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Abstract 
This study investigated the implementation of magnetic resonance radiomics platform (MRP) for 
machine learning based features extraction from brain tumor images. Magnetic resonance imaging 
data publicly available in The Cancer Imaging Archive (TCIA) were downloaded and used to perform 
image Coregistration, Multi-Modality, Images interpolation, Morphology and Extraction of radiomic 
features with MRP tools. Radiomics analyses were then applied to the data (containing AX-T1-POST, 
Diffusion weighted, AX-T2-FSE and AX-T2-FLAIR sequences) using wavelet decomposition principles. 
The results employing different configurations of low-pass and high-pass filters were exported to 
Microsoft excel data sheets. The exported data were visualized using MATLAB’s classification learner 
tool. These exported data and the visualizations provide a new way of deep assessment of image 
data as well as easier interpretation of image scans. Findings from this study revealed that Machine 
learning Radiomics Platform is important in characterizing, visualizing and gives adequate information 
of a brain tumor.  
 
Keywords: Brain tumor, Magnetic resonance imaging, Machine learning, Radiomics features 

extraction. 
 
Introduction 
A brain tumor is an abnormal growth of tissue in the brain or central spine that can disrupt proper 
brain function. Tumors can directly destroy healthy brain cells by invading them. Brain tumors are 
either malignant or benign (Merrel, 2012). A malignant tumor, also called brain cancer, usually grows 
rapidly and often invades or crowd’s healthy areas of the brain. Benign brain tumors do not contain 
cancer cells and are usually slow growing. Malignant brain tumors can be classified into primary or 
secondary (metastatic) brain tumors. Primary brain tumors begin within the brain. A metastatic tumor 
is formed when cancer cells located elsewhere in the body break away and travel to the brain 
(http://www.cancer.gov/cancertopic). Medical imaging is the techniques and processes used to create 
images on the human body for various clinical purposes such as medical procedures and diagnosis or 
medical science including the study of normal anatomy and function (Gangulyet al., 2010). 
 
Machine learning is a rapidly evolving research field attracting increasing attention in the medical 
imaging community. Machine learning in radiology aims at training computers to recognize patterns in 
medical images and to support diagnosis by linking these patterns to clinical parameters such as 
treatment or outcome (Giger, 2018). These methods enable the quantification of disease extent and 
the prediction of disease colours with higher precision than is possible with the human eye. A 
machine-learning algorithm provides a reliable model for tumor classification and outcome prediction. 
 
Magnetic Resonance Imaging uses a powerful magnetic field, radio frequency pulses and a computer 
to produce detailed pictures of organs, soft tissues, bone and virtually all other internal body 
structures. MRI provides detailed images that can detect brain abnormalities such as tumors and 
infection (Kanade&Gumaste, 2015). MRI has high sensitivity for detecting tumors and evaluating the 
surrounding area to some certain extent. 

about:blank
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Magnetic Resonance Radiomic Platform (MRP-V4) is a software with a graphic user interface built on 
MATLAB programming environment for imaging, post-processing and for the calculation of 
adjustment of image resolution, Image intensity, and wavelength decomposition of MR radiomics 
features extraction in analyzing and visualizing of medical imaging (Luet al., 2018). MRP -V4 has the 
following the features: 

i. Data preparation and DICOM import 
ii. Image Coregistration and Resolution adjustment  

iii. Multi-Modality operation of Region of Interest (ROI) and Thresholding 
iv. Extraction of Radiomics features (including wavelength decomposition) 
 
Radiomics is a field in medicine that extracts large number of features from radiographic medical 
images using data characterization algorithms (Lambinet al., 2012).  These features extracted, have 
the potential to uncover disease characteristics that fail to be appreciated by the naked eye (Yipet 
al., 2017). Radiomics features extraction of image, gives an insight to easily diagnosis and 
treatments of brain tumors without any difficulty. It helps radiologist with the diagnosis of both 
common and rare tumors and provide an additional independent information on visualization of 
tumors or heterogeneity which may have been difficult to access. 
 
