyo, et al., 2011 and Mbikay, 2012). The nutritional profile of dried M. oleifera leaves has shown high levels of lipids and amino acids important in poultry productivity (Makkar and Becker, 1997). This plant that has been studied for

many years for use by human is now being many years for its fast growth, higher investigated for its fast growth, higher nutritional value, and utilization in high nutritional rodder crop (Noumaner livestock roperation of this here livestock formation of this herb and in livestock feeds and in products in livestock feeds and water to products the effective use of feed nutrient stimulate the common rapid gain, higher may result in more rapid gain, higher production and better feed efficiency. This is because it contains active substances that can improve digestion and metabolism and possess bacterial and immuno stimulant activities (Ghazalah and Ali, 2008). The are limited study on the effect of this plant extract on the gut morphology and internal organ pH. Thus, this study determined the influence of varying concentration of aqueous Moringa oleifera leaf extracts on the gut morphology and internal organs pH of Hubbard broiler chickens.

Materials and methods Study location

This study was carried out at Abeezainal Integrated Farms along Minna-Bida road. Niger state, Nigeria. Minna is located between latitude 9°37' North and longitude 6°33' Eeast. It is located in the Southem Guinea savanna zone of North Central Nigeria. The mean monthly minimum and maximum temperatures are 38°C and 42°C respectively. The mean annual rainfail is between 1200mm – 1300mm while as mean monthly relative humidity is 65 % (Niger State Agricultural Development Project, 2009). The experiment lasted for seven weeks.

Source of the test ingredient and preparation of the extracts

Moringa oleifera leaves were purchased from the Central (Kure) Market in Minna The leaves were air-dried for five days and ground into fine particles using a same hammer mill, 60g of the ground panada was then soaked in 1 litre of boiled drinking

the preparation was then filtered using a muslin cloth to separate the debris and filtrate; the extracts were then placed in a clean container and diluted using water (volume/volume) into 60 mL/1000 mL, 90 mL/1000 mL, 120 mL/1000 mL and 150 mL/1000 mL water for the respective treatments. This procedure was carried out daily and the filtrate served to the experimental birds in their drinking water. Source of the experimental birds, experimental design and experimental

A total number of 240 day old Hubbard broiler chicks were purchased from Bnot Harel Hatchery from 1 J.K close, Oluyole Extension Ring road Ibadan, Oyo State, Nigeria. The birds were randomly allocated into six treatments level of aqueous Moringa oleifera leaf extract (AMOLE) in a completely randomized design

had four replicates with ten birds per replicate. The birds were acclimatized for one week and after this the birds were given the experimental treatments. Freatment I was the positive control of which ordinary water was given while Treatment 2 were the negative control and was given water and antibiotics: Treatment 3, 4, 5 and 6 were given 60 ml, 90 ml, 120 ml and 150 ml per litre of aqueous Moringa oleifera teat extracts (Table I), respectively.

Broiler munagement

Twenty four pen units, with an area of a one square meter each that can accommodate twenty broilers were constructed at Abeezainab Farms Broiler Production Unit. The walls and floors of the pens were disinfected with Germicide (Izal) after washing with detergent and water. Litter materials made of old newspapers were used for the first one week of chicks life.

Table 1: Aqueous Moringa oleifera Leaf extracts inclusion levels

Treatments	
	Inclusion level
AMOLE ₀₊	Positive control(Ordinary water)
AMOLE ₀ -	Negative control(1.25g/L)
AMOLE ₆₀	60 mL/l
AMOLE ₉₀	90 mL/l
AMOLE ₁₂₀	120 mL/l
MOLE ₁₅₀	150 mL/l

Clean and disinfected feeders and drinkers were set in a place accessible to the birds. Each pen unit was properly labelled for easy identification of each treatment group. In addition, a traditional charcoal pot was placed at the strategic area of each pen unit. The distance of the charcoal pot was adjusted based on the response of chicks, weather condition and feather growth. The charcoal pot was removed during the third week when feathers are fully grown. In terms of feeding, a super starter feed

containing a crude protein of 26.60 % and metabolizable energy of 559.13kcal/100 g of was given during the first two weeks and the starter feed during the third and fourth week. Finisher feed containing crude protein of 24.85 % and metabolizable energy of 585.68kcal/100 gwas given during fifth week of age till the sixth week. Feeds were given ad libitum and shifting from one form of feeds to another was done gradually to avoid digestive disorder. During feeding, a predetermined amount of

feed as well as the leftover was weighed and recorded. After the first one week, old newspaper used as the litter material were removed and replaced with wood shavings. Medications and proper vaccinations were given to the birds based on the recommendations of the Nigerian Veterinary Medical Association (NVMA) as recommended for this region.

