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Abstract: Nuclear magnetic resonance (NMR) allows for fast, accurate and noninvasive measurement of fluid flow in restricted and 
non-restricted media. The results of such measurements may be possible for a very small B0 field and can be enhanced through detailed 
examination of generating functions that may arise from polynomial solutions of NMR flow equations in terms of Legendre polynomials 
and Boubaker polynomials. The generating functions of these polynomials can present an array of interesting possibilities that may be 
useful for understanding the basic physics of extracting relevant NMR flow information from which various hemodynamic problems 
can be carefully studied. Specifically, these results may be used to develop effective drugs for cardiovascular-related diseases.

Keywords: bloch NMR flow equations, NMR transverse magnetization, legendre polynomials, boubaker polynomials, rotational 
diffusion coefficient, cardiovascular diseases, drug discovery

Magnetic Resonance Imaging-derived Flow Parameters for the 
Analysis of Cardiovascular Diseases and Drug Development

Dada O. Michael1, Awojoyogbe O. Bamidele1, Adesola O. Adewale1 and Boubaker Karem2

1Department of Physics, Federal University of Technology, P.M.B. 65, Minna, Niger State, Nigeria.  
2UPDS/ESSTT/63 Rue Sidi Jabeur, 5100 Mahdia, Tunisia.  
Corresponding author email: awojoyogbe@yahoo.com

http://dx.doi.org/10.4137/MRI.S12195
http://www.la-press.com
http://creativecommons.org/licenses/by-nc/3.0/
http://www.la-press.com
http://www.la-press.com
http://www.la-press.com/magnetic-resonance-insights-journal-j115
mailto:awojoyogbe@yahoo.com


84	 Magnetic Resonance Insights 2013:6

Dada et al

Introduction
Magnetic resonance imaging (MRI) is an imaging 
modality based on the principles of NMR and can be 
used to directly observe the movement of molecules 
associated with fluid flow. This provides for an excel-
lent opportunity to noninvasively determine molecu-
lar velocities within a confined range, for example 
due to the formation of plaque in blood vessels.1–3

Traditionally, MRI generates exquisite images of 
the soft tissue anatomy of the human body. The prin-
ciple of MRI is to record the variations of the nuclear 
magnetization of biological tissues using different 
kinds of magnetic fields.1,2,4 A static magnetic field B0 
is used to generate a macroscopic nuclear magnetiza-
tion M in the body. By applying an additional pulsed 
magnetic field B1 in the transverse plane, the orientation 
of M can be shifted into this plane as the precession is 
always around the total magnetic field B = B0 + B1. To 
investigate the variations of magnetization M in the 
presence of the field B1, it is convenient to use a rotat-
ing rather than static frame of reference. The frame is 
chosen to rotate at the same frequency as B1, such that 
both B0 and B1 become time-independent. The NMR 
Bloch flow equations in this frame can be expressed5–8 
by the equation:
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with the following parameters: γ-gyromagnetic ratio 
of fluid spins, M0-equilibrium magnetization, T1-spin 
lattice (longitudinal) relaxation time, T2-spin-spin 
(transverse) relaxation time, V-variable flow velocity.

In order to calculate the transverse magnetization 
component M



y, two reasonable initial boundary con-
ditions which may conform to the real time experi-
mental arrangements were chosen. These included 
the following.

i.	 M0 ≠ Mx, a condition which holds true in general 
and in particular when there is a small RF limit: 
γ 2B1

2T1T2 1. This is typically regarded as a lin-
earity condition in which the frequency response 
takes on the characteristic Lorentzian form.4

ii.	 For this investigation, we assumed that the reso-
nance condition existed at Larmor frequency:7

	 f B0 0= − =γ ω � (2a)

iii.	 Before entering the signal detector coil, fluid par-
ticles have magnetization of

	 M Mx y= 0 and = 0 � (2b)

Under these conditions and for steady flow, we can 
write

	
∂

∂
=

M
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When the RF B1(x) field is applied, My has the larg-
est possible amplitude when RF B1(x) is maximum 
and M0 ≈ 0. At this point, when the maximum possible 
NMR signal amplitude is detected (maximum values 
of My and B1(x) respectively), equation (1) becomes:
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In this study, we conducted a detailed analysis of 
generating functions that may arise from polynomial 
solutions of equation (4) in terms of Legendre poly-
nomials and Boubaker polynomials.9–12 The generat-
ing functions of these polynomials can enhance the 
present understanding of the basic physics required to 
extract relevant NMR flow information from which 
various hemodynamic problems can be studied.

