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stract. : .
Alr? this paper, we developed an implicit continuous four-step Extended Block Hybrid Backyg

Differentiation Formulae (EBHBDF) for the direct solution of Fuzzy Differential Equafipns
(FDEs). For this purpose, the Legendre pol ynomial was ?mployec{ as the basis function for g
development of schemes in a collocation and interpolation techniques. in this regard and the
results are satisfied the convex triangular fuzzy number. We also compare the numerics|
results with the exact solution, and it shows that the proposed method is good approximation
for the analytic solution of the given second order Fuzzy Differential Equations

Introduction

The study of Fuzzy Differential e\Equations (FDEs) appears as a natural way to model the
propagation of uncertainty in a dynamical environment. FDEs play an important role for
modeling physical and engineering problems since they mimic the real situation to handle the
system qnder uncertainty. Though, it is difficult to obtain the exact solution of FDEs due tothe
complexity of arithmetic in Fuzzy. The concept of Fuzzy set theory was first developed by Zadeh
§1965) and there is need for efficient numerical technique to handle the corresponding FDES.

n recent years, the theory of FDEs has attracted wide spread attention and had been rapidy
growing. It was massively studied by several researchers (Oregan, Lakshmikantham, &Nie®

2003; Nieto, 2006). Chang a i e
oloned o, e gragg Zadeh (1972) first introduced the concept of Fuzzy derivatle

(1982) who defined and used extension principle in tef
a §
ugg;otaxglai:?yii é§|008) described the exact solutions of FDEs. Buckley ang Feuring (2_0_0_1)
s, s ﬂrstmett;}ods to solve nth order linear differential equations with Fuzzy inita
check if it éatisﬁed thmzt-ffod FU.ZZIﬁed the crisp solution to obtain a Fuzzy function and thef
Ahmada, Hasan ande B; t:;entlal equations and the second is the reverse of the first e
Fuzzy differentia| equatioe é2013) studied the analytical and numerical based solute"
first-order boundary valy, S FDEs. Oregan et al. (2003) obtained the exact solution of * to
coupled or uncoypleq e In all of the above attempts, the FDEs are convertéd b
coefficients, Much system of differentia| equations depénding on the sign % .
nd Chakraverty (2014) developed a new analy!

method based on Fsse Y, 12Paswin a
2y centre which solve with respects to the sign of the coefficients:

In the last few

Abbasbandy and »\I/?farrs\foge(cgg dorder fuzzy differential equations have been studes b)),,
Allahviranlo, Ahmagy, and Ahn?‘_izgl Abbasbandy, Viranloo, L’ opez-Pouso, and Nieto (2\%2“‘g
and Guo (2011) and Rabie, 1gmay aor . AlahViranlo, Ahmady, and Ahmady (2008) e

(2017). In the work . madian and danc- | o
of nth-order linear &%’2'1223'2?2“ etal. (2008), the :&lﬁgf: Sﬁia(iﬁgﬁ?{e?fpkrﬂimaw oclggg”
method. Wang and Guo (2011)‘1#:5:):18 With fuzzy initial conditions by using the < Is‘t’acond,

S| 100 eveloped numerical methods for addressid
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rder fuzzy differential equation by Adomian decomposition methods. Rabiei et al,

geveloped the fuzzy improved Runge-Kutta Nystrom (FIRKN) method for solving sggi?;ﬁﬁ
fuzzy differential equations. Meanwhile Fookand and Ibrahim (2017) proposed block backward
differentiation formula method for solving second order fuzzy initial value problems, Jameel et
al (2017) developed numerical solution of second-order nonlinear two-point fuzzy boundary
value problems (TPFBVP) by combining the finite difference method with Newton's method. In
this paper, we construct an Extended Block Hybrid Backward Differentiation Formula (EBHBbF)
method capable of solving both Initial and bounda

: ry value problem of linear and non-linear
type of second order FDEs with small errors and less computation

(1), March, 2020 &

Preliminaries
The definitions reviewed in this section are required in our work.
The link between the crisp and fuzzy domains represented by the r-level set (or r-cut set)

of a
fuzzy set A4, denoted by [4], which is the crisp set of allxe X such that Hy 27 le.,
[j]={xeX|uj>r,re[0.l]}

Definition 2.2

One of the important tools that uses to fuzzify the crisp models are fuzzy numbers which are

subsets of the real numbers set and represents vague values. Fuzzy numbers are linked to
degrees of membership which state how true it is to say if something belongs or not to a

determined set. A fuzzy number u is called a triangular fuzzy number (Dubois and Prade,
1982) is defined by three numbers a < 8< 7 where the graph of u(x) is a triangle with the
base on the interval[ e, 8] and its membership function has the following form (Figure 1)