Determination of the gut morphology and

At day 49, four chickens from each replicate were randomly selected and were kept off feed for eight hours but water was supplied to satisfaction while the birds were weighed before slaughtering. Each bird was weighed and killed by cervical dislocation, then scalded and de-feathered. The gastro intestinal tract (GIT) of each bird was eviscerated immediately and placed in a tray at room temperature and gently uncoiled to avoid tearing or stretching. The pH was measured with a calibrated digital pH meter (Labtech Digital pH metre from USA). The pH values for different segments of the gastro-intestinal tract were measured by inserting a glass electrode directly in the openings made in the organs with digesta. In order to evaluate the organ weight and morphometrics of the chickens at 49 days of age, a tailor measuring tape and scale (Camry premium weighing scale) were used to measure the length and weight of the gizzard, proventiculus, small intestines and large intestines, respectively. The gizzards were weighed after their contents were removed and cleaned. After removal of the contents, the small and large intestines were cut in segments, cleaned, weighed and measured. The lengths of the small intestines were measured from the site where the duodenum emerges from the gizzard and the beginning of the caeca, while the large intestines were the length of

the colon and the rectum. The chickens were the colon and ore slaughter. Relative organ weighed bert, spleen, lung, liver weight or such as heart, so the chickens were determined by weighing the chickens were determined by weighing the chickens visceral and their pH were als measured.

Data analysis

Data obtained on absolute and relative morphology and pll of the internal organ were pooled and subjected to one was analysis of variance using SAS version y (SAS. 2015). Where means were significantly different (P<0.05), they were separated using the Duncan Multiple Range Test.

Results and discussion

The effect of aqueous Moringa oleiferale, extracts (AMOLE) on the relative gu morphology weight of Hubbard broiler chickens aged 49 days is presented in Table 2. The AMOLE treatments significantly (P<0.05) influenced the dressing percentage, crop, large intestine, kidney and lung. The results showed that the dressing percentageof birds in the positive and the negative control had highest value and was significantly higher (P<0.05) than birds on AMOLE 126 treatments. The reason for this is not known as the result did not follow amy specific pattern. However, the result is similar to those of Etalem et al. (2013) who found that birds on diet containing 0% Moringa oleifera leaf meal (MOLM) had higher dressing percentage than those of MOLM diets. Contrast to this result us and Affiku (2012) did not find in difference in dressing percentage of broils chickens administered polyherbal aquion extract from Moringa oleifera, gum Andi and wild Ganoderma lucidum. In another study, David et al. (2012) observed by birds fed Moringa oleifera powder mealds had higher dressing percentage than the on the negative control diet which haden

Havomyeine (antibiotic growth promoter). The relative crop and large intestinesweightsof birds on AMOLE treatment had the highest value compared to the other treatments. This might mean that at 60 mL per litre of AMOLE these organs were improved.Large crop means larger compartment for feed storage (Birger, 2014) and larger intestine implies more contents can be stored for reabsorption.

The relative kidney weight of birds on AMOLE, treatments had highest value compare to the other treatments. There are limited studies on the effect of Moringa oleifera extract on the kidney of broiler chicken. However, on mice and rat stadies Moringa oleifera extract does not have any negative effect on broiler chickens.

The relative lung weight of birds on AMOLE is treatment had the highest value and were significantly higher (P<0.05) than the other treatments. This results is similar to those obtained by Odetola et al. (2012) who noted that rabbit feed 15 % MOR M had the highest lung weight. The result of bigger lung weight might be as a result of oedema and thickened inter alveolar septa area as reported by Ojo et al. (2013).

Table 2: Effect of aqueous Moringa oleifera leaf extracts on relative gut morphology of Hubbard broiler chickens aged 49 days

Hubbard broile			Treatments	AMOLES	AMOLE 120	AMOLE	SEM
Parameters	(Positive)	(Negative)	AMOLE ₀₀	ANOLLO			
Live weight (g) Dressed % GIT (%) Crop (%) Proventiculus (%) Gizzard (%) Small intestine (%) Large intestine (%) Heart (%) Liver (%) Kidney (%)	2525 94.67° 7.37 3.76° 0.26 1.83 1.62 0.12° 0.32 1.38 0.16° 0.25° 0.07	2450 94.93° 7.11 4.22° 0.31 1.92 1.66 0.14° 0.38 1.19 0.24° 0.24° 0.06	2250 93.33ab 6.98 4.47a 0.31 2.35 1.90 0.23a 0.37 1.26 0.24ab 0.30ab 0.15	2275 91.23°0 7.76 2.66°0 0.26 2.02 1.66 0.14°0 0.39 1.44 0.33°0 0.24°0	2-125 89.67 ^b 8.14 3.51 ^{ab} 0.27 1.99 2.20 0.09 ^b 0.41 1.40 0.27 ^{ab} 0.25 ^b 0.09	2300 91.20° 7.71 2.57° 0.31 2.26 1.47 0.15° 0.37 1.33 0.11° 0.32° 0.10	0.71 0.21 0.26 0.01 0.0 0.0 0.0 0.0 0.0 0.0