Quantitative fluid flow imaging based on the 
solution of Bloch NMR flow equations in terms of 
Legendre polynomials and Boubaker polynomials 
is very important because significant applications of 
MRI techniques are based on the Bloch NMR equa-
tions. Applying appropriate mathematical techniques 
to solve Bloch NMR flow equations and extract 
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relevant NMR flow parameters to accurately monitor 
the fluid state is very important for MRI studies.

Mathematical model
Equation (4) was obtained under conditions of when 
the RF B1(x) field is applied and My has a maximum 
value, M0 = 0. Equation (4) can be written in the 
form:
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The fluid velocity V is dependent on the spatial 
variable x. We may therefore write that:
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where l = l (x) is a parameter in the unit of length and 
Cot x

l
 is a cotangent function of x

l
. Equation (6) is 

based on the condition that:
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Specifically, in this model, we consider a fluid par-
ticle confined to a limited range as shown in Figure 1.

At the point x3, the fluid velocity V(x) becomes vir-
tually zero and the blockage stops the blood supply 
to the area, leading to ischemia (lack of oxygen) and 
eventually necrosis.

The fluid velocity is completely quantified within 
the (anatomical) range except at the points (certain 
discrete values µ, an NMR number associated with 
the NMR transverse magnetization and velocities) 
where µ is odd number because the velocity is infinite 
at these points (this typically occurs at bifurcations, 
ie, points x1 and x2).

Since the expression of equation (7) implies that the 
fluid velocity is a function of relaxation times, we can 
assume that V 2 is directly proportional to Tg such that:
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where 1
1n n( )+

 is the constant of proportion (n is a 

positive integer parameter).

Figure 1. Illustration of the changes occurring in an ischemic cardiovascular accident and geometrical consideration in coronary artery with atheroscle
rosis diseases.
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From equations (10), we can write:
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If we define ε = Cos x
l

, equation (13) becomes
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Dividing equation (14) through by 1
2l

Sin x
l , we 

obtain a Legendre differential equation:
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The solution of equation (15) is of the form:13–16
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where Pn
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 (ε) are the Legendre polynomials 
of the first type and second type, respectively, and C1 
and C2 are constants. It is worthy of note that Pn

 (ε) 
and Qn

 (ε) are two linearly independent solutions to 
equation.15 Hence, C2 must be equal to zero and C1 is 
equal to unity:
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Equation (17) can be factorized by its own first 
term. Setting m = n – p:
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where Bn
 (ε) denote the Boubaker polynomials.6–9

B
B
B
B

B
B

0

1

2
2

3
3

4
4

5
5 3

1

2

2

3

( )
( )

( )

( )

( )

( )

ε
ε ε

ε ε

ε ε ε

ε ε

ε ε ε ε

=
=

= +

= +

= −

= − −

	 or 	

B

B x
l

B x
l

B x
l

x
l

B

0 =

=

= 





+

= 





+ 





1

2

1

2

2

3

3

4

cos

cos

cos cos

== 





−

= 





− 





− 





cos

cos cos cos

x
l

B x
l

x
l

x
l

4

5

5 3

2

3

� (20)

Bn
 (ε) is a polynomial in ε. The elementary first n- 

indexed solutions are represented in Figure 3.

Discussion
In Figure 3, the curves correspond to the vanishing 
modes of the expression obtained for the transverse 
magnetization in Equations (17) and (19). This fea-
ture agrees with the results obtained by Kobayashi 
et al,16 Chapman et al,17 and Donnat et al.18

The case n = 0 (Fig. 3) initially corresponds to the 
reduced equation:
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Figure 2. Effect of constriction on the velocity profile in a blood vessel: (ab) Laminar flow velocity V, (bc) High velocity V1, (de) Turbulent, and (eg) Laminar 
flow. The diameter of the blood vessel is h.21 Reprinted with permission of the Collegium Basilea.