Medical imaging has the ability to extract useful information in human body which cannot be seen by 
human eye. In recent years’ software like 3D Slicer, Statistical Parametric Mapping (SPM),Insight 
Segmentation and Registration Toolkit (ITK), Visualization Toolkit (VTK), have been developed. This 
work is limited to MRP-V4, it is used for the concept of underlying the process for both functional 
and morphological clinical images, that contain qualitative and quantitative information, that may 
reflect the underlying patho-physiology of a tissue. Radiomics analysis can be performed in brain 
tumour regions, metastatic lesions, as well as in normal tissues. 
 
Aim and Objectives 
This study is aim to extract numerical data from brain tumor images or medical images with the 
application of MR Radiomics platform (MRP-V4). The objectives of the work are to  
(i) Read and sort for DICOM of MRI, CT, and PET images, optimized for brain, breast, and chest 

imaging 
(ii) Image Coregistration and Multi-Modality of regions of interest 
(iii) Extract Radiomic features such as (image intensity, texture, shape etc) 
(iv) Obtain statistical analysis and data mining. 
 

Materials and Methods 

Method 
MRI database 
The MRI data was obtained from  

a. The Cancer Genome Atlas Glioblastoma Multifome (TCGA-GBM). 
b. The Cancer Imaging Archive (TCIA) 

The image data of 441 subjects with gliomas were obtained from The Cancer Imaging Archive (Clark 
et al., 2013). The Cancer Imaging Archive. Overall, 209 subjects, including 124 cases of Glioblastoma 
and including 85 cases of lower grade glioma from the TCGA-GBM and TCGA-LGG collection 
(Scarpaceet al., 2016) and 200 LGG cases from the TCGA-LGG collection (Pedanoet al., 2016). 
 
The clinical dataset used was downloaded from The Cancer Atlas Glioblastoma Multifome (TCGA-
GBM) site and also MATLAB code was downloaded from MR Radiomics platform, developed by Chia-
Fenglu. The dataset downloaded from TCGA-GBM site (The cancer genome Atlas Glioblastoma 
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Multifome), MATLAB application was launched and path set to perform image coregistration, 
resolution adjustment, multi-modalities of region of interest and extraction of radiomics features were 
performed, the images are shown Figure 2 and 3. The methodology consists of the phases as shown 
in the methodology flow chart in figure 1. 
 
 
 

 
 
 
 
 
 
 

Figure 1: MR Radiomic Platform (MRP-V4S 
 

 

 

Figure 1: MR Radiomic Platform (MRP-V4S) 

 
 

 
 

Figure 2: MRP platform showing cross-modalities for choosing reference and source 

 images 

Data Preparation 
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Multi-modalities of Region of Interest (ROI) 

Extraction of Radiomic Features 
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Figure 3: Multi-modality ROI GUI after image files export. 

 
Results and Discussion 
Radiomics analyses were applied to the image sequences using different configurations of low-pass 
and high-pass filters. The data extracted are summarized in Tables 1-5.  
  
Table 1: Coordinate, Intensity and ROI of TCGA-02-0033 AX-T1-POST.nii 

Patient ID Series Description  

TCGA-02-0033 6_AX_T1_POST.nii  

    
Pixel Number Area (mm2) Volume (mm3) 

11060 6221.25 18663.75  

    

Mean Std Min Max 

0.314463 0.057029 0.25 0.671 

    

Coordinate (r,c,s) Intensity ROI  

96, 103, 29 0.252667 Slice 29, Eh 2 

97, 103, 29 0.255333 Slice 29, Eh 2 

99, 103, 29 0.254333 Slice 29, Eh 2 

97, 104, 29 0.255 Slice 29, Eh 2 

99, 104, 29 0.252333 Slice 29, Eh 2 

102, 104, 29 0.256333 Slice 29, Eh 2 

88, 105, 29 0.265 Slice 29, Eh 2 

89, 105, 29 0.265333 Slice 29, Eh 2 

90, 105, 29 0.252 Slice 29, Eh 2 
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97, 105, 29 0.252333 Slice 29, Eh 2 