ab: Means within rows with different superscripts are significantly different (p=0.05)

SEM: Standard Error of Mean

AMOLE: Aqueous Moringa oleifera Leaf extracts

The GIT weight, proventiculus, gizzard, small intestine, heart, liver, and spleen weights relative to the live weight were not influenced by the AMOLE treatments.

The effect of aqueous Moringa oleifera on the absolute and relative organ length of Hubbard broiler chickens aged 49 days is presented in Table 3. The AMOLE treatments significantly (P<0.05) influenced the absolute crop, absolute caecum and relative caecum length. The results showed that the absolute crop length of birds on the positive control treatment had the highest value and were significantly higher (P<0.05) than the birds AMOLE and AMOLE 150 treatments. The crop lengt seems to be less developed in the AMOI treated birds than the control particular those on AMOLE, and AMOLE treatments. The shorter crop length could related to the lower dressing percentage the birds in these treatments. Barash er

(1993) reported increased weight of crop when birds were fed one or two times daily than ad libitum feeding. The absolute caecum length of birds on AMOLE120 had the highest value and were significantly higher than (P<0.05) those of birds on AMOLE on treatment. Similar to the absolute caecum length, relative caecum length of birds on AMOLE₁₂₀ had the highest value, they were, however, significantly higher (P<0.05) than those of birds on control, AMOLE, and AMOLE, treatments Caecum to a great extend were influenced by diets and the enlarge caecum signifies increased amount of fermentation (Birger 2014). This might implies that bird on AMOLE treatments had more fermentation going on in their caccum than those on the control treatment. Absolute length of the GIT, proventiculus, gizzard, small intestines and large intestines were not influenced (P>0.05) by the treatments (Table 3).

Table 3: Effect of aqueous Moringa oleifera Leaf extracts on absolute (cm) and relative

Table 3: Effect of aqueous Moringa oleifo internal organs length (cm) of Hubbard l		Treatments AMOLE60	AMOLEON	AMOLE 20	AMOLE ₁₅₀	SLM	
Parameters	Control (Positive)	Control (Negative)	7,111	203.00	218.00	205.50	3.969
Absolute(cm) GIT Crop Proventiculus Gizzard Small intestine Caecum Large intestine Proventiculus Gizzard Small intestine Caecum Large intestine Large intestine	208.00 7.25 ^a 4.75 6.00 162.50 17.00 ^{ab} 13.00 2.28 2.89 78.20 8.17 ^{bc} 6.24	213.00 5.50 ^{ab} 4.75 6.00 172.50 18.00 ^{ab} 11.25 2.24 2.82 79.75 8.43 ^{abc} 5.30	212.50 6.50 ^{ab} 4.75 5.75 172.00 18.50 ^{ab} 12.75 2.26 2.73 83.10 8.74 ^{ab} 6.03	5.00° 5.00 5.50 160.00 15.50° 12.00 2.49 2.71 79.19 7.64° 5.99	6.00° 4.75 6.50 172.50 20.25° 12.00 2.18 2.98 79.12 9.29° 5.52	5.00 ⁶ 4.50 6.25 149.00 16.25 ^{ab} 11.50 2.21 3.07 72.47 7.90 ^{bc} 5.62	0.296 0.097 0.163 3:496 0.567 0.421 0.076 0.090 1.080 0.180

abs: Means within rows with different superscripts are significantly different (p<0.05)

SEM: Standard Error of Mean

AMOLE: Aqueous Moringa oleifera Leaf extracts

The effect of aqueous Moringa oleifera on the internal organs pH of Hubbard broiler chickens aged 49 days is presented in Table 4. The AMOLE treatments significantly (P<0.05) influenced the gizzard, duodenum, jejunum, ileum, caecum, kidney and lung. The results showed that the pH of the gizzard of birds on the positive controlwere all significantly lower than (P<0.05) all the other treatments. Birger (2014) reported that a well-functioning gizzard may reduce survivability of probiotics through an increased retention time and a decreased pH. This could mean that birds on the positive control had a more functional gizzard hence the significant lower pH observed in the treatment.