It is interesting to note that whether the blood flow 
is laminar or turbulent, a magnetic resonance sig-
nal is always available. Specifically, at bifurcations 
and points just after the build-up of fatty deposits 
(sections d and e in Fig. 2) the transverse magneti-
zation My is a constant. This indicates that resonant 
waves can be reconstructed to image the points within 
the blood vessels where flow is turbulent. Figures 3 
and 4 suggest that except at points where there is no 
contribution from velocity, transverse magnetization 
must be continuous. That is, My cannot jump from 
one value to another. We therefore set the boundary 
condition for the fluid particle:

	 M G x l
y = = =1 2

at µπ
µ( 1,3,5,7,9.............) � (23)

Equation (7) shows that an acceptable solution 
of equation (6) according to the assumptions made 
above can only be obtained if the fluid particle has 
certain discrete values µ, an NMR number associated 
with the NMR transverse magnetization and veloci-
ties. It is very important to note that this parameter is 
very related to the nature of flow observed within the 
vessels.

Figures 3 and 4, show the effect of the values of n 
on both Boubaker polynomial Bn and the NMR trans-
verse magnetization My. They show the behavior of 
the NMR signal at several points within the vessel 

being observed. Notably, Figure 4 demonstrates the 
importance of the ratio xl . When the value of this term 
(corresponding to a small distance along the blood 
vessel as weighted against l) is very small (Fig. 4f ), 
there is no significant NMR contrast between differ-
ent points within an in homogeneous voxel. Hence, 
to observe a significant signal at any location, l must 
be tuned to the corresponding ranges of values; these 
values can therefore be introduced into k–space 
encoding the spatial information. We also see that 

 
Figure 3. The n-indexed solutions.
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Figure 4. Plots of transverse magnetization as a function of x
l

 at l = 2.5 µm for x between 0 and (a) 1.0 m (b) 1.0 × 10−3 m (c) 1.0 × 10−6 m (d) 1.0 × 10−9 m 
(e) 1.0 × 10−12 m (f) 1.0 × 10−12 m.

http://www.la-press.com


Mri-derived flow analysis for cardiovascular diseases and drug development

Magnetic Resonance Insights 2013:6	 89

this formulation allows us to sample NMR signals at 
extremely small values of x, which may be impor-
tant for better characterization of plague size and 
morphology.

Studying the Legendre and Boubaker solutions 
to the Bloch NMR flow equation for the behav-
ior of NMR signals in flowing media is invalu-
able because it can allow effective monitoring of 
geometrical and morphological situations in the 
arteries as well as the possible effect of drugs on 
cardiovascular related diseases in any tissue. Based 
on earlier studies,22–24 l(x) may be defined in the 
Cartesian cylindrical and spherical coordinates as 
shown in Figure 2, where l(x) = h – h1. When n = 0 
and the vessel is not completely blocked, the flow is 
extremely complex. Values for n  0 indicate that 
the size of h1 is drastically reducing and the velocity 
V(x) is becoming more laminar (steady) in oxygen-
ated blood and cerebrospinal fluid (CSF) as shown 
in Figure 5. The value of n can be used to indicate 

the efficacy of any drug useful for reducing plaque 
size, as shown in Figure 5.

Similarly, equation (10) can be significantly 
valuable for estimating blood flow of blood vessels 
with very small cross section area A = l 2 (x), where 
the value of n may be defined as 0  n  5.

Figure 6 shows the distribution plots for the fluid 
velocity and the corresponding density plots for dif-
ferent ranges of l. These figures show that the study 
affords us the opportunity of simultaneously adding 
velocity mapping to MRI of blood flow within the 
vessels. The points with white open areas are points 
at which complex or turbulent flow occurs. These 
points typically coincide with presence of bifurca-
tions and fatty deposits. Additionally, as l becomes 
microscopic and lower, the model becomes more 
realistic. The points with sharp peaks or the red 
regions on the density image correspond to highest 
values of fluid velocity and can be used to determine 
and also image the presence of fatty deposits.