102, 105, 29 0.255667 Slice 29, Eh 2 

103, 105, 29 0.254 Slice 29, Eh 2 

92, 106, 29 0.251333 Slice 29, Eh 2 

93, 106, 29 0.250333 Slice 29, Eh 2 

97, 106, 29 0.252 Slice 29, Eh 2 

99, 106, 29 0.251667 Slice 29, Eh 2 

103, 106, 29 0.254333 Slice 29, Eh 2 

97, 107, 29 0.252333 Slice 29, Eh 2 

98, 107, 29 0.255 Slice 29, Eh 2 

99, 107, 29 0.255667 Slice 29, Eh 2 

122, 107, 29 0.260333 Slice 29, Eh 2 

97, 108, 29 0.252333 Slice 29, Eh 2 

98, 108, 29 0.255333 Slice 29, Eh 2 

99, 108, 29 0.254333 Slice 29, Eh 2 

122, 108, 29 0.265 Slice 29, Eh 2 

123, 108, 29 0.289 Slice 29, Eh 2 

99, 109, 29 0.251667 Slice 29, Eh 2 

105, 109, 29 0.260333 Slice 29, Eh 2 

106, 109, 29 0.255667 Slice 29, Eh 2 

123, 109, 29 0.289333 Slice 29, Eh 2 

124, 109, 29 0.254667 Slice 29, Eh 2 

106, 110, 29 0.259333 Slice 29, Eh 2 

106, 111, 29 0.252333 Slice 29, Eh 2 

 
Table 2: Coordinate, Intensity and ROI of TCGA-02-0033 reg_2_Diffusion_Weighted.nii 

Patient ID Series Description  

TCGA-02-0033 reg_2_Diffusion_Weighted.nii 

    Pixel Number Area (mm2) Volume (mm3) 

11060 6221.25 18663.75  

    Mean Std Min Max 

0.17914 0.033733 0.035376 0.351429 

    Coordinate (r,c,s) Intensity ROI  

96, 103, 29 0.126262 Slice 29, Eh 2 

97, 103, 29 0.131235 Slice 29, Eh 2 

99, 103, 29 0.148898 Slice 29, Eh 2 

97, 104, 29 0.125129 Slice 29, Eh 2 

99, 104, 29 0.14315 Slice 29, Eh 2 

102, 104, 29 0.173184 Slice 29, Eh 2 

88, 105, 29 0.161425 Slice 29, Eh 2 

89, 105, 29 0.166201 Slice 29, Eh 2 

90, 105, 29 0.173902 Slice 29, Eh 2 

97, 105, 29 0.122508 Slice 29, Eh 2 

102, 105, 29 0.167263 Slice 29, Eh 2 

103, 105, 29 0.166635 Slice 29, Eh 2 
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92, 106, 29 0.163097 Slice 29, Eh 2 

93, 106, 29 0.153342 Slice 29, Eh 2 

97, 106, 29 0.124963 Slice 29, Eh 2 

99, 106, 29 0.13835 Slice 29, Eh 2 

103, 106, 29 0.157858 Slice 29, Eh 2 

97, 107, 29 0.130245 Slice 29, Eh 2 

98, 107, 29 0.133417 Slice 29, Eh 2 

99, 107, 29 0.136729 Slice 29, Eh 2 

122, 107, 29 0.173203 Slice 29, Eh 2 

97, 108, 29 0.133751 Slice 29, Eh 2 

98, 108, 29 0.132744 Slice 29, Eh 2 

99, 108, 29 0.132703 Slice 29, Eh 2 

122, 108, 29 0.173294 Slice 29, Eh 2 

123, 108, 29 0.185854 Slice 29, Eh 2 

99, 109, 29 0.128231 Slice 29, Eh 2 

105, 109, 29 0.154489 Slice 29, Eh 2 

106, 109, 29 0.15237 Slice 29, Eh 2 

123, 109, 29 0.174409 Slice 29, Eh 2 

 
Table 3: Coordinate, Intensity and ROI of TCGA-02-033 reg_3_AX_T2_FSE.nii 

Patient ID Series Description   

TCGA-02-0033 reg_3_AX_T2_FSE.nii  

    Pixel Number Area (mm2) Volume (mm3) 