The duodenum of birds on the positive control, negative control and AMOLE, had higher (P<0.05) pH value than those of birds on AMOLE 120 which had similar values with birds on AMOLE, and AMOLE, The jejunal, pH of birds on the positive control had the highest value and it was significantly higher (P<0.05) than those of birds on AMOLE 120 treatment. The ehickens on positive control had the highest ileum and caecum pH values and the values were significantly (P<0.05) higher than those of birds on negative and AMOLE₁₂₀ AMOLE₁₂₀ and AMOLE₁₃₀ treatments.Birds on AMOLE₁₃₀ had the lowest kidney pH value and this value was significantly lower (P<0.05) than those of birds on both negative and positive control treatments. The lung pH values of birds on positive control, negative control and AMOLE₁₀₀ were similar (P>0.05), their values were, however, higher than those of birds on AMOLE₁₂₀, and AMOLE₁₃₀ treatments.

The significant differences observed in the pH of gizzard, duodenum, jejamum, ileum, caecum, kidneyand lung in the present study agree with those of Nkukwana (2012) who reported that the stomach, ileum and caecum pH were influenced at 5% addition of MOLM and lowest at 10% addition of MOLM. The variation in the pH of the internal organs could be attributed to the presence of anti-nutritional factors especially tannin which decreased the pH with an increase in tannin concentrations (Muller and Tobin, 1980).

Table 4: Effect of aqueous Moringa oleifera leaf extracts on the internal organs pH of

Parameters		is aged 49 day	Treatment s	A It is a supposed by the			
		Control (Negative)	AMOLE ₆₀	AMOLE ₉₀	AMOLE ₁₂₀	AMOLE	SEM
Comp	6.28	6.05	6.09	6.74	5.66	5.14	0.208
Crop Proventiculus	5.84	6.27	6.82	6.01	5.84	5.58	0.174
Gizzard	3.76b	7.54"	7.57ª	6.97°	6.79"	6.83"	0.400
	6.98ª	6.86ª	6.78ª	6.69ab	6.01 ^b	6.44 ^{ab}	0.113
Juodenum	7.36ª	6.84ab	6.68ab	6.76ab	5.79b	6.18 ^{ab}	0.17
ejunum	7.218	6.62bc	7.05ab	6.57°	6.65bc	6.33°	0.09
eum	7.63ª	7.00bc	7.33ab	6.88bc	6.95bc	6.57°	0.10
aecum	7.03 7.21 ^a	7.05°	7.03 ^{ab}	6.88ab	6.82ab	6.50 ^b	0.07
idney		6.52	6.57	6.33	6.30	6.15	0.1
iver ung	6.52 7.61 ^a	7.68 ^a	7.44	7.24ab	6.52°	6.84bc	0.1.

ab.c: Means within rows with different superscripts are significantly different (p<0.05)

SEM: Standard Error of Mean

AMOLE: Aqueous Moringa oleifera Leaf extracts

Conclusion and recommendations

The results obtained from the present work showed that aqueous Moringa oleifera leaf extracts treatments influences gut morphology (dressing percentages and relative weights of crop, large intestines, kidney and lungs; absolute length of crop, caecum) and pH (gizzard, duodenum, jejunum, ileum, caecum, kidney and lung) of the broilers. The inclusion of AMOLE at 150mL had negative effect in lung. Therefore, it can be concluded that the substitution of antibiotics as a growth promoter with aqueous Moringa oleifera

leaf extracts up to 120 mL improved the morphology of the intestinal segments, tissue accretion and pH in broiler chickens. It is hereby recommended to farmers, poultry producers and nutritionists to administer between 60 ml to 120 ml/litre of AMOLE in the drinking water of broiler chickens to nourish them for good gut morphology and optimum pH of their internal organs. Also, it is recommended that further research should be carried out to investigate other parts (seed, root) of Moringa extracts on performance and gut morphology of chickens.

Morphology of birds administered aqueous Moringa ofeifera leaf extracts North Carolina, pp. 1-3.

Barash, I., Nitsan, Z. and Nir, I. 1993. Melabolie andbehaviouraladaptation of fightbodied chicks to meal feeding. British Poultry Science Journal. 33:271-278.

Birger, S. 2014. Function of the digestive system. Journal of Applied Poultry

Research 23:1-9

Chang, H.S. 2007. Analysis of the Philippine chicken industry. Asian Journal of Agriculture and

Development, 4(1): 1-6.