 

 (b)(a)
l (m) 

n
l (m) 

V (ms–1) V (ms–1)

n

l (m) n

V (ms–1) V (ms–1)

n l (m) 
(c) (d)

Figure 5. The plots of the fluid velocity for molecules of (a) cerebrospinal fluid around a “micro-sized” plague (b) cerebrospinal fluid around a “nano-sized” 
plague (c) oxygenated blood around a “micro-sized” plague (d) oxygenated blood around a “nano-sized” plague.
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Figure 6. The velocity distribution across l and x, according to equation (7) and the corresponding density image for l ranging from 0 to (a) 9.0 × 10−3 m  
(b) 9.0 × 10−6 m (c) 9.0 × 10−9 m (d) 9.0 × 10−12 m. The relaxations times used are T1 = 1.03s and T2 = 0.06s.
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It may be significant to note that the rotational dif-
fusion coefficient Drot can be defined from equation (7)  
as,19,20 considering that l is a fixed length:

	 D V x
l Trot

g

=
2

2

( )
τ

� (24)

Given that the translational diffusion coefficient is: 

D V x
Ttrans

g
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, where τ is the correlation time defined 

as:19,20
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For the value n = 1, My (ε) = P1(ε) = B1(ε) and the 
correlation time becomes

	 τ = 1
2Drot

� (26)

The physical implication for when n = 0 can be 
interpreted as the constant magnetization where the 
correlation time is observed to be infinitely small.

Finally, the rotational diffusion coefficient as given 
in equation (23) may be written as:19,20
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where kB is the Boltzman n constant, T is the absolute 
temperature of the tumbling blood molecules, and fr is 
the rotational friction coefficient. Therefore, the fric-
tion coefficient, which provides significant informa-
tion regarding molecular interactions, is given as:

	 f k TT n n
k TT
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x
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B g= + =τ
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[ ( )] cot1
0
2
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Conclusions
We have derived the MRI signal in terms of Legendre 
and Boubaker polynomials. By solving the Bloch 
NMR flow equations under some assumptions, we 
obtained elementary spatial profiles of the transverse 

magnetization response. The primary advantage of this 
approach is the potential to exploit spatial-evolution  
of magnetic response in the presence of a preset rotat-
ing field for monitoring the effect of a drug on cardio-
vascular-related diseases and to estimate blood flow 
rate in very small blood vessels.

Interestingly, quantification of the velocity is not 
a direct prediction of equation (7), but it is a conse-
quence of the conditions imposed on the transverse 
magnetization.

In physical situations in which a fluid par-
ticle is confined in space, for example, at x = βl, 

where − < < +





π
β

π
2 2

, most solutions behave in 

an inappropriate way at the edges of the region of 
interest. Only for certain precisely determined veloci-
ties are satisfactory solutions obtained. The bound-
ary conditions which the transverse magnetization 
My must satisfy cannot be derived. They can be 
justified in part by the physical interpretation of My 
based on the properties of Boubaker polynomials in  
equation (19):

(i)	 My must be a well-defined functions of position,
(ii)	 My cannot be infinite any where except at the 

point x l= µπ
2

(µ = even integer),
(iii)	 My must be continuous, and not jump abruptly 

from one value to another.
(iv)	 When n = 0, and x l= µπ

2
 (µ = odd integer), the 

transverse magnetization is a constant and the 
velocity is indeterminate.

(v)	 The NMR transverse magnetization is directly 
proportional to Boubaker polynomials.

(vi)	 My has the same value as the Boubaker polyno-
mials when n = 1.

Detailed study of these NMR flow parameters and 
properties of the transverse magnetization as described 
in this study can allow for careful optimization and 
3D computer graphics of fluid flow magnetic reso-
nance imaging. A simple illustration of this is given in 
Figure 6. The mathematical analysis presented in this 
study is based on the assumption made in equation 
(7). This was done with the goal of exploring the spa-
tial evolution of the MRI signal in the presence of a 
preset rotating field.
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The biological, physical, biomedical, and geo-
physical applications of equations (17), (19), (23), 
(25), and (27) when n  1 can be used for all NMR/
MRI procedures and further application of this study 
will be presented in separate studies. For an example 
of the physical properties of a drug designed to reduce 
the size of h1 of the fatty deposit in Figure 2 may be 
revealed by equations (24–27).

Notably, the parameter l in equation (7) is a length 
used to scale x. This parameter may be used for slice 
selection in spatial encoding in a typical MRI experi-
ment so that l can be defined such that:

	 l
G

= 1
γ τ

� (28)

where G is the applied gradient and τ is the duration 
of the applied gradient.4 The area A l x= 2 ( )  (which 
was discussed above) represents the field of view 
(FOV) for the voxel selected.
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