(0 ifx<0
g'“, ifa<x<p
g &
M(X’Q’B’Y)_WY"", ifp<x<y
¥~
0, if x>y

[u(x)]’ =[°‘ +r(B-a)y-r(y-B )],r €lo,1].
And its‘ll'giwél is:

0.5

o 8 Y
Figure 1: Triangular fuzzy number

01
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In this paper, the class of all fuzzy subsets of R will be denotetzlot;); )E and satisfy the following
properties (Dubois and Prade, 1982, Mansouri and Ahmady,

X M(x) is normal, i.e., 3t, € Rwith u(%)=1,

f 3 #(x)is convex fuzzy set, i.e., u(Ax+(1-2)y)2 min {u(x).8 (»)}vx.yed.z[o.1],
3. 4 upper semi-continuous on R

4, {xeR:u(x)>0} is compact.

Where E is the space of fuzzy numbers and R is a proper subset of E.

Define the r-level set xeZ, [u] ={x'u(x)2r},0<r<1, where [a],={x u(x)> 0} is
compact Ghanbari (2009) which is a closed bounded interval and denoted by
[#], =(4(x).2(x)). In the parametric form (Dubois and Prade, 1982) which is represented by

an ordered pair of function ( /_1(x; ). a( x,r)),r € [0, 1] that satisfies the following conditions:
i #(x;7)Is bounded left continuous non-decreasing function over [0,1].

2. A(xr)is bounded left continuous non-increasing function over[o, 1].

3. #(x.r) < A(x;7). A crisp number r is simply represented by u(r)=g(r)=r.

Definition 2.3 Fard(2009) A mapping 7:T — £ for some intervalT <  is called a
fuzzy process or fuzzy function with crisp vaniable, and we denote r-level set by:

[_f’(x,r)l =[[(x‘,r),_f(x;r)],xeT,re[O,l]

Where Ebe the set of all upper semicontinuous normal convex fuzzy numbers

Definition 2.4 Zadeh(2005) Each function PV

4 induces another function
f:F(X)—F(Y) defined for each fuzzy interval U in X by:

Si £/ Yemas
j(U)(y)={ upx-f‘i}'j (X), I.f P& angg(f)
0, ifye(f)

This is called the Zadeh's extension principle.

Definition 2.5 Sriram and Murugadas (2010) A fuzz
[j] =‘:&;, /‘w] as, where u_ is
a z'n[‘:l],‘:'d‘. e E fori =1, 2,..mand j =1,2,

(4] -[43] u[a] -[a.3,]

- Y matrix of order mxs is defined
the membership function of the element E

-+ 5. Thus for all» < [0,1]

rg| 102
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88503030h2ﬁH4+3476309760h21'L\+242333b3y”—
ll'.‘

L : 305930520ywl+1411179l65ym2—ll61]207300yw

B B0R0RA3T0R, 120477052

gy T
15
4

11324209054 f,,, ~ 2361355920h f |, - 70213297y +
1

4
T Ve

i 719018370y,, - 4301529705y,,, + 44129411480y __
e 27283382280k 2 : §
. 40476686848 y

15
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Numerical Examples and Discussion of Results

In this section, the efficiency and accuracy of the EBHBDF method formulated in above is tested

on fuzzy system. The self-starting method is implemented efficiently by combining the methods
as simultaneous numerical integrator for IVP’s for example, the method presented in (5) - (9)
are combined to obtain the initial conditions at x,_,, n(mod4)# 0

and0<n<N using computed values y(x,,,) over sub-interval [x,, x, ]

In this section, we solved the fuzzy differential equations to show the accuracy of the method
proposed in the above. The results of the exact solutions and numerical solutions are presented
in the tables and figures. A comparison of the numerical solutions and exact solution is carried

= Y (¢
out to obtain the errors. Let the exact solution Y(t’r) IZ(t,r),Y( ’rj, the absolute error
formula, considered in tables 1 - 2 is as follows:

The error, € is defined as the maximum error through the whole interval of integration.
Maximum Error =€

s=lp-1|, e=p-7|

The notation used in the tables and figures are the following:
h: step size

r fuzzy numbers with fuzz bounded r — level interva |

Y :lower bounded exact solution
‘upper bounded exact solution

tlower bounded numerical solution

T R o~ o~ |

‘upper bounded numerical solution

Problem1: We consider the following fuzzy linear initial value problem.

y=-y, x>0

y(0) =0,y'(0) = [0.9 + 0.1r,1.1 - 0.17]
Exact solution at x = 1

HLﬂ=K&$HMﬂdMﬂ,04-unhmﬂ

e R




atics and Education (]OSTMED)' 16 (1), Mareh, Si u

@ Journal of Science, Technology, Mathem

i initi roblem
Problem 2: We consider the following fuzzy linear initial value p

}’"=—}’+x, xZO

y'(0) =[18+ 0.2r,2.2 - 0.27]