- David, L. S. Vidanarachehi,. Samarasinghe, J. K. K., Cyril, H. W. and Dematawewa, C. M. B. 2012.Effects of Moringa based Feed Additives on the Growth Performanceand Carcass Quality of Broiler Chicken. Tropical Agricultural Research, 24(1): 12-
- Etalem, T., Getachew, A., Mengistu, U. and Tadelle, D. 2013. Moringa oliferaLeaf Meal as an AlternativeProtein Feed Ingredient in Broiler Ration. International Journal of Poultry Science 12 (5): 289-297
- Ghazalah, A. A, and Ali A. M 2008. Rosemary leaves as dietary supplement for growth in broilers. International Journal of Poultry Science, 7(3): 234-239.
- Isika, M. A, Agiang E. A., Okon B. I. 2006. Dietary Energy and Crude Protein Requirements for Chicks of Nigeria Local Fowl and Crossbreeds. International Journal of Poultry Science, 5: 271-274.
- Leeson, S. 2008. Future developments in poultry nutrition. In: Proceedings of the Carolina Feed Industry Association 35th Poultry Nutrition Conference, 12 November 2008,

- Makkar, H. P. S and Becker, K. 199 Nutrients and anti-quality factor the Moringa oleifera Tree Journal of Agricultural Sciences, 128: 311. 322.
- Mbikay, M. 2012. Therapeutic potential or Moringa oleifera leaves in chronie hypergly cemia and dy slipidemer
- Mirzaei-Aghsaghali, A. 2012.haponang of Medical Herbs in Animal Feeding: A Review. Annals of Biological Research 3 (2):918-923
- Moyo, B., Masika, P. J., Hugo, A. Muchenje, V. 2011. Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves African Journal of Biotechnology 10. 12925 12933.
- Muller, H. G. and Tobin, C. 1980. Nutrition and Food Processing Croom Helm Ltd, London.
- Nkukwana, T. 2012. The Effect of Moringa oleifera Leaf Meal on Growth Performance. GutIntegrity, Bone Strength. Quality and OxidativeStability of from Broiler Chickens Meat Thesis. Livestock and Passin. Sciences, Alice, South Africa
- Nouman, W., Basra, S. M. A., Siddiqui, M. T., Yasmeen, A., Gull, T. and Alcayde, M. A. C. 2013. Potential of Moringa oleifera L. as livestock fodder crop: a review. Turkish. Journal of Agriculture and Forestry. 37(1) 1-14.
- Odetola, O. M., Adetola, O. V. Ijadunola, T. I., Adedeji, O. 1 and Adu, O. A. 2012. Utilization of Moringa (Moringa oleifera Leaves Meal as a Replacement Soya Bean Meal in Rabbit

Diets Scholarly Journal of Agricultural Science 2(12): 309-

of Polyherbal Aqueous Extracts
of Polyherbal Aqueous Extracts
(Moringa oleifera, Gum arabic and
wild Ganodermalucidum) in
Comparison with Antibiotic on
Growth Performance and
haematological Parameters of
Broiler Chickens. Research
Journal of Recent Sciences. 1(7)
10-18

Ojo, N. A., Igwenagu, E., Badau, S. J.,
Sambo, N., Ngulde, S. I.,
Adawaren, E. O., Madziga, H. A.,
Yahi, D., Mbaya, Y. P., Bargu, J.
S., Simon, J., Ndahi, J. J., Auwal
M. S. and Dibila, H. M. 2012.
Acute Toxicity and Effect of
Aqueous Extract of Moringa
oleifera Leaves on Organs and
oleifera Leaves on Organs and
Tissues in Rats. Journal of
Environmental Issues and
Agriculture in Developing
Countries, 5, (2): 2013 41-50.

Oluyemi, J. A. and Roberts, F. A. 2000.

Poultry production in wer climate
Second edition Published by
Spectrum Blocks limited. Page 89-

Paliwal, R., Sharma, V., Pracheta,
Sharma, S., Yadav, S., Sharma, S.
2011. Anti-nephrotoxic effect of
administration of Moringa oleifera
Lam inamelioration of DMBAinduced renal carcinogenesis in
Swiss albinomice. Biology
Medicine, 3 (2): 27-35.

Wallace, R. J., Oleszek, W., Franz, C., Hahn, I., Baser, K. H. C., Mathe, A., Teichmann, K., 2010. Dietary plant bioactives for poultry health and productivity. British Poultry Science. 51, 461–487.

Received 8th December, 2016 Accepted: 4th March, 2017