11060 6221.25 18663.75  

    Mean Std Min Max 

0.455643 0.094709 0.07477 0.794118 

    Coordinate (r,c,s) Intensity ROI  

96, 103, 29 0.254075 Slice 29, Eh 2 

97, 103, 29 0.238838 Slice 29, Eh 2 

99, 103, 29 0.227498 Slice 29, Eh 2 

97, 104, 29 0.245571 Slice 29, Eh 2 

99, 104, 29 0.222537 Slice 29, Eh 2 

102, 104, 29 0.250532 Slice 29, Eh 2 

88, 105, 29 0.426293 Slice 29, Eh 2 

89, 105, 29 0.386605 Slice 29, Eh 2 

90, 105, 29 0.357902 Slice 29, Eh 2 

97, 105, 29 0.250532 Slice 29, Eh 2 

102, 105, 29 0.255493 Slice 29, Eh 2 

103, 105, 29 0.283841 Slice 29, Eh 2 

92, 106, 29 0.322112 Slice 29, Eh 2 

93, 106, 29 0.328136 Slice 29, Eh 2 

97, 106, 29 0.254784 Slice 29, Eh 2 

99, 106, 29 0.220057 Slice 29, Eh 2 

103, 106, 29 0.274628 Slice 29, Eh 2 

97, 107, 29 0.260099 Slice 29, Eh 2 
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98, 107, 29 0.236003 Slice 29, Eh 2 

99, 107, 29 0.219348 Slice 29, Eh 2 

122, 107, 29 0.325656 Slice 29, Eh 2 

97, 108, 29 0.249823 Slice 29, Eh 2 

98, 108, 29 0.230333 Slice 29, Eh 2 

99, 108, 29 0.21297 Slice 29, Eh 2 

122, 108, 29 0.337349 Slice 29, Eh 2 

123, 108, 29 0.38129 Slice 29, Eh 2 

99, 109, 29 0.210489 Slice 29, Eh 2 

105, 109, 29 0.330262 Slice 29, Eh 2 

106, 109, 29 0.351524 Slice 29, Eh 2 

123, 109, 29 0.399008 Slice 29, Eh 2 

 
Table 4: Coordinate, Intensity and ROI of TCGA-02-033 reg_3_AX_T2_FLAIR.nii 

Patient ID Series Description  

TCGA-02-0033 reg_3_AX_T1_FLAIR.nii 

    Pixel Number Area (mm2) Volume (mm3) 

11060 6221.25 18663.75  

    Mean Std Min Max 

0.505553 0.098189 0.104697 0.851745 

    Coordinate (r,c,s) Intensity ROI  

96, 103, 29 0.29756 Slice 29, Eh 2 

97, 103, 29 0.278667 Slice 29, Eh 2 

99, 103, 29 0.267909 Slice 29, Eh 2 

97, 104, 29 0.284965 Slice 29, Eh 2 

99, 104, 29 0.262398 Slice 29, Eh 2 

102, 104, 29 0.295329 Slice 29, Eh 2 

88, 105, 29 0.465495 Slice 29, Eh 2 

89, 105, 29 0.434138 Slice 29, Eh 2 

90, 105, 29 0.406193 Slice 29, Eh 2 

97, 105, 29 0.290213 Slice 29, Eh 2 

102, 105, 29 0.294542 Slice 29, Eh 2 

103, 105, 29 0.32708 Slice 29, Eh 2 

92, 106, 29 0.370638 Slice 29, Eh 2 

93, 106, 29 0.375623 Slice 29, Eh 2 

97, 106, 29 0.295592 Slice 29, Eh 2 

99, 106, 29 0.256494 Slice 29, Eh 2 

103, 106, 29 0.318158 Slice 29, Eh 2 

 
 

Table 5: The clinical characteristics of the training datasets 
Subtypes LGG IDH mut-

codel 
LGG IDH mut-
noncodel 

LGG IDH wt GBM IDH 
mut 

GBM IDH 
wt 

Subject number  
2016 WHO entity  
 

30 (29.2% of LGG) 
Oligodendroglioma/ 
anaplastic 

47 (56.6% of LGG)  
Diffuse/anaplastic 
astrocytoma, IDH 

31 (21.2% of LGG) 
Diffuse astrocytoma, 
IDH wt; 