Exact solutionatx =1 i 8 .1 i
: 2 4+ —r)cos(x)+x
¥y =(-§+-5-1’)Slnx+(10+ 10 )
6_1 si())+(£--1—r)cosx+x
)'z=(§'§’ e 8 T AT

Problem 3: We consider a second-order Fuzzy linear differential equation with positive

coefficients, subject to Fuzzy boundary conditions.

y'+y+t=0

7(0) = §(1) =[0.17 - 0.1,0.1- 0.17] Exact solutions: First condition;
Y[t.r] = —t+(0.1r = 0.1)cos(?) + (1.13376 + 0.05463027) sin( 2)

Second condition; ¥[t, 7] = -t + (0.1-0.17)cos(t) + (1.24303 - 0.0546302 r)sin(t)

Problem 4

y'(x,r)=—'%'&r))l, x€[01] »0,7)=[09+0.17, 1.1-0.1/]

¥ r)=[19+0.1, 2.1-0.1r]

Using the Maple 2015 software package to obtained the exact solution of Problem 4 as follows

Y(xr)= xm\jo‘l@-o +1.0r)° e

14.0 +1.0»

Flx r)=~WJ‘ 0U-110+10n)°

-16.0+1.0r

Also we can represent the exact solution of Prob|
em4forallre[01] i
1| and xe [0,1] in figure 4

Table 1: Error at t = 1 in solving problem 1

BDF
- ey 5 BBDF Sl
10" 0 300591e05 3 = e
: 09591e-05  3.78389¢-05  5.40487 ' 3
02  3.16471e-0 Peaa o ul e N0 Y :
x s Ui sl OTEE LnGeIS S
- 64509¢-05 8719e-07  3.3713e-
0.6 3.30231e-05 3.57750e-05 5 6.36573e-0
- 76519e-05 5 2.93433¢-07 3.308%e-07
08 3.37111e-05 3, 6.24
08 SaTlels J000els SsaNlets gisssegs oot (RN
Executio 1.265 G00541e05 600591005 o op2e? 31840
n Time 0.6s e05 3.12163e-07 3.1216e-07
e S
i ——"

Pg| 106
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/
BDF
B # BBDF 9 EBHBDF
h € € € p 3 -
2 0 3.14945e-08 3.84933e- . e &
. 0.2 3.21944e-08 3.7793:31:-33 3833123583 g.gﬁe-os 4 o i
0.4 3.28943e-08 3.70935e-08  7.155e-08 8'069e88 plewly. At
0.6 3.35941e-08 3.63937e-08  7.307e-08 7'9166“03 vl B b
08  3.42940e-08 3.56938e-08  7.459e-08 0 | B A
10 3.49939%-08 3.49939e-08  7.612e-08 7611608 _6.48e-11 6‘512211
Table 2: Error att = 1 in solving problem 2
5 BDF
— i BBDF EBHBDF
4 ¢ € € € £ 4
! 0 { 708944e-05 2.85313e-05  2.25608e-05 4,09196e-05 5
; . 05 1.09762e-07 2.0352e-07
0.2 1.823363e05 2.73871e-05 5.43967e-05 3.90838e-05 1.19138e-07 1.9414e-07
0.4 1937782e-05 2.62430e-05 5 62326e-05 3.72479e-05 1.28514e-07 1.8477e-07
0.6 2.052201e-05 2.50988e-05 5 80684e-05 3.54120e-05 1.3789€-07 1.7539e-07
0.8 2.166619e-05 2.39546e-05 5.09043¢-05 3.35761e-05 1.47266e-07 1.6601e-07
218 2.281038e-05 2.28104e-05 3.17402e-05 3.17402e-05 1.56643e-07 1.5664e-07
Executio 1.26s 0.6s 0.57s
nTime
BDF BBDF EBHBDF
h O% £ £ £ £ .
: 0 16795108 2.83038e-08 3.56459-08 6.04823e-08 2.93e-10 3.51e-10
0.2 1.79460e-08 571529e-08  3.81297e-08 5.79987¢-08  2.95e-10 3.42e-10
0.4 1.90969e-08 5.60021e-08 4.06131e-08 555149¢-08  3.04e-10 3.42e-10
0.6 2.02477e-08 5.48512e-08  4.30966e-08 5.30309¢-08  3.08e-10 3.33e-10
0.8 2.13986e-08 2.37003e-08 4.55803¢-08 5.05478e-08 3.18e-10 3.23e-10
8 4.80643e-08 4.80643e-08  3.26e-10 3.26e-10

1.0 2.25495e-08 2.25495e-0

Table 3: Solution of Problem 3 at

4

4

x=1/12

X

0 -0.08861562589
0.1 -0.078 19560308
0.2 -0.06777558028
0.3 -0.05735555747
0.4 -0.04693553467
0.5 -0.03651551186
0.6 -0.02609548906
0.7 -0.01567546625
0.8 -0.00525544345
0.9 0.005164579351
1 0.01 5584602156
ot