9 (7.3% of 
GBM) 
GBM, IDH 

90 (92.5% 
of GBM) 
 GBM, IDH 
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oligodendroglioma, 

IDH mut-code 
 

mut oligodendroglioma, 

NOS 

mut wt 

 

Histology 
Astrocytoma 
Oligoastrocytoma   
Oligodendroglioma   
Glioblastoma   

 
0 (0%) 
4 (12.9%) 
23 (89.1%) 
0 (0%) 

 
22 (39.3%) 
19 (33.9%) 
15 (26.8%) 
0 (0%) 

 
10 (47.6%) 
3 (14.3%) 
8 (38.1%) 
0 (0%) 

 
0 (0%) 
0 (0%) 
0 (0%) 
8 (100%) 

 
0 (0%) 
0 (0%) 
0 (0%) 
98 (100%) 
 

      
ATRX status 
    Wild type     
    Mutation    
    Unknown   

 
47 (96.8%) 
1 (3.2%) 
0 (0%) 

 
18 (32.1%) 
38 (67.9%) 
0 (0%) 

 
32 (100.0%) 
0 (0%) 
0 (0%) 

 
3 (37.5%) 
3 (37.5%) 
2 (25%) 

 
53 (54.1%) 
1 (1.0%) 
44 (44.9%) 

 
Age at diagnosis 
(years) 
    Mean (SD) 
 
Survival (months) 
  Mean (95% CI)   
 

 
 
51.7 (13.2) 
 
 
57.8 (40.6–74.9) 

 
 
40.2 (12.4) 
 
 
90.0 (62.6–115.3) 
 
 

 
 
52.5 (12.3) 
 
 
48.0 (12.1–83.9) 

 
 
39.0 (15.9) 
 
 
32.7 (19.2-
46.2) 

 
 
60.8 (12.1) 
 
 
15.0 (12.6–
17.5 

Karnofsky 
performance scale 
    100   
    90    
    70–80    
<70   
    Unknown      

 
 
3 (9.7%) 
6 (19.4%) 
3 (9.7%) 
2 (6.5%) 
17 (54.7%) 

 
 
9 (16.0%) 
17 (30.4%) 
7 (12.5%) 
2 (3.6%) 
21 (37.5%) 

 
 
1 (4.8%) 
8 (38.1%) 
4 (19.0%) 
0 (0%) 
8 (38.1%)) 

 
 
3 (37.5%) 
0 
4 (50.0%) 
0 
1 (12.5%) 

 
 
12 (12.3%) 
1 (1.0%) 
50 (51.0%) 
17 (17.3%) 
18 (18.4%) 

 
Table 5 shows the clinical characteristics and the relevant subtypes of the 209 included glioma 
subjects in the training dataset. For LGG, the most prevalent subtype is LGG-IDH mutant-non codel 
(56.6%), followed by LGG-IDH mutant-codel (29.2%) and LGGIDH wild-type (21.2%). Most of the 
subjects with GBM had the GBM IDH wide-type subtype (92.5%), which shows the poorest overall 
survival (average of 13.0 months) among all glioma subtypes. Only a small cohort of GBM subjects 
(7.3%) had the GBM-IDH wild-type subtype, which has a mean survival of 30 months. Most LGG-IDH 
mutant codel gliomas were Oligodendroglioma (89.1%) with wild-type ATRX (47/48 cases, 96.8%).  
 
Table 6: Model performance for the Binary classifier estimated on the training dataset 
Classification 
(Subject number) 

Required Images 
Contrast 

Area Under 
Curve (AUC) 

Accuracy Specificity Sensitivity 

GBM vs LGG (209 Subject) Ensemble Bagged 
Tree/T1+C, T2 FLAIR 

0.98 68.6% 92.0% 86.0% (true rate 
for LGG) 

 
DH wt vs. mut in GBMs 
 (64 subjects). 
 

 
Cubic SVM/ T1 + C, 
T1 POST 

 
0.99                   

 
80.1% 

 
95.5% (true rate 
for wt) 

 
100.0% (true rate 
for mut) 

IDH wt vs. mut in LGGs 
(45 subjects)  
 
1p/19q noncodel vs. codel in 
IDH mut LGGs (81 subjects) 
T2W    

T1+C, Diffusion 
Weighted  
 
Quadratic SVM/T1+C, 
T2 FSE, 

0.81 
 
 
0.95 

78.5% 
 
 
87.7% 

85.7% (true rate 
for wt) 
 
88.5% (true rate 
for noncodel) 

93.0% (true rate 
for mut) 
 
86.2% (true rate 
for codel) 0.768 

 
The performance of the Eleven-level binary classification model of the selected radiomics features, 
classification learner was applied, reference was plotted against intensities, with eleven predictors 
(Intensities), six classes response (System) and 25% Hideout Validation of the training dataset. 
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Classification learner was applied to multi modal of the low- high spatial frequency of wavelength 
decomposition to the selected radiomics features in the differentiation of LGG/GBM, IDH, and the 
1p/19q status of gliomas are shown in table 6. Eleven machine-learning models were chosen, and the 
highest accuracy of the models was Ensemble (Bagged Tree) selected for the classification of 
histology (LGG vs. GBM,), the Cubic SVM has the highest accuracy for the classification of IDH status 
in LGG, the cubic SVM for the classification of IDH status in GBM, and the Quadratic SVM for the 
classification of 1p/19q status in IDH mutation LGG. The predictive model scores estimated by the 
selected machine-learning models. The disparities between the predictive scores of the groups show 
the ability of the machine learning models to transfer radiomic features into a differentiable value for 
effective classification. The machine-learning models can achieve satisfactory classifications with AUCs 
between 0.81 and 0.99 estimated using the training dataset. 
 
(a)       (b) 

 
Figure 4: Plot of image intensity (AX_T1_POST image) for (a) low-pass filters applied in 
three directions (b) low-pass filter applied in one direction and high-pass filters applied 
in two directions. 
 
(c)       (d) 

 
Figure 5: Plot of image intensity (diffusion-weighted (DW) image) for (a) low-pass filters 
applied in three directions (b) high-pass filter applied in one direction and low-pass 
filters applied in two directions. 
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(a)       (b) 

 
Figure 6: Plot of image intensity (AX_T2_FSE image) for (a) low-pass filters applied in 
three directions (b) high-pass filter applied in one direction and low-pass filters applied 
in two directions. 
 
(c)       (d) 

 
Figure 7: Plot of image intensity (AX_FLAIR image) for (a) low-pass filters applied in 
three directions (b) high-pass filter applied in one direction and low-pass filters applied 
in two directions. 
 
The visualizations for the data presented in Tables 1-4 are presented in Figures 4-7. These figures 
show the distributions of image intensity for different configurations of low-pass and high-pass filters. 
These figures show the variations of image intensity across the reference coordinates based on the 
number and type of pass filters applied. These visualizations could prove to be very useful in 
identifying reference points for different tissues especially those with diseases. It is important to note 
that features that are not conspicuous on one MRI sequence will definitely show clearly on the other 
sequences especially after application of wavelet decompositions.  
 
Conclusion 
Brain tumor is a rapidly growing disease that affects the normal functions of the brain.  The results in 
Table 5 and 6 clearly presents a workable MRP Radiomic approach to predicts, detects and diagnose 
brain tumor easily. This platform is essential in characterizing, visualizing and gives adequate 
information on brain tumors. It also helps radiologist to analysis clinical images; and shows ways for 
treating patient according their tumor grade level (I-IV).  MRP 4 software extracted more than 11062 
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features that comprises of the first texture histogram, shape and size, gray level co-occurrence 
matrix, gray level run length matrix etc. The mean, minimum mean, maximum mean, standard 
deviation, area and volume of the brain tumor were also calculated, which gives detailed insight into 
brain tumors. The results from this study shows how MR radiomics can actually differentiate GBMs 
from LGGswhich makes the work of Doctors and Radiologist simpler and easier, and also reducing the 
mortality rate of cancer patient by predicting anddetecting of brain tumors early enough for 
immediate therapy. Meanwhile, this software can be extended to other diseases such as breast 
cancer, lung and abdominal pain, for analysis and demonstrating data mining opportunities provided 
by MRP.      
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