.0.08861521274
.0.07819518960
.0.06777516657
.0.05735514341
-0.04693512029
-0.03651509720
-0.02609507415
_0.01567505104
-0.005255027944
0.005164995189
0.01558501824

0.1106903314
0.1002703086
0.08985028585
0.07943026304
0.04817019462
0.03775017182
0.02733014901
0.01691012621
0.00649010340
0.008146109966
0.018641544080

y

01197852491

0.1093652261

0.09894520301
0.08852517997
0.07810515682
0.06768513374
0.05726511070
0.04684508756
0.03642506446
0.02600504135

0.018641543730

e
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Table 4: Difference approximate solution y (xr) at h=1/20 for Problem 4

4 (0.

v(0.2,r)

1(0.4,r)

0 0.900000000

0.2
S

0.5

U7
5

1 1.0000000000

0.925000000
0.950000000

0.9750000000

1.170466311
1.193992139
1.217576679
1.241216591

1.264908775

1.389241611
1.412663429
1.436138431
1.459664055

1.483237895

Table 5: Difference approximate solution )'/(x,r) at

and Education (JOSTMED), 16 (1), March, 2029 i

(0.6,r)
1,577971655

1.601755296
1.625575424
1.649430460

1.673318913

2(0.8,r)

X1.0,7)

1.746424118
1.770768885
1.795131656
1.819511708

1.843908357

1.90000000
1.92500000
1.95000000
1.97500000

2.00000000

h=1/20 for Problem 4

r y(0.7) ¥(0.2,r) y(0.4,7) (0.62,7) v(0.8,7) y(1.0,7)
0. 1.0900000000: (1,369180815. ' TMSMaRI6ys: s ACEALENE 1.940669873  2.09900000
02 10750000000 133271154 1554226771 1745171056 1917191552 ZESAENE
05 10500000000~ AIAIAL | 1sHDiBie 172118009 . T 2.05000000
07 10250000000 1288650350 1506857690 1697239374 1.868320953  2.02500000
L 10000000000 1264008775 148237605 ' Hisradugyy’  HOAGIOREE

Table 6: Accuracy of Numerical solution of Problem 4 at h = 1/120 and r = 0.75

X , '
E g
20 0.75

E 1
20 Jo0.75
(1} 0 0
0.2 2.57E-06 2.05E-06
0.4 2E-06 1.63E-06
0.6 1.26E-06 1.03E-06
0.8 5.88E-07 4.87E-07
1 0 0
: bl i

09

08 | SO

07 [
‘ 06
| =05 |
‘» 04 yoe ExACE
" 03 | - EHBDF
| 02|
il a1

o —

‘ 0 S N YA 3 s
V r
L & Satla s of i) O AR e i

exact solution and the approximate solutionin- Table 1 with h=0.1

Figure 2: The
108
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Figure 3: The exact solution and
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~—Exact
s EBHBD F
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r

the approximate solution in Table 2 with h=0.1

i

W
195
19 4
el 3 Vo d
1.85 A
—num
18 - e num2
e @ xR CL
373
7 oy [ 0 SR e e e ——
0 0.2 04 06 08 1
r

; .
Figure 5: Exact and Numerical solutions at

=0.8 and for all r in Problem 4 when h = 1/120
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ed
For problems 1 and 2, the errors of EBHBD are compzar o the ime taken for the proposed
Foolkand ef al (2017) which are giver “ Taglzsn}ezn%aé tahe ,absolute error of the proposed is
- . It is 0DS -
method are presented in the Tables. It | o 17)at differe nt step size-

very small when compared to Foolkand etal (
the roposed method in this paper has
calculate the results, pie  ethod. Figures 2 and i
3 show the exact and numerical
be observed that the behavior of

However, for time taken to :
significant advantages which have more efficien

the approximate SO

solutions with the firstand second boun :
the proposed methods is in agreement with the exact solution. From Tables 4 and 5, one can

see that the numerical results satisfy the convex tria'ngular fuzzy number a: metr:ltlonid in Sect.
5. Also for more illustration of the proposed method in fuzzy environment of problem %, W&

: for 0<x, €1, i =il

solved this problem at r=0.75 with step size h= 7 n as shown in

Table 6

Conclusion

In this study, we have presented extended block hybrid backward differentiation formula for
nd interpolation techniques. The

the solution of fuzzy differential equations using collocation a
method proposed performs better than existing method found in the literature. The method

avoids complicated subroutines needed for existing methods requiring starting values or
predictors. We have demonstrated the accuracy of the methods for fuzzy differential problems.
It is recommended that future research be focused on the implementation of the method to

parabolic partial differential equations